
Formal Methods for Emerging Technologies
(Invited Paper)

Robert Wille Rolf Drechsler
Institute of Computer Science, University of Bremen, 28359 Bremen, Germany

Cyber Physical Systems, DFKI GmbH, 28359 Bremen, Germany
{rwille,drechsle}@informatik.uni-bremen.de

Abstract—Formal methods advanced to an important core
technique in Computer-Aided Design (CAD). At the same time,
researchers and engineers also started the investigation of so-
called emerging technologies such as reversible computation,
quantum computation, or optical circuits. Although most of
these technologies are still in a rather “academic” state, first
physical realizations have already been presented. This motivates
a more detailed consideration of how to design circuits for these
technologies. As for conventional circuits, formal methods do
play an important role here. In this tutorial paper1, we are
aiming to address the current momentum caused by the recent
accomplishments and provide an overview of these emerging
technologies as well as their corresponding CAD methods. This
includes a special focus on how formal methods may help in the
design and verification of circuits for those technologies.

I. INTRODUCTION

Formal methods advanced to an important core technique in
Computer-Aided Design (CAD). Prominent examples include
representations for Boolean functions such as Decision Dia-
grams (DDs, [1]) or solvers for satisfiability problems such as
SAT- or SMT-solvers [2], [3], [4]. They are heavily utilized
not only in obvious application areas like verification but can
also be exploited for other CAD-tasks including synthesis,
optimization, test pattern generation, etc. This allowed for
impressive improvements in the design for conventional circuit
technologies.

At the same time, mainly caused by the expected physical
boundaries and cost restrictions of conventional CMOS-based
circuitry, researchers and engineers also started the investiga-
tion of so-called emerging technologies such as:
• Reversible circuits, in which all operations are assumed to

be bijective. This could be beneficial e.g. for certain low-
power applications or the design of encoders/decoders.
At the same time, reversible logic provides a basis for
quantum computation.

• Quantum circuits, in which quantum-mechanical effects
(e.g. superposition or entanglement) are exploited in order
to represent multiple (Boolean) states at the same time
and, thus, allow for massive parallelism.

• Optical Circuits, which rely on optical rather than electri-
cal signals and, hence, find useful applications for ultra-
high-speed networks and optical interconnects.

Although most of these technologies are still in a rather
“academic” state, first physical realizations have already been
presented. This motivates a more detailed consideration of how
to design circuits for these technologies. As for conventional
circuits, formal methods do play an important role here.

In this paper, we are aiming to address the current mo-
mentum caused by the recent accomplishments by providing

1This paper is a summary (including a list of references) of a tutorial which
has been given at ICCAD’2015.

an overview of these emerging technologies as well as their
corresponding CAD methods. This includes a special focus
on how formal methods may help in the design of circuits
for those technologies and what adjustments would be neces-
sary for this purpose. More precisely, the application of the
following formal methods will be addressed:
• Decision Diagrams: Decision diagrams allow for an effi-

cient representation of the desired (Boolean) functionality
to be realized. By the application of various decomposi-
tion strategies, they are a core method for the realization
of conventional logic. However, when the represented
functionality is supposed to be realized in terms of
an alternative emerging technology, new representations,
objectives, or decomposition schemes are required.

• SAT Solvers: SAT solvers as well as their derivatives
(e.g. SMT solvers, QBF solvers, PBO solvers, etc.) allow
for an efficient traversal of the search space. This is
of benefit e.g. for many CAD problems in which an
(optimal) solution within a rather large space of non-
optimal (or even invalid) solutions has to be determined.
If emerging technologies are considered, additional con-
straints such as non-Boolean representations have to be
additionally addressed.

In order to cover these issues, the remainder of this paper
is structured as follows. First, the basics on the considered
emerging technologies are summarized in Section II. After-
wards, it is discussed how formal methods can be utilized in
the design of circuits for emerging technologies in Section III
(using decision diagrams) and Section IV (using SAT solvers).
Due to the amount of covered content, all descriptions are
kept brief but references for a detailed treatment are provided.
Finally, the paper is concluded in Section V.

II. CONSIDERED EMERGING TECHNOLOGIES

For each emerging technology considered in this paper, this
section first reviews its basics and the main application areas.
Afterwards, the logic model which is applied in order to design
the corresponding circuits is reviewed.

A. Reversible Circuits
1) Basics & Motivation: In reversible circuits, functionality

is specified and, eventually, realized in a bijective fashion,
i.e. a unique input/output mapping is enforced. In particular,
applications in the domain of quantum computation (covered
in the next section) profit from the corresponding functional
descriptions. This is because every quantum operation in-
herently is reversible and, hence, Boolean components of
quantum circuits can first be realized as reversible circuits,
before they are mapped to quantum circuits [5], [6]. Besides
that, certain aspects of low-power design may profit from the
reversible computation paradigm according to the observations

x1 = 1 x′1 = 1

x2 = 1 x′2 = 1

x3 = 1 x′3 = 0

0

1

1

0

1

1

1

1

1

Fig. 1: A reversible circuit

by Landauer [7] and Bennett [8]. They respectively proved
that, during a computation, each information loss causes a
certain amount of power dissipation and, since reversible
computations never lead to an information loss, every circuit
technology which aims for a (theoretical) power dissipation of
zero, indeed has to be reversible. This has been experimentally
confirmed recently in [9]. Also in the domain of the design
of encoders for on-chip interconnects, reversible circuits have
successfully been applied [10].

2) Logic Model: A Boolean function f : Bn → Bm over
the variables X := {x1, . . . , xn} is reversible iff (1) its num-
ber of inputs is equal to the number of outputs (i.e. n = m)
and (2) it maps each input pattern to a unique output pattern.
Since fanout and feedback are not directly allowed, reversible
circuits realizing reversible functions are represented as a cas-
cade of reversible gates [11]. Each variable of the function f
is represented by a circuit line, i.e. a signal through the whole
cascade structure on which the respective computations are
performed. Computations are performed by reversible gates,
whereby the Toffoli gate is the most frequently used gate
type. A Toffoli gate is composed of a (possibly empty) set
of control lines C = {xi1 , . . . , xik} ⊂ X and a single target
line xj ∈ X \ C. The Toffoli gate inverts the value on the
target line if all values on the control lines are assigned to 1
or if C = ∅, respectively. All remaining values are passed
through unaltered.

Example 1. Fig. 1 shows a reversible circuit composed of
several Toffoli gates. Control lines are denoted by , while the
target lines are denoted by ⊕. This circuit maps e.g. the input
111 to the output 110. As can be seen, this computation can
also been conducted in the reverse fashion, i.e. the output 110
is mapped to the input 111.

B. Quantum Circuits
1) Basics & Motivation: Quantum computation [11] pro-

vides a new way of computation based on so called qubits.
In contrast to conventional bits, qubits do not only allow to
represent the (Boolean) basis states 0 and 1, but also superposi-
tions of both. By this, qubits can represent multiple (Boolean)
states at the same time which enables massive parallelism. Ad-
ditionally exploiting further quantum mechanical phenomena
such as phase shifts or entanglement enables asymptotic speed-
ups for many relevant problems (e.g. database search [12] or
integer factorization [13]), offers new methods for secure com-
munication (e.g. quantum key distribution), and has several
other appealing applications [11].

2) Logic Model: A qubit is a two-level quantum system,
described by a two-dimensional complex Hilbert space. The
two orthogonal quantum states |0〉 ≡

(
1
0

)
and |1〉 ≡

(
0
1

)
are

used to represent the Boolean values 0 and 1. The state of a
qubit may be written as |x〉 = α|0〉+β|1〉, where α and β are
complex numbers with |α|2 + |β|2 = 1. A quantum operation
over n qubits can be represented by a unitary matrix, i.e. a
2n × 2n matrix U = [ui,j]2n×2n with

|1〉 =
(
0
1

)
− |1〉 =

(
0
−1

) 1√
2
(|1〉 − |0〉) = 1√

2

(−1
1

)
Z H

|1〉 =
(
0
1

) (
0
1

) 1√
2
(|0〉 − |1〉) = 1√

2

(
1
−1

)
H

Fig. 2: A quantum circuit

• each entry ui,j assuming a complex value and
• the inverse U−1 of U being the conjugate transpose

matrix (adjoint matrix) U† of U (i.e. U−1 = U†).
At the end of the computation, a qubit can be measured

causing it to collapse to a basis state. Then, depending on
the current state of the qubit, either a 0 (with probability
of |α|2) or a 1 (with probability of |β|2) results. The state
of the qubit is destroyed by the act of measuring it. The
corresponding quantum operations are usually represented in
terms of quantum gates that are performed in a predetermined
serial fashion – eventually leading to the representation of a
quantum circuit. Similar to reversible gates, quantum gates
may have control lines.

Example 2. Fig. 2 shows a quantum circuit composed of
several quantum gates. Again, control lines are denoted by ,
while the target line is denoted by a box indicating the
respectively applied unitary operation, namely

H = 1√
2

(
1 1
1 −1

)
and Z =

(
1 0
0 −1

)
.

This circuit transforms the basis states shown at the inputs
to the superposed states shown at the outputs. Measuring the
qubits at the outputs would either lead to a Boolean 0 or a
Boolean 1 with a probability of | ± 1√

2
|2 = 0.5 each.

C. Optical Circuits
1) Basics & Motivation: Optical computations are per-

formed on optical rather than electrical signals. This is of
interest particularly for ultra-high-speed networks and optical
interconnects [14], [15]. In such systems, the respective signals
frequently (i.e. at every interconnect interface) need to be
transformed from the electrical domain to the optical domain
and vice versa. This causes significant overhead which could
be avoided if the respective transformations would directly
be conducted at the optical signals. To this end, researchers
from the field of silicon-based integrated optics (also known as
silicon photonics) considered the realization of optical circuits.

2) Logic Model: Optical circuits allow to realize Boolean
functionality e.g. by means of so called crossbar gates. A
crossbar gate realizes a Boolean function B3 → B2 composed
of two optical inputs p and q, one electrical input x, and two
optical outputs f and g. The signals p and q as well as f and g
are connected by waveguides which, depending on the value
of x, realize either the identity or a switch of the input values,
i.e. x⇒ (p ≡ f) ∧ (q ≡ g) and x⇒ (p ≡ g) ∧ (q ≡ f) is
realized, respectively2. Besides that, splitters (dividing an
optical signal into two optical signals with half the signal
power each) and combiners (merging two optical signals into
a single one) are utilized in order to realize logic functions.

2Note that an optical as well as an electrical signal are never assumed to
interact with each other except for the crossbar gate.

x1

x2

x3

x4

x5

x6

f

1
0

0
1 0

Fig. 3: An optical circuit

Example 3. Fig. 3 shows an optical circuit composed of six
crossbar gates, two splitters, and one combiner denoted by

x

p
q

f
g , , and ,

respectively.

III. USING DECISION DIAGRAMS
FOR THE DESIGN OF EMERGING TECHNOLOGIES

In a first consideration, the design of circuits for emerging
technologies based on decision diagrams [1] is addressed.
Decision diagrams allow for a compact representation of the
desired Boolean functionality to be realized what made them
a suitable description means for many conventional synthesis
approaches (see e.g. [16], [17]). Accordingly, these concepts
have been adapted for the emerging technologies as well.

In this section, we briefly review the basics on decision
diagrams first. Afterwards, how to exploit this formal method
for the design of circuits for an emerging technology is
exemplary shown by means of reversible circuits.

A. Decision Diagrams
A Boolean function f : Bn → B can be represented by a

Decision Diagram (DD) [1]. A DD is a directed acyclic graph
G = (V,E) where e.g. a Shannon decomposition

f = xi · fxi=0 + xi · fxi=1

is carried out in each node v ∈ V . The function fxi=0 (fxi=1)
is the negative (positive) co-factor of f obtained by assigning
xi to 0 (1). In the following, the node representing fxi=0

(fxi=1) is denoted by low(v) (high(v)), while xi is called
the select variable. A DD is called free if each variable is
encountered at most once on each path from the root to
a terminal node. A DD is called ordered if in addition all
variables are encountered in the same order on all such paths.
The size k of a DD is defined by the number of nodes.

In the past, several techniques to optimize the size of DDs
have been developed. In particular shared nodes [1] allow
significant reductions which can particularly be exploited by
functions f : Bn → Bm (i.e. functions with more than
one output). Further reduction can be achieved if complement
edges [18] are applied. This enables the representation of a
function as well as of its negation by a single node only.
Furthermore, the size of a DD significantly depends on the
chosen ordering of its input variables [1].

Example 4. Fig. 4 shows a DD representing the function f =
x1x2x3x4 + x1x2x3x4 + x1x2x3x4 + x1x2x3x4 as well as
the respective co-factors resulting from the application of the
Shannon decomposition.

x1

x2 x2

x3 x3

x4 x4

0 1

f

f6 = x2x3x4 + x2x3x4 f5 = x2x3x4 + x2x3x4

f4 = x3x4 f2 = x3x4

f3 = x4 f1 = x4

0 1

1

0 0

1

1

0

1
0

1

0 0

1

Fig. 4: Decision diagram

f2 f3 f4 f5 f6 f

f2

f3

f4

f5

f6

f5 needs to preserve f2

x1 −

x2 −

x3 −

x4, f1 −

0 f

1 −

0 −

0 −

Fig. 5: Circuit derived from DD

B. DD-based Synthesis of Reversible Circuits
Having a DD G = (V,E) representing the function to

be realized, a corresponding reversible circuit can easily be
derived from it. To this end, all nodes v ∈ V of G are
traversed in a depth-first fashion and substituted with a cascade
of reversible gates. The respective cascade of gates depends on
the successors of the node v. Note that this sometimes requires
an additional (constant) circuit line. If the entire DD has been
traversed, a circuit realizing f has been obtained.

Example 5. Consider again the DD from Fig. 4. The co-
factor f1 can easily be represented by the primary input x4.
Having the value of f1 available, the co-factor f2 can be
realized by the first two gates depicted in Fig. 53. In this
manner, respective sub-circuits can be added for all remaining
co-factors until a circuit representing the overall function f
results. The remaining steps are shown in Fig. 5.

DD-based synthesis of reversible circuits constituted one
of the first synthesis approaches for reversible circuits that al-
lowed for the realization of larger Boolean functions (i.e. func-
tions with 100 variables and more). However, they inherited
the drawback that, as sketched in the example from above,
circuits with a significant amount of additional lines result
– usually considered a serious drawback. Hence, further
developments considered alternatives which addressed this
drawback [19], [20].

3Note that an additional circuit line is added to preserve the values of x4
and x3 which are still needed by the co-factors f3 and f4, respectively.

C. DD-based Synthesis for Other Emerging Technologies
Approaches for the synthesis of circuits for other emerging

technologies employed a similar scheme as sketched above,
i.e. representing the desired functionality in terms of a decision
diagram and, afterwards, using this description in order to
create the desired circuits. But depending on the considered
technology, additional issues have to be considered for this
purpose. More precisely:

1) For Quantum Circuits: As reviewed in Section II-B,
quantum circuits do not only rely on Boolean values and
operations. Consequently, circuit synthesis for this technology
additionally has to support the logic representation of quantum
mechanical properties such as superposition, entanglement,
etc. This cannot directly been represented by binary decision
diagrams, but requires dedicated DDs for quantum compu-
tations. Amongst others, particular Quantum Multiple-valued
Decision Diagrams (QMDDs; originally introduced in [21];
a comprehensive description including recent improvements
can be found in [22]) have been found useful for this pur-
pose. Although a simple mapping scheme as sketched above
was, thus far, only presented in [19], QMDDs nevertheless
have been successfully applied to synthesize certain quantum
functionality as shown in [23]. However, a general synthesis
methodology capable of realizing arbitrary quantum function-
ality based on QMDDs is still left for future work.

2) For Optical Circuits: Decision diagrams also enabled,
for the first time, an efficient synthesis of optical circuits for
large functions (initially investigated in [24]). Here, particu-
larly the gate library composed of crossbar gates (cf. Sec-
tion II-C) comes in handy. In fact, the Shannon decomposition
applied in each DD node is directly realized by a crossbar gate
so that each node can eventually be mapped to such as gate.
However, if a shared node occurs, the respective optical signal
has to be split accordingly.

However, these splittings represent a serious drawback be-
cause DDs for practical relevant functions usually are com-
posed of a significant number of shared nodes. Since each
splitter caused by a shared node decreases the strength of a
signal by its half, DD-based synthesis leads to optical circuits
where certain output signals are constituted by a negligible
fraction of power only.

An approach addressing this issue has been proposed
in [25]. Here, a DD-based synthesis is introduced which
traverses the DD in a reverse fashion and, by this, allows for
a splitter-free circuit. This reduces the splitting of the signal
strength to none, but comes at the expense of a moderate
overhead in terms of crossbar gates.

IV. USING SAT SOLVERS
FOR THE EMERGING TECHNOLOGIES

The problem of Boolean satisfiability is one of the central
NP-complete problems. The main idea is to determine a sat-
isfying assignment to a Boolean function so that this function
evaluates to 1 or to prove that no such assignment exists. Al-
though this represents a computational complex (exponential)
task, very efficient algorithms (so called SAT solvers) have
been proposed in the past (see e.g. [2]). They can handle
even complex instances with large search spaces. Since many
practical relevant problems from CAD of conventional circuits
can easily represented by means of Boolean satisfiability, SAT
solvers become another core technology in many domains

(e.g. for verification [26], test pattern generation as well as
compaction [27], [28], and more). In fact, they represent the
method of choice when large search spaces have to completely
been considered, but representations e.g. by means of decision
diagrams are not suitable anymore.

In the design for emerging technologies, SAT solvers are
utilized in similar fashions, i.e. for verification and testing.
Besides that, their computational power and consideration of
the entire search space also has been found valuable in the
synthesis of minimal circuits (compared to the circuits often
generated by heuristic which do not guarantee minimality).
How exact synthesis of circuits for emerging technologies
can be conducted using SAT solvers is reviewed in this
section. Again, synthesis of reversible circuits is considered as
a representative in more detail. Afterwards, related work for
the synthesis of circuits for other technologies is summarized.
Before that, the basics of SAT solvers are reviewed first.

A. SAT Solvers
In a more formal fashion, the Boolean Satisfiability (SAT)

problem is defined as follows: Let h be a Boolean function.
Then, the SAT problem is to determine an assignment for
the variables of h such that h evaluates to 1 or to prove
that no such assignment exists. The function h is usually
provided in Conjunctive Normal Form (CNF), i.e. a product-
of-sum representation. More precisely, the CNF is composed
of a conjunction of clauses. A clause is a disjunction of
literals and each literal is a propositional variable or its
negation. Once it is proven that no solution exist, an instance is
called unsatisfiable (UNSAT); otherwise, the instance is called
satisfiable (SAT).

Example 6. Let h = (x1+x2+x3)(x1+x3)(x2+x3). Then,
x1 = 1, x2 = 1 and x3 = 1 is a satisfying assignment for h.
The values of x1 and x2 ensure that the first clause becomes
satisfied while x3 ensures this for the remaining two clauses.
That is, this instance is satisfiable.

In the past, SAT solvers have been proposed which, in-
stead of simply traversing the complete space of assignments,
employ intelligent decision heuristics, conflict based learning,
and sophisticated engineering of the implication algorithm by
Boolean Constraint Propagation (BCP) [2]. This led to an
effective search procedure which can handle problem instances
consisting of hundreds of thousands of variables, millions of
clauses, and tens of millions of literals. Recently, SAT solvers
have also been enriched with theories and further levels of
descriptions. This led to the domain of SAT Modulo Theo-
ries (SMT) and corresponding SMT solvers as e.g. introduced
in [3], [4].

B. SAT-based Synthesis of Reversible Circuits
In [29], the exact synthesis problem is formulated as a

sequence of decision problems. Given the reversible func-
tion f : Bn → Bn, it is checked whether f can be synthesized
using d = 1 Toffoli gates. If this fails, then d is increased
until a realization has been determined. Since d is iteratively
increased starting with d = 1, minimality is ensured. The
respective checks are performed by
• formulating the synthesis problem as an instance of

Boolean satisfiability and
• using a SAT solver to solve this instance.

0 = x0
0,0

0 = x0
0,1

0 = x0
0,2

0 = x0
0,3

0 = x0
1,0

0 = x0
1,1

0 = x0
1,2

1 = x0
1,3

1 = x0
15,0

1 = x0
15,1

1 = x0
15,2

1 = x0
15,3

~t0~c0

x1
0,0

x1
0,1

x1
0,2

x1
0,3

x1
1,0

x1
1,1

x1
1,2

x1
1,3

x1
15,0

x1
15,1

x1
15,2

x1
15,3

~t1~c1

x2
0,0

x2
0,1

x2
0,2

x2
0,3

x2
1,0

x2
1,1

x2
1,2

x2
1,3

x2
15,0

x2
15,1

x2
15,2

x2
15,3

~t2~c2

x3
0,0

x3
0,1

x3
0,2

x3
0,3

x3
1,0

x3
1,1

x3
1,2

x3
1,3

x3
15,0

x3
15,1

x3
15,2

x3
15,3

~t3~c3

x4
0,0 = 1

x4
0,1 = 1

x4
0,2 = 1

x4
0,3 = 1

x4
1,0 = 1

x4
1,1 = 1

x4
1,2 = 1

x4
1,3 = 0

x4
15,0 = 0

x4
15,1 = 0

x4
15,2 = 0

x4
15,3 = 0

...

Fig. 6: Exact SAT formulation for n = 4 and d = 4.

For this purpose, SAT instances are created that become
satisfiable if and only if a circuit with d gates representing the
function exists. To this end, Boolean variables and constraints
as introduced in the following are applied.

Definition 1. Let f : Bn → Bn be a reversible function to be
synthesized. Then, variables xki,0, x

k
i,1, . . . , x

k
i,n−1 are applied

to symbolically represent the input- (for k = 0), the output-
(for k = d), and the auxiliary values (for 1 ≤ k ≤ d − 1) of
the circuit to be synthesized for each truth table line i of f .
Therefore, the left-hand side of the truth table corresponds to
the variables x0i,0, x

0
i,1, . . . , x

0
i,n−1, while the right-hand side

corresponds to the variables xdi,0, x
d
i,1, . . . , x

d
i,n−1.

Fig. 6 shows the respective variables for a function f to
be synthesized with n = 4 variables. The first row of Fig. 6
represents the variables for the first truth table line of f , the
second row the ones for the second truth table line of f , and
so on.

Furthermore, variables symbolically representing the type
of a Toffoli gate are introduced:

Definition 2. Let f : Bn → Bn be a reversible func-
tion to be synthesized. Then, tkdlog2 ne, t

k
dlog2 ne−1, . . . , t

k
1 and

ck1 , c
k
2 , . . . , c

k
n−1 with 0 ≤ k < d are introduced, whose

assignments symbolically represent the type of the Toffoli gate
at depth k (for brevity denoted by ~tk and ~ck in the following).

The variable ~tk is used as a binary encoding of a natural
number tk ∈ {0, . . . , n − 1} which defines the chosen target
line. In contrast, ~ck denotes the control lines. More precisely,
assigning ckl = 1 (1 ≤ l ≤ n − 1) means that line (tk + l)
mod n becomes a control line of the Toffoli gate at depth k.

Fig. 7 gives some examples for assignments to ~tk and ~ck
with their respective Toffoli gate representation.

tk=(00) tk=(01) tk=(10)

c
k =
(0
0)

c
k =
(0
1)

c
k =
(1
0)

c
k =
(1
1)

c
k =
(0
0)

c
k =
(0
1)

c
k =
(1
0)

c
k =
(1
1)

c
k =
(0
0)

c
k =
(0
1)

c
k =
(1
0)

c
k =
(1
1)

Fig. 7: Representation of Toffoli gates by assignments to ~tk
and ~ck

Using these variables, constraints are introduced assigning
the input and output of the truth table to their respective x0i,j
and xdi,j variables. Furthermore, for each gate to be synthesized
at depth k, functional constraints are added so that (depending
on the assignment to ~tk and ~ck as well as to the input xki,j)
the respective gate output xk+1

i,j is computed. As an example,
consider ~tk = (01) and ~ck = (001), i.e. with ck3 = 1.
This assignment states that the Toffoli gate at depth k has
line tk = [01]2 = 1 as target line and line (tk + l)
mod n = (1+3) mod 4 = 0 as single control line. To cover
this case, constraints

~tk=(01)∧~ck=(001)⇒

xk+1
i,0 = xki,0

∧ xk+1
i,1 = xki,1 ⊕ xki,0

∧ xk+1
i,2 = xki,2

∧ xk+1
i,3 = xki,3

(1)

are added for each truth table line i. In other words, the values
of lines 0, 2, and 3 are passed through, while the output value
of line 1 becomes inverted, if line 0 is assigned 1. Similar
constraints are added for all remaining cases.

As a result, a functional description has been constructed
which is satisfiable, if there is a valid assignment to ~tk

and ~ck such that for all truth table lines the desired input-
output mapping is achieved. Then, the precise Toffoli gates
are obtained by the assignments to ~tk and ~ck as depicted
in Fig. 7. If there is no such assignment (i.e. the instance
is unsatisfiable), then it has been proven, that no circuit
representing the function with d gates exists.

C. SAT-based Synthesis for Other Emerging Technologies
The computational power of SAT solvers has also been ex-

ploited for the synthesis of minimal circuits for other emerging
technologies. However, depending on the respectively consid-
ered logic model as well as cost metrics, the corresponding
SAT formulation required adjustments or needed to be re-
developed. More precisely:

1) For Quantum Circuits: Also the development of synthe-
sis methods for minimal quantum circuits suffered from the
fact that not only Boolean signal values and operations have
to be considered. In the approach reviewed in the previous

section, logic computations based on a purely Boolean model
were sufficient. If quantum values are additionally considered,
a multiple-valued formulation is required. For a restricted
quantum gate library (supporting four different quantum val-
ues), this was successfully accomplished in [30]. If, however,
arbitrary quantum functionality is supposed to be represented,
much bigger obstacles occur – in general, an infinite number
of values need to be represented. However, evaluations in [31]
confirmed that often a subset of all possible quantum values is
sufficient. Nevertheless, how to employ SAT-based synthesis as
sketched above for the minimal synthesis of arbitrary quantum
functionality remains an open issue thus far.

2) For Optical Circuits: As optical circuits work on
Boolean values, the SAT-based synthesis scheme can easily
be adapted. In fact, only the gate library as well as the
distinction between electrical signals (e.g. provided by the
inputs) and optical signals (e.g. provided by the outputs) has
to be considered. A corresponding synthesis scheme has been
proposed and evaluated in [24].

V. CONCLUSIONS

In this tutorial paper, we provided an overview on how
formal methods can be exploited for the design of circuits
for emerging technologies. As representatives, synthesis of
reversible circuits, quantum circuits, and optical circuits has
been considered. By this, we addressed the current momentum
caused by the recent accomplishments in these areas. This
tutorial, however, did not cover the application of formal
methods for other important design tasks such as verifica-
tion, debugging, testing, etc. Also here, decision diagrams
and/or SAT solvers have successfully been applied as shown
e.g. in [32], [33], and [34], respectively. Besides that, a
broad variety of open problems remains. The corresponding
discussions from above and particularly in the cited references
give an impression of issues left to be addressed in future
work.

ACKNOWLEDGMENTS

The authors would like to thank all researchers and col-
laborators which, in the past years, worked with us on the
development of the approaches which have been reviewed in
this paper.

REFERENCES

[1] R. E. Bryant. Graph-based algorithms for Boolean function manipula-
tion. IEEE Trans. on Comp., 35(8):677–691, 1986.

[2] N. Eén and N. Sörensson. An extensible SAT solver. In SAT 2003,
volume 2919 of LNCS, pages 502–518, 2004.

[3] B. Dutertre and L. Moura. The YICES SMT solver. 2006. Available at
http://yices.csl.sri.com/.

[4] R. Brummayer and A. Biere. Boolector: An efficient SMT solver for
bit-vectors and arrays. In Tools and Algorithms for the Construction
and Analysis of Systems, pages 174–177, 2009.

[5] A. Barenco, C. H. Bennett, R. Cleve, D.P. DiVinchenzo, N. Margolus,
P. Shor, T. Sleator, J.A. Smolin, and H. Weinfurter. Elementary gates for
quantum computation. The American Physical Society, 52:3457–3467,
1995.

[6] D. M. Miller, R. Wille, and Z. Sasanian. Elementary quantum gate
realizations for multiple-control Toffolli gates. In Int’l Symp. on Multi-
Valued Logic, pages 288–293, 2011.

[7] R. Landauer. Irreversibility and heat generation in the computing
process. IBM J. Res. Dev., 5:183, 1961.

[8] C. H. Bennett. Logical reversibility of computation. IBM J. Res. Dev,
17(6):525–532, 1973.

[9] A. Berut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider,
and E. Lutz. Experimental verification of Landauer’s principle linking
information and thermodynamics. Nature, 483:187–189, 2012.

[10] R. Wille, R. Drechsler, C. Osewold, and A. Garcı́a Ortiz. Automatic
design of low-power encoders using reversible circuit synthesis. In
Design, Automation and Test in Europe, pages 1036–1041, 2012.

[11] M. Nielsen and I. Chuang. Quantum Computation and Quantum
Information. Cambridge Univ. Press, 2000.

[12] Lov K. Grover. A fast quantum mechanical algorithm for database
search. In Theory of computing, pages 212–219, 1996.

[13] P. W. Shor. Algorithms for quantum computation: discrete logarithms
and factoring. Foundations of Computer Science, pages 124–134, 1994.

[14] A. Shacham, K. Bergman, and L. P. Carloni. Photonic Network-on-Chip
for Future Generations of Chip Multi-Processors. IEEE Transactions on
Computers, 57(9):1246–1260, 2008.

[15] P.K. Kaliraj, P. Sieber, A. Ganguly, I. Datta, and D. Datta. Performance
Evaluation of Reliability Aware Photonic Network-on-Chip Architec-
tures. In Intl. Green Computing Conference, pages 1–6, 2012.

[16] B. Becker and R. Drechsler. Decision diagrams in synthesis - algorithms,
applications and extensions -. In VLSI Design Conf., pages 46–50, 1997.

[17] R. Drechsler, J. Shi, and G. Fey. MuTaTe: An efficient design for
testability technique for multiplexor based circuits. In Great lakes
symposium on VLSI, pages 80–83, 2003.

[18] K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficient implementation
of a BDD package. In Design Automation Conf., pages 40–45, 1990.

[19] M. Soeken, R. Wille, C. Hilken, N. Przigoda, and R. Drechsler. Synthesis
of reversible circuits with minimal lines for large functions. In ASP
Design Automation Conf., pages 85–92, 2012.

[20] M. Soeken, L. Tague, G. W. Dueck, and R. Drechsler. Ancilla-free
synthesis of large reversible functions using binary decision diagrams.
Journal of Symbolic Computation, 2015.

[21] D. M. Miller and M. A. Thornton. QMDD: A decision diagram structure
for reversible and quantum circuits. In Int’l Symp. on Multi-Valued
Logic, page 6, 2006.

[22] P. Niemann, R. Wille, D. M. Miller, M. A. Thornton, and R. Drechsler.
Qmdds: Efficient quantum function representation and manipulation.
IEEE Trans. on CAD, 2015.

[23] P. Niemann, R. Wille, and R. Drechsler. Efficient synthesis of quan-
tum circuits implementing Clifford group operations. In ASP Design
Automation Conf., pages 483–488, 2014.

[24] C. Condrat, P. Kalla, and S. Blair. Logic Synthesis for Integrated Optics.
In Great lakes symposium on VLSI, pages 13–18. ACM, 2011.

[25] R. Wille, O. Keszocze, C. Hopfmuller, and R. Drechsler. Reverse
BDD-based synthesis for splitter-free optical circuits. In ASP Design
Automation Conf., pages 172–177, 2015.

[26] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking
without BDDs. In Tools and Algorithms for the Construction and
Analysis of Systems, volume 1579 of LNCS, pages 193–207. Springer
Verlag, 1999.

[27] R. Drechsler, S. Eggersglüß, G. Fey, A. Glowatz, F. Hapke, J. Schloeffel,
and D. Tille. On acceleration of SAT-based ATPG for industrial designs.
IEEE Trans. on CAD, 27:1329–1333, 2008.

[28] S. Eggersglüß, R. Wille, and R. Drechsler. Improved SAT-based ATPG:
more constraints, better compaction. In Int’l Conf. on CAD, pages 85–
90, 2013.

[29] D. Große, R. Wille, G. W. Dueck, and R. Drechsler. Exact multiple
control Toffoli network synthesis with SAT techniques. IEEE Trans. on
CAD, 28(5):703–715, 2009.

[30] D. Große, R. Wille, G. W. Dueck, and R. Drechsler. Exact synthesis
of elementary quantum gate circuits for reversible functions with don’t
cares. In Int’l Symp. on Multi-Valued Logic, pages 214–219, 2008.

[31] R. Wille, N. Przigoda, and Rolf Drechsler. A compact and efficient SAT
encoding for quantum circuits. In AFRICON, 2013.

[32] P. Niemann, R. Wille, and R. Drechsler. Equivalence checking in multi-
level quantum systems. pages 201–215, 2014.

[33] R. Wille, D. Große, S. Frehse, G. W. Dueck, and R. Drechsler.
Debugging of Toffoli networks. In Design, Automation and Test in
Europe, pages 1284–1289, 2009.

[34] R. Wille, H. Zhang, and R. Drechsler. ATPG for reversible circuits using
simulation, Boolean satisfiability, and pseudo Boolean optimization. In
IEEE Annual Symposium on VLSI, 2011.

