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Abstract—The development of low power systems gained
significant importance and impressive progress has been made
in this domain in the recent years. However, despite more
efficient circuit technologies (made possible e.g. by the ongoing
miniaturization of integrated circuits) as well as improvements in
battery technology, also the way how computations are logically
performed may have an effect on the required power consump-
tion. In this invited paper, we consider reversible computation
– an alternative computation paradigm which inherits certain
characteristics and properties that may be of benefit for low
power design. We review possible impacts to future developments
and show how reversible computations can already been exploited
today. Finally, we sketch design challenges which, besides other
physical and electrical issues, still prevent the full exploitation of
this computation paradigm.

I. INTRODUCTION

In the modern world, computation devices are found ev-
erywhere. Most visible are the ubiquitous desktop and laptop
computers, but the vast majority of computation devices are
actually embedded in everything from children’s toys to smart-
phones. Common to many of these embedded devices is that
(1) they rely on a battery or other low-power connections,
(2) they are designed for a specialized application rather than
for general computation, and (3) they operate with little-to-no
external input for long periods of time.

A common challenge for all such computation devices
(and computation devices in general) is, therefore, the power
consumption associated with their use. This has two major im-
pacts: Firstly, the total power consumption from areas related
to information and communication technology amounts to a
significant portion of the total power budget. Secondly, high
power consumption greatly reduces usability and convenience
in power-limited contexts, e.g. battery powered devices often
need to be charged (e.g. smartphones almost daily) or require
a change of batteries (e.g. hearing aids every week).

Recent years have shown tremendous improvements in this
respect. The ongoing miniaturization of integrated circuits
have led to a continual decrease in the power dissipation
per computational step, while improvements in battery tech-
nology (e.g. the invention of the Lithium ion battery) have
increased the power density of batteries. These complementary
developments are the main reasons why devices today can
perform many computation-intensive functions and still remain
portable and convenient.

But despite that, also the fashion how we logically perform
computations may have an effect on the required power con-
sumption. In fact, researchers and engineers narrowed the in-
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Fig. 1: Computation paradigms

vestigation of computation machines down to a preponderantly
irreversible computation paradigm: Most of the established
computations are not invertible. A simple standard operation
like the logical AND already illustrates that. Indeed, it is
possible to obtain the inputs of an AND gate if the output
is set to 1 (then, both inputs must be set to 1 as well). But,
it is not possible to determine the input values if the AND
outputs 0. This may lead to drawbacks when it comes to the
development of (future) power-efficient computation devices.

In contrast, reversible computation is an alternative com-
putation paradigm which only allows for bijective operations,
i.e. reversible n-input n-output functions that map each possi-
ble input vector to a unique output vector. The underlying idea
of reversible computation is exemplarily illustrated in Fig. 1a
by means of a simple addition. Performing solely the addition
leads to an information loss and makes it impossible to undo
the calculation without knowing the original inputs. Instead,
if the addition is realized as shown in Fig. 1b computations
can be performed in a reversible fashion, i.e. from the inputs
to the outputs and vice versa.

Albeit not so well established yet, this computation
paradigm may allow for several promising applications in the
domain of low power design. In this invited paper, we aim for
providing an overview of these prospects. To this end, we first
briefly review the basic principles of reversible computation
by means of reversible circuits. Afterwards, we discuss in
Section III the general impact reversible computation may
have on the development of future low power circuits and
systems. How to exploit reversible computations already today
is discussed by means of the design of encoders for on-
chip interconnects in Section IV. Finally, design questions
raised by this unconventional computation paradigm are briefly
discussed in Section V before the paper is concluded in
Section VI.
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Fig. 2: Toffoli gate and Toffoli circuit

II. REVERSIBLE CIRCUITS

A Boolean function f : Bn → Bm over the variables
X := {x1, . . . , xn} is reversible iff (1) its number of inputs is
equal to the number of outputs (i.e. n = m) and (2) it maps
each input pattern to a unique output pattern. Reversible func-
tions are realized by reversible circuits. A reversible circuit G
is a cascade of reversible gates, where fanout and feedback
are not directly allowed [2]. Each variable of the function f
is thereby represented by a circuit line, i.e. a signal through
the whole cascade structure on which the respective computa-
tion is performed. Computations are performed by reversible
gates. In the literature, reversible circuits composed of Toffoli
gates are frequently used. A Toffoli gate is composed of a
(possibly empty) set of control lines C = {xi1 , . . . , xik} ⊂ X
and a single target line xj ∈ X \ C. The Toffoli gate inverts
the value on the target line if all values on the control lines are
assigned to 1 or if C = ∅, respectively. All remaining values
are passed through unaltered.

Fig. 2a shows a Toffoli gate drawn in standard notation,
i.e. control lines are denoted by , while the target line is
denoted by ⊕. A circuit composed of several Toffoli gates is
depicted in Fig. 2b. This circuit maps e.g. the input 111 to the
output 110 and vice versa.

III. POSSIBLE IMPACT OF REVERSIBLE COMPUTATION

As mentioned above, the ongoing miniaturization of inte-
grated circuits as well as improvements in battery technology
are the main reasons why today’s circuits and systems can
perform many computation-intensive functions and still remain
portable as well as convenient. However, these developments
cannot continue indefinitely and, indeed, a particular limit of
conventional computation technology will be reached in the
near future.

In fact, all of today’s computation devices inherit a non-
technology specific and fundamental limit to power consump-
tion – called the Landauer limit – common to all conceivable
computation processes. Pioneering work by Landauer [3]
showed that, regardless of the underlying technology, each
“lost” bit of information causes a power dissipation amounting
to at least k · T · log(2) Joules (where k is the Boltzmann
constant and T is the temperature). In other words, whenever
a device performs a computation that loses information, it
must use some amount of power greater than this lower
bound. Furthermore, all of the computation devices that sur-
round us, regardless of their purpose, are built of elementary
computation devices or gates (AND, OR, NAND, etc.). They
all intrinsically lose information, and, thus, are individually
subject to this principle. Each elementary gate in current
computation devices must dissipate this power and a single
computer chip can contain billions of such gates. This has
been experimentally confirmed recently in [4].

Although the theoretical lower bound on power dissipation
still does not constitute a significant fraction of the power
consumption of current devices, it nonetheless poses both an
obstacle and a possibility for the future. Fig. 3 illustrates
the development of the power consumption of an elementary
computational step in recent and expected future CMOS
generations (based on values from the International Technol-
ogy Roadmap of Semiconductors [1]). The figure shows that
today’s technology is still far away from the Landauer limit.
However, a simple extrapolation also shows that the trend
cannot continue with the current family of static CMOS gates
as no amount of technological refinement can overcome the
Landauer barrier.

Additionally, the Landauer limit is only a lower bound
on the dissipation. Gerschenfeld has shown that the actual
power dissipation corresponds to the amount of power used to
represent the signal [5]. The power used to represent a signal
in CMOS is significantly higher than the lower limit. This in
turn means that for conventional devices the Landauer barrier
is closer than immediately implied by the extrapolation from
Fig. 3.

Reversible circuits are a solution to avoid information loss in
computation processes and, thus, to overcome this barrier. This
computation model ensures that data is bijectively transformed
at each computation step, which intrinsically avoids informa-
tion loss. This circumvents Landauer’s principle, removing
the lower barrier to power dissipation if reversible elementary
devices are used. Furthermore, the dissipation of signal power
as a by-product of information loss should also be avoidable,
meaning that there is a significant potential for power savings
by going reversible, even when using the CMOS technology
available today.

First implementations and fabrications of reversible logic
in CMOS have indeed been accomplished (e.g. [6]). These
exploit that reversible logic is particularly suited for both
(1) when it comes to reuse of signal power (in contrast to
static CMOS logic that dissipates the power in each gate) and
(2) when using adiabatic switching [7], [6] to switch transistors
in a more power efficient way. In fact, SPICE simulations
of reversible circuits have shown that such implementations
have the potential to reduce power consumption by a factor of
ten [8]. However, a proof-of-concept in a “real”, i.e. practical,
context is still open. Besides that, it has to be considered
that possible improvements in power consumptions are usually
obtained at the expense of the execution speed.

IV. REVERSIBLE COMPUTATION IN THE
DESIGN OF ON-CHIP INTERCONNECT ENCODERS

Even if the concepts reviewed above represent a possible
motivation for exploiting reversible computation in the domain
of low power design, practical applications in this direction
are not to be expected in the near future. However, in other
dedicated domains, the reversible computation paradigm may
already find good use already today. This particular holds for
the design of on-chip interconnect encoders which is discussed
in this section (based on [9]). For this purpose, we briefly
review the respective background first, before we illustrate how
reversible computation may help in this domain.
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The figure illustrates the development of the power
consumption of an elementary computational step
in recent CMOS generations (based on values
from [1]). The power consumption is thereby deter-
mined by CV 2

t , where Vt is the threshold voltage
of the transistors and C is the total capacitance of
the capacitors in the logic gate. The capacitance C is
directly proportional to LW

t
, i.e. to the length L and

the width W of the transistors. Reducing these sizes of
transistors enables significant reductions in the power
consumption as shown in the extrapolation. However,
this development will reach a fundamental limit when
power consumption is reduced to k · T · log(2) Joule.

Fig. 3: Power consumption Q in different CMOS generations.

A. Background

With the rise of very deep sub-micron and nanometric tech-
nologies, interconnects are increasingly affecting the overall
power consumption, performance, and reliability of a chip. As
a result, interconnect-centric design [10], a paradigm which
sets the Interconnect Architecture in the center of the design
process, is gaining relevance. To address these issues, concepts
from communication system engineering are getting intro-
duced and adapted for on-chip communication architectures.
Networks-on-Chip and coding applications are two examples
of this trend.

An established methodology is thereby the application of
coding strategies in order to improve the on-chip interconnec-
tions [11], [12], [13], [14], [15]. Fig. 4 illustrates the basic
idea. Instead of simply transmitting the desired data (see top
of Fig. 4), the architectures are extended by an encoder and
a decoder (as shown in the bottom of Fig. 4). Thanks to the
additional flexibility provided by the coding, it is possible to
achieve important improvements on the overall communication
architecture and additionally consider the trade-off between
power consumption, delay, and reliability.

In the past, the first broad use of (on-chip) coding was aimed
at reducing the power consumption [11], [12]. As technology
improved, coupling capacitances as well as the related timing
and noise issues had to be addressed. This led to Coupling
Aware Codes [13], [16], [15]. Recently, reliability is emerging
as an important issue where coding plays a major role [16],
[17]. A key issue in any case is the reduction of the overhead
caused by the additional hardware of the encoder and decoder.
This poses an important design challenge.

B. Exploitation of Reversible Computations

Thus far, all the encoders and decoders proposed in the
past for the scenario sketched above have been determined by
means of design methods following a conventional, i.e. irre-
versible, computation paradigm. Design methods for reversible
computation may provide a promising alternative. In order
to illustrate that, consider the following example in which
a coding realizing a so-called probability based mapping
(pbm, [11]) shall be derived, i.e. a coding which links the
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Fig. 4: Optimization of interconnect architect. through coding

TABLE I: Illustrating the objective of an encoder

(a) Pattern probability

Inputs Prob.
000 8%
001 8%
010 10%
011 10%
100 40%
101 10%
110 8%
111 6%

(b) Desired encoding

Inputs Weight (H)
000 2
001 2
010 1
011 1
100 0
101 1
110 2
111 3

(c) Possible encoding

Inputs Encoding
000 101
001 011
010 010
011 001
100 000
101 100
110 110
111 111

most frequently occurring data inputs to patterns with a low
Hamming weight.

Example 1. Table Ia shows a set of data inputs with their
corresponding probability of occurrence. Based on that, an
encoder should map the most frequently occurring data input
(i.e. 100) to a bit-string with the lowest Hamming weight
(i.e. 000). Then, the second-most frequently occurring data
inputs should be mapped to a bit-string with the second-lowest
Hamming weight and so on. That is, a coding is desired which
leads to patterns with Hamming weights as shown in Table Ib.
A precise coding satisfying this property is given in Table Ic.

However, determining the best possible or even just one
“good” coding is a non-trivial task. Already for 3-bit data
inputs as considered in Example 1, eight different codings
are possible. In the general case with m-bit data inputs, this
number significantly increases to

∏m
i=0

(
m
i

)
. Motivated by this,
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Fig. 5: Mapping Toffoli gate to conventional circuit

the problem remains how to automatically determine codings
(as well as corresponding encoders and decoders) that map
frequently occurring data inputs to patterns with low Hamming
weight while keeping the hardware overhead as small as
possible?

Since encoders realize reversible one-to-one mappings, the
application of synthesis approaches for reversible logic is a
reasonable choice. These methods realize circuits composed of
Toffoli gates as introduced in Section II. But since Toffoli gates
represent a logic description, they can easily be mapped to a
conventional gate library. As an example, Toffoli gates with
two control lines can be mapped to a netlist composed of one
AND-gate and one XOR-gate as shown in Fig. 5. From such
a netlist, the established optimization and technology mapping
steps can be performed.

Following a reversible computation paradigm, several ben-
efits can be exploited. In fact, encoders and decoders are
realizing one-to-one mappings which are inherently reversible.
Relying on design methods e.g. for reversible circuits avoids
the explicit check whether a resulting design indeed realizes a
one-to-one mapping – reversible circuits inherently guarantee
this “feature”, while conventional design methods always
require an explicit check for that. Details how design methods
for reversible circuits can be exploited for this purpose are
provided in [9].

V. DESIGN CHALLENGES

In order to exploit the potential of reversible computations in
the domains sketched above, an efficient design flow must be
available. For conventional computation, an elaborated design
flow emerged over the last 20–30 years. Here, a hierarchical
flow composed of several abstraction levels (e.g. specification
level, electronic system level, register transfer level, and gate
level) supported by a wide range of modeling languages, sys-
tem description languages, and hardware description languages
has been developed and is in (industrial) use. In contrast,
the design of circuits and systems following the reversible
computation paradigm is still in its infancy (overviews can
be found in [18], [19]). Although the basic tasks, i.e. syn-
thesis, verification, and debugging, have been considered by
researchers1, essential features and approaches of modern
design flows are still missing. More precisely:

• Most of the existing approaches remain on the gate level.
No real support of reversible circuits and systems on
higher levels of abstractions are available.

• Most of the existing approaches for synthesis usually
only accept specifications provided in terms of Boolean
function descriptions like truth tables or Boolean decision

1A variety of corresponding open source implementations are available in
the tool RevKit [20].

TABLE II: Adder function and a possible embedding
(a) Adder function

cin x y cout sum
0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 1 1
0 1 1 1 0 0
1 0 0 0 1 ?
1 0 1 1 0 1
1 1 0 1 0 ?
1 1 1 1 1 1

(b) Embedding

0 cin x y cout sum g1 g2
0 0 0 0 0 0 0 0
0 0 0 1 0 1 1 1
0 0 1 0 0 1 1 0
0 0 1 1 1 0 0 1
0 1 0 0 0 1 0 0
0 1 0 1 1 0 1 1
0 1 1 0 1 0 1 0
0 1 1 1 1 1 0 1
1 0 0 0 1 0 0 0

. . .

diagrams (see e.g. [21], [22], [23], [24]). Recently, hard-
ware description languages for reversible circuits have
been introduced, but support a very basic set of operations
only (see e.g. [25], [26]).

• For verification and validation simulation engines
(e.g. [27]) and equivalence checkers (e.g. [28]) are avail-
able so far. But the most efficient methods can handle
circuits composed of at most 20,000 gates only (while
approaches for conventional circuits are able to handle
hundreds of thousands of gates).

• Debugging has hardly been considered [29], [30].
A main reason for these open issues surely is the different

computation paradigm itself which requires that even the
simplest operation has to be reversible. As a representative
of a problem to overcome when discussing reversible rather
than conventional computation devices is illustrated in the
following by means of the adder function shown in Table IIa.

This adder has three inputs (the carry-bit cin as well as
the two summands x and y) and two outputs (the carry cout
and the sum). It surely belongs to one of the most important
functions to be realized in terms of a circuit device. However,
the adder obviously is not reversible (irreversible), since (1) the
number of inputs differs from the number of outputs and
(2) there is no unique input-output mapping. Even adding an
additional output to the function (leading to the same number
of input and outputs) would not make the function reversible.
Then, the first four lines of the truth table can be embedded
with respect to reversibility as shown in the rightmost column
of Table IIa. However, since cout = 0 and sum = 1 already
appeared two times (marked bold), no unique embedding for
the fifth truth table line is possible any longer. The same also
holds for the lines marked italic.

This already has been observed in [31] and was further
discussed in [32], [33]. There, the authors showed that at least
dlog(m)e free outputs are required to make an irreversible
function reversible, where m is the maximum number of times
an output pattern is repeated in the truth table. Since for the
adder at most 3 output pattern are repeated, dlog(3)e = 2 free
outputs (and, hence, one additional circuit line) are required
to make the function reversible.

Adding new lines causes constant inputs and garbage out-
puts. The value of the constant inputs can be chosen by the
designer. Garbage outputs are by definition don’t cares and
thus can be left unspecified leading to an incompletely spec-
ified function. However, many synthesis approaches require a
completely specified function so that all don’t cares must be
assigned with a concrete value.



As a result, the adder is embedded in a reversible function
including four variables, one constant input, and two garbage
outputs. A possible assignment to the constant as well as
the don’t care values is depicted in Table IIb. Note that
the precise embedding may influence the respective synthesis
results. Corresponding evaluations have been made e.g. in [34],
[35]. Alternative approaches (e.g. [23]) address this embedding
problem not explicitly, but implicitly and lead to a significant
amount of additional circuit lines. As this may harm in turn
the efficiency of the resulting circuit (last but not least with
respect to the power consumption in a possible application),
how to trade-off these issues remains a big design challenge
in this domain (see e.g. [36]).

VI. CONCLUSIONS

In this invited paper, we reviewed and discussed reversible
computation as a promising alternative for low power ap-
plications. To this end, we reviewed the potential impact
this computation paradigm may have to the development
of future circuits and systems as well as sketched possible
exploitations which could be used already today. However,
besides the physical and electrical issues to be addressed, the
non-availability of an elaborated design flow for the respective
circuits and systems is one of the main obstacles of a full
exploitation of reversible computation in the domain of low
power design. The corresponding discussions from above and
particularly in the cited references give an impression of issues
left to be addressed in future work.
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