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Abstract—The rapid advances of quantum technolo-
gies are opening up new challenges, of which, protecting
quantum states from errors is a major one. Among
quantum error correction schemes, the surface code is
emerging as a natural choice with high-fidelity quan-
tum gates reported for experimental platforms. Surface
codes also necessitate the quantum gates to be formed
with strict nearest neighbour coupling. State-of-the-art
reversible logic synthesis techniques for quantum circuit
implementation do not ensure the logic gates to be formed
in a nearest neighbor fashion, and this is handled as a post-
processing optimization by the insertion of swap gates. In
this paper, we propose, for the first time, the inclusion
of nearest neighbourhood criteria in a widely used ancilla-
free reversible logic synthesis method. Experimental results
show that this method easily outperforms the earlier two-
step techniques in terms of gate count without any runtime
overhead.

I. INTRODUCTION

Quantum error correction [1] is considered to be the
key challenge towards building a large-scale quantum
computer. Among various choices of codes, surface
codes [2] are shown to be most favourable in terms of
fault tolerance. Implementations of logical qubits with
surface codes have been reported in different technolo-
gies [3], including silicon [4]. A fundamental require-
ment of the surface code realization is that the quantum
gates must be formed with a nearest neighbour coupling.
The resulting circuits are also termed Linear Nearest
Neighbor (LNN) circuits. Though any quantum circuit
can be converted to an LNN circuit by introducing
additional swap gates, the size of the resulting circuit can
pose a challenge towards practical implementation. As a
result, efficient LNN circuit construction has been studied
for important quantum benchmarks, such as, quantum
error correction [5] and factorization [6].

Realization of reversible functions traditionally starts
with Toffoli gates [7], [8]. Hence the process of realizing
LNN quantum circuit goes through a number of steps

such synthesis [9], transformations [10], [11], [12], op-
timizations [13], [14], decompositions [15] and so on.
However, it is often not clear what the impact of a
particular step has on the final result. For example, fewer
Toffoli gates during an early stage may result in higher
LNN cost in the final circuit. Naturally, for large bench-
marks, the design approach for LNN circuit construction
is not feasible and efficient design automation flows are
needed.

The aim of this work is to investigate how a synthe-
sis heuristic—transformation based-synthesis (commonly
referred to as MMD) [9]—can be modified towards
realizing improved LNN MCT (Multiple-Controlled Tof-
foli) circuits1. By inspection, we find that the initial
choice of gates in MMD can be improved while targeting
LNN MCT circuits. To do this, we develop a heuristic
to synthesize LNN MCT circuits for given function
specifications. The new synthesis approach outperforms
over the two-step process that includes the basic MMD
and LNN MCT transformation. For the best cases, exper-
iments show that the algorithm results in 84% and 76%
reduction of the gate count of circuits that are obtained
from LNN transformation by using SWAP gates and
without using SWAP gates.

The remainder of the paper is structured as fol-
lows: Section II briefly describes the fundamentals of
reversible logic circuits. In Section III we overview
an synthesis method—transformation-based algorithm—
with some observations towards developing algorithm for
LNN MCT circuits. Section IV illustrates a heuristic
for synthesizing LNN MCT circuits for given function
specifications. The significance of the proposed approach
is shown with experiments in Section V. The paper
concludes with some observations and directions for
future research in Section VI.

1Note that, traditionally, optimization for LNN architectures have
been conducted on the quantum circuit level only. However, recent
trends such as reported in [16], [17] also motivate a consideration at
the reversible circuit level.
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Fig. 1: SWAP gate representations.

II. BACKGROUND

A Boolean logic function f : Bn → Bn over a set of
variables X = {x1, . . . , xn} is reversible if it is bijective.
Classical reversible functions [18] are the special case of
multiple-output Boolean functions. A MCT gate g(C, t)
is a reversible gate consisting of a set of control lines
C ⊂ {x | x ∈ X} that are literals of X and a target line
t ∈ X such that {t}∩C = ∅. The value at the target line
is inverted if all controls evaluate to true. All remaining
values are passed through the gate unchanged. Gates for
which |C| = 0 and |C| = 1 are known as NOT and
CNOT, respectively. A SWAP gate consists of a sequence
of 3 CNOT gates acting on the same 2 lines; and target
and control of each subsequent gate act on alternating
lines as shown in Figure 1.

Reversible circuits are realized by cascading re-
versible gates. An MCT circuit is realized by cascading
MCT gates. The size of a circuit G, denoted by |G|, is
the number of gates in G. The size of an MCT circuit
is also known as the gate count of the circuit. Quantum
cost — a performance measurement metric of a circuit
— is defined as the number of quantum gates required
to implement a reversible circuit. For a given function,
a circuit of size n is minimal if the function can not be
realized by other circuit with fewer gates.

A circuit is an LNN circuit if all controls and target of
each gate in the circuit are acting on adjacent lines. A line
that is between a control and the target or between two
control lines is called an “internal line”. In the following
we briefly review LNN transformation [12].

A. LNN Transformation

A straightforward method of LNN Transformation is
to make all controls and the target of each gate in a
circuit adjacent by moving control(s)/target towards tar-
get/control(s) of a gate. Usually, moving control(s)/target
towards target/control(s) of a gate is done by inserting
SWAP gates. However, an optimizing approach shown
in [12] can be used to reduce the size of a circuit.

The CNOT gate with one internal line as shown in
Figure 2(a) can be transformed into LNN circuits as
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Fig. 2: LNN transformation of CNOT
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Fig. 3: An MCT circuit.

shown in Figure 2(b) (control moves towards target)
and 2(c) (target moves towards control). In this approach,
one move of a single control/target of an MCT gate
requires 4 CNOT gates. However, the internal lines of an
MCT gate with large number of controls in a standard
MCT circuit (as shown in Figure 3) may not be adjacent.
Therefore, it is necessary to optimize the direction of
moves to minimize the number of CNOT gates.

III. REVIEW OF SYNTHESIS METHOD

In this section we first discuss the transformation-
based algorithm [9] with examples and then present how
this method can be modified by optimizing the choice of
gates towards synthesizing LNN MCT circuits.

Example 1: Consider the benchmark function
3 17 [19] shown in the first two columns in
Table I, MMD (bidirectional = false) [9] results in
the transformation of the output permutation in Table I
and the circuit in Figure 4. It can be seen that in
transforming 〈111〉 to 〈001〉 (from step i to iii in
Table I), MMD uses gates at positions 7 and 6 in
the circuit in Figure 4. However, if we consider that
gates with low quantum costs should be chosen in each
transformation, then we can construct the transformation
shown in Table II with the corresponding circuit shown
in Figure 5 in which the gates at position 7 and 6 are
used in transforming 〈111〉 to 〈001〉. It is clear that the
quantum cost of the gate at position 7 in the circuit in
Figure 5 is lower than that of the gate at position 7 in
the circuit in Figure 4.

For the function in Table III, MMD results in the
circuit shown in Figure 6(a) which is not an LNN circuit.



TABLE I: Transformation from output side to input side.

Input Output Transformation
i ii iii iv v vi vii viii ix

cba zyx zyx zyx zyx zyx zyx zyx zyx zyx zyx
000 111 000 000 000 000 000 000 000 000 000
001 000 111 011 001 001 001 001 001 001 001
010 001 110 110 110 010 010 010 010 010 010
011 011 100 100 100 100 110 111 011 011 011
100 100 011 111 101 101 111 110 110 100 100
101 010 101 101 111 011 011 011 111 101 101
110 110 001 001 011 111 101 101 101 111 110
111 101 010 010 010 110 100 100 100 110 111

c z
b y
a x

0 1 2 3 4 5 6 7 8 9 10

Fig. 4: MCT circuit for the benchmark 3 17 obtained
from MMD with bidirectional = false.

TABLE II: Transformation from output side to input for
the circuit in Figure 5.

Input Output Transformation
i ii iii iv v vi vii viii ix

cba zyx zyx zyx zyx zyx zyx zyx zyx zyx zyx
000 111 000 000 000 000 000 000 000 000 000
001 000 111 011 001 001 001 001 001 001 001
010 001 110 010 010 010 010 010 010 010 010
011 011 100 100 100 110 111 011 011 011 011
100 100 011 111 101 111 110 110 100 100 100
101 010 101 101 111 101 101 101 111 101 101
110 110 001 001 011 011 011 111 101 111 110
111 101 010 110 110 100 100 100 110 110 111

c z
b y
a x

0 1 2 3 4 5 6 7 8 9 10

Fig. 5: MCT circuit for the benchmark 3 17.

If LNN transformation [12] is done on individual gates at
2, 8, and 9 in the circuit in Figure 6(a), then the resulting
LNN MCT circuit requires 12 (3×4) more CNOT gates.
However, the function in Table III can be realized with
a smaller LNN MCT circuit as shown in Figure 6(b).

IV. HEURISTIC FOR LNN MCT CIRCUITS

In this section we present the basic idea for LNN
MCT synthesis followed by the algorithm shown in
Figure 7. For a given reversible function f in the form
of a truth table, the algorithm proceeds exactly the same
way as the basic MMD: For each row i (0 ≤ i < 2n−1)
in truth table, if f(i) 6= i then the basic MMD finds MCT

TABLE III: Truth table of a 3× 3 function.

Input Output
x0x1x2 o0o1o2

000 000
001 100
010 001
011 011
100 111
101 010
110 110
111 101

x0 o0
x1 o1
x2 o2

0 1 2 3 4 5 6 7 8 9

(a)

x0 o0
x1 o1
x2 o2

0 1 2 3 4 5 6 7

(b)

Fig. 6: (a) MCT circuit for the function in Table III ob-
tained from MMD and (b) MCT circuit for the function
in Table III

gates to map f(i) = i such that all previous rows are
not affected. However, to choose lower-order MCT gates
in each step, we partition the output vector as follows:
Consider the input and output vectors for the ith row in a
truth table as shown in Figure 8, and lets say all previous
rows from 0 to i− 1 have already been mapped. Notice
that f(i) 6= i. Clear Bits in the output vector must be set
to 0. The position of the Pivot Bit is log2(i) for which
the most significant bit of input vector is 1. If the Pivot
Bit in the output vector is not set to 1, it must be set
to 1. The intuition of partitioning the output vector is
that if necessary, only the right most bit in Clear Bits
will be used as an additional control of an MCT gate in
changing the pivot and Transform Bits. Except the right
most bit in Clear Bits, all bits in Clear Bits can be set
to 0 by using only CNOT gates in the form of an LNN
structure.

To illustrate the algorithm, we consider the ith row for
the input and output vectors of f as shown in Figure 8.
Given that f(i − 1) = i − 1 is done, and i − 1th

output vector vi−1 is 0000010001. The algorithms are
written using C++ that can be easily followed. The
main algorithm shown in Figure 7 employs three major
functions that are described below.

The function clearAllBeforeBeforePivotBit(&G, p,
&v) in Figure 9 clears all other bits in Clear Bits and sets
1 to the right most bit in Clear Bits. This results in a sub-
circuit G1 = S1 as indicated in Figure 12 and vector vi =
[0001010101]. To set Pivot Bit position to 1, a CNOT



(1) Circuit LNNSynthesis(f )
(2) // f is a given function specification
(3) // G be the LNN MCT circuit of f
(4) // G1 be a temporary LNN circuit
(5) // vf be a Boolean vector containing fin[i] ⊕ fout[i]
(6) // p be an integer—the position of pivot bit in a vector
(7) for each vector vi ∈ f
(8) if computeBitFlip(i, f , vf )
(9) if !i

(10) for k = 0 to |vi| − 1
(11) if vi[k]
(12) G1.appendNOT(k);
(13) apply(G1, &f );
(14) G.appendCircuit(G1);
(15) else
(16) p=findPivotBit(i, vi);
(17) if p > 0
(18) clearAllBeforeBeforePivotBit(G1, p, vi);
(19) // set PivotBit
(20) if !vi[p]
(21) G1.appendCNOT(p− 1, p);
(22) vi[p] = (!vi[p]);
(23) doTransformation(G1, p, vi, vi−1, vf );
(24) if p > 0
(25) clearLeftPivotBit(G1, p, vi, vi−1);
(26) apply(G1, &f );
(27) G.appendCircuit(G1);
(28) G1.clearCircuit();
(29) reverseCircuit(&G);
(30) return G;

Fig. 7: Algorithm for synthesis of LNN MCT circuits.

Fig. 8: Partition of an output vector.

gate shown as a sub-circuit S2 in Figure 12 is appended
in G1 which results in G1 = S1S2 and vector vi =
[0001110101]. The function doTransformation(&G, p,
&vc, &vp, vf ) in Figure 10 first determines whether
a bit from Clear Bits will be used as a control of
an MCT gate. For each bit in Transform Bits to be
flipped, an MCT gate is chosen. A bit to be flipped in
output vector is searched from right to left. If all controls
and target of a resulting gate are not adjacent then the
function doLNNGateAt() transforms it in LNN structure
by moving either a control or the target of the gate.
The rules for moving a control or a target of an MCT
gate without inserting SWAP gates have been discussed
in Section II. The function doTransformation() results
in the sub-circuit G1 = S1S2S3 (the sub-circuit S2

is shown Figure 12) and vector vi = [0001100010].

(1) clearAllBeforeBeforePivotBit(&G, p, &v)
(2) /*
(3) * if there any from vi[0] to vi[p− 2] is true,
(4) * then vi[p− 1] will be true and bits from vi[0]
(5) * to vi[p− 2] will be false
(6) */
(7) // G is an MCT circuit
(8) // p is an integer
(9) // v is a vector

(10) for i = 0 to p− 2
(11) for j = i+ 1 to p− 1
(12) if v[i] && v[j]
(13) G.appendCNOT(j, i);
(14) v[i] = (!v[i]);
(15) else if v[i] && !v[j]
(16) G.appendCNOT(i, j);
(17) v[j] = (!v[j]);
(18) G.appendCNOT(j, i);
(19) v[i] = (!v[i]);
(20) break;

Fig. 9: Algorithm to clear all bits before before PivotBit.

(1) doTransformation(&G, p, &vc, &vp, vf )
(2) // G is an MCT circuit
(3) // p is an integer
(4) // vc is a vector
(5) // vp is a vector
(6) // c be a vector of integer
(7) // flag = false
(8) /* determine whether a clear is to be used as a control */
(9) if p− 1 ≥ 0 && vc[p− 1] && vc[p] && vp[p]

(10) flag = true;
(11) for j = vc.size()− 1 to p+ 1
(12) if vf [j]
(13) if (flag)
(14) c.push back(p− 1)
(15) for k = p to vc.size()− 1
(16) if k! = j && vc[k]
(17) c.push back(k);
(18) if vc[p] && !vp[p]
(19) break;
(20) G.appendToffoli(c, j);
(21) vc[j] =!vc[j]
(22) G.doLNNGateAt(G.size()− 1);
(23) c.clear();

Fig. 10: Algorithm for transformation.

clearLeftPivotBit(&G, p, &vcurr, &vprev) in Figure 11
sets 0 to the right most bit in Clear Bits and results in
the sub-circuit G1 = S1S2S3S4 shown in Figure 12 and
vector vi = [0000100010].

In each row i in truth table, apply(G1, &f ) updates
the output vectors of the function f by applying inputs in
resulting sub-circuit G1. For each f(i) 6= i, the resulting
sub-circuit G1 is appended into a circuit G. The obtained
circuit G realizes f−1, hence, the reverse circuit of G
realizes f .

V. EXPERIMENTAL RESULTS

We implemented synthesis heuristic using C/C++.
For all 3 variable Boolean functions, we obtain LNN



(1) clearLeftPivotBit(&G, p, &vcurr , &vprev )
(2) // G is an MCT circuit
(3) // p is an integer
(4) // vcurr is a vector
(5) // vprev is a vector
(6) // c be a vector of integer;
(7) if (p− 1) ≥ 0 && vcurr[p− 1]
(8) for i = p to vcurr.size()− 1
(9) if vcurr[i]

(10) c.push back(i)
(11) if !vprev [i]
(12) break;
(13) G.appendToffoli(c, p− 1);
(14) G.doLNNGateAt(G.size()− 1);
(15) vcurr[p− 1] = (!vcurr[p− 1]);

Fig. 11: Algorithm to clear left bit of PivotBit.

S1S2 S3 S4

Fig. 12: A reversible circuit G1.

MCT circuits and results are shown in Table IV. We
have taken completely specified functions with different
number of input lines from RevLib [19]. The first two
columns in Table V show the name and the number
of circuit lines. Column MMD in Table V shows the
gate count of circuits obtained from MMD. Results of
LNN transformations by inserting SWAP gates and using
control/target moving rules (discussed in Section II-A)
are shown in columns 4 and 5 in Table V respectively.
Column 6 shows the results obtained from the proposed
LNN synthesis heuristic. It can be observed that the gate
count of circuits is high if LNN transformations are done
with SWAP gates. The results of LNN transformations
are compared with the new results. Comparison1 and
Comparison2 represent the number of gate reductions
and the percentage of reductions are achieved in new
synthesis algorithm with respect to the LNN transforma-
tions using SWAP gates in column SWAP and without
using SWAP gates in column W/O SWAP. In both the
cases, a significant reduction (only few increases) can be
observed.

This new synthesis approach has the property, that
until the transformation is half-way done (MSB is set to
1), the number of controls of a gate that is chosen to clear
a bit in Clear Bits is less than or equal to the number
of controls of a gate chosen in basic MMD. Therefore,
this approach may be beneficial in decomposing [15] the
resulting circuits into quantum circuits. It can be noted

that few results are negative which means that the gate
count of the circuits obtained from the proposed heuristic
is higher than that from other approaches. We investigate
the small circuit miller 5 and find that choosing gates
with lower controls at the beginning has the consequence
that more changes occur in the remaining rows of the
function to be transformed and more gates are required
in the transformation. It is well known that there is no
asymptotically optimal algorithm to synthesize reversible
functions. The proposed algorithms can further be im-
proved by investigating the complexity of the functions.
However, this new heuristic results in circuits with low
gate counts for at least 50% of 33 benchmarks and in
some cases the results are significantly better.

VI. CONCLUSION

We presented a new approach for synthesizing LNN
circuits for given reversible functions. The experimen-
tal results show that this approach is promising and
outperforms many benchmarks over the two-step LNN
transformation method. Due to the ancilla-free synthe-
sis with low gate count, transformation-based reversible
logic synthesis is widely used as the prime benchmark
among reversible logic synthesis tools. However, in this
synthesis method, for the resulting circuits, the nearest
neighbor property is not guaranteed, which is achieved
via a post-processing phase. On the other hand, for prac-
tical realization of quantum circuits, gates are required
to be formed in a nearest neighbor pattern to ensure
fault tolerance. To enable that, we proposed an integrated
synthesis flow that includes nearest neighborhood as a
constraint within the transformation-based synthesis flow.
Optimization of obtained circuits with LNN templates
and a cost-benefit analysis in mapping circuits into LNN
quantum circuits will be further research.
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