
Clocks vs. Instants Relations: Verifying
CCSL Time Constraints in UML/MARTE Models

Judith Peters1 Nils Przigoda2,3 Robert Wille4,3 Rolf Drechsler2,3
1Department of Satellite Ground Systems, OHB System AG, 28359 Bremen, Germany

2Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
3Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany

4Institute for Integrated Circuits, Johannes Kepler University Linz, 4040 Linz, Austria
judith.peters@ohb.de {przigoda,drechsler}@informatik.uni-bremen.de robert.wille@jku.at

Abstract—The specification of non-functional requirements,
e. g., on timing forms an essential part of modern system design.
Modeling languages such as MARTE/CCSL provide dedicated
description means enabling engineers to formally define the
ticking of the clocks to be implemented in terms of clock
constraints and the actually intended timing behavior in terms
of instant relations. But thus far, instant relations have only been
utilized in order to monitor the correct execution of the clock
constraints. In this work, we propose a methodology which, for
the first time, verifies clock constraints against the given instant
relations. To this end, the timing behavior is represented in terms
of an automaton followed by its verification through satisfiability
solvers. A case study illustrates the application of the proposed
methodology.

I. INTRODUCTION

The design of today’s computing devices (including embed-
ded and cyber-physical systems) is one of the most complex
problems Electronic Design Automation (EDA) is currently
facing. In order to handle the ever increasing complexity, de-
signers constantly introduce higher levels of abstraction. While
the design evolved from the Register Transfer Level (RTL)
to the Electronic System Level (ESL) in the past, new trends
include the exploitation of modeling languages as a bridge
between the initial (textbook) specification as well as a first
(formal) model. This eventually led to the design at the Formal
Specification Level (FSL, [1]). Here, modeling languages such
as the Systems Modeling Language (SysML, [2]) or the UML
profile Modeling and Analysis of Real-time and Embedded
systems (MARTE, [3]) find great attention.

However, while they allow for a precise (i. e., formal)
description of the functional behavior of the system to be
implemented, the specification of non-functional requirements,
e. g., of timing forms another essential part of today’s designs
flows. In fact, even a system which is functionally correct
may fail in application or may be rejected by the user, if
it does not realize the expected timing behavior. Particularly
safety-critical systems heavily rely on such requirements. As
an example, an airbag is not implemented correctly if it is
just released, but only if it is released at the exact moment.

In order to address these needs, modeling languages have
been enriched with description means focusing on the speci-
fication of timing constraints. As one of the most prominent

examples, MARTE offers the Clock Constraint Specification
Language (CCSL, [3]) for this purpose. CCSL equips design-
ers and engineers with powerful description means in order
to precisely specify and, afterwards, implement the timing
behavior of the system to be implemented. Moreover, due to
its formal nature also efficient tool support is available that
assists them in these tasks. In fact, approaches such as [4], [5],
[6] as well as [7] allow for (automatically) realizing the given
CCSL description, e. g., in SystemC and proving whether this
realization indeed satisfies the requirements as given in CCSL,
respectively.

Besides that, CCSL enables designers and engineers to
check the original timing specification in early stages of the
design flow. To this end, approaches such as [8], [9], [10]
have been proposed, which allow for verifying whether a
given CCSL description is consistent, i. e., whether it does
not include contradictory statements and indeed allows for the
execution of an (arbitrary) timing behavior. While this prevents
designers and engineers from implementing self-contradictory
timing requirements, it however does not guarantee that the
requirements indeed specify the actually desired behavior. This
is unfortunate particularly considering that CCSL already pro-
vides all description means necessary for this purpose: In fact,
CCSL specifications are usually composed of clock constraints
(describing the ticking of the clocks to be implemented) and
instant relations (which can be interpreted as a description
of the actually intended timing behavior). But thus far, instant
relations have only been utilized in order to monitor the correct
execution of the clock constraints after implementation [7].

In this work, we are proposing a solution which exploits this
potential of the CCSL prior to the implementation. Instead
of using instant relations for monitoring purposes only, we
consider them as properties to be satisfied by the clock
constraints. Based on this interpretation, a methodology is
introduced which is capable of verifying clock constraints
against the given instant relations.

To this end, the timing behavior is represented in terms of
an automaton followed by its verification through satisfiability
solvers. By this, a verification scheme becomes available
which is capable of checking whether the timing behavior of a
system has been specified in CCSL as intended. A case study
illustrates the application of the proposed methodology.

1 C l o c k C o n s t r a i n t S y s t e m s e n s o r s {
2 Clock minClock ;
3 Clock s e n s o r 1 ;
4 Clock s e n s o r 2 ;
5 Clock echo i s s e n s o r 1 de layedBy 1 ;
6

7 s e n s o r 2 # echo ;
8 s e n s o r 1 i s P e r i o d i c O n minClock p e r i o d 1 . 0 ;
9 s e n s o r 2 i s P e r i o d i c O n minClock p e r i o d 1 . 0 ;

10 }

Fig. 1. A CCSL clock specification

In the following, the proposed solution is described as
follows: Section II reviews the basics of CCSL, before the
main idea of our approach is motivated by means of an
example in Section III. Afterwards, Section IV introduces
the proposed methodology in detail before its applicability is
illustrated and discussed in Section V. Finally, the paper is
concluded in Section VI.

II. THE CLOCK CONSTRAINT SPECIFICATION LANGUAGE

Within the MARTE profile, a language dedicated to the
description of timing issues is provided: the Clock Constraint
Specification Language (CCSL, [3]). Central part of the un-
derlying time definition are instants, i. e., moments in the
raw, unordered time, defined by clock ticks. The clock is an
instrument to access a set of instants [11]:

Definition 1. A clock 〈I,≺,D, λ, u〉 consists of a set of
instants I, which owns a quasi-order relation ≺, a set of labels
for the instants D, a labeling function λ, and a unit u for the
clock ticks. A finite clock has a finite number of ticks. If no
ticks are left, the clock is empty.

Example 1. Consider a system with two sensors triggered by
the clocks sensor1 and sensor2. Both sensors have to
reply in every second step with respect to a third (minimal)
clock minClock. From its second reply on, sensor1 causes
an echo interfering with the signal of sensor2. Hence, this
echo and the reply of sensor2 are not allowed to occur
coincidentally. This is described in the CCSL specification in
Fig. 1.

First, the clocks are defined (lines 2–5). Clock echo in
line 5 is defined as a subclock of sensor1. Both tick together,
but echo starts one tick after sensor1. Afterwards, the
relations between the clocks are restricted. Line 7 prohibits
that echo and sensor2 tick at the same time. Line 8 and
Line 9 define the periodicity of sensor1 and sensor2,
respectively, to minClock.

Clocks are used to define sets of uniformed instants.
Moreover, special instants satisfying certain conditions can
additionally be defined using CCSL statements. These specific

1s e n s o r 1 (i) p r e c e d e s s e n s o r 2 (i) ;
2s e n s o r 2 (i) p r e c e d e s s e n s o r 1 (i + 1) ;
3

4s e n s o r 2 (k) p r e c e d e s s e n s o r 1 (k) ;
5s e n s o r 1 (k) p r e c e d e s s e n s o r 2 (k + 1) ;

Fig. 2. CCSL specification of instants

instants can be used, e. g., to trigger certain events in the
system. More precisely, CCSL allows for defining instants of
a clock c in categories such as:

• Unspecific. An arbitrary instant of the clock (e. g.,
Instant i1 is myClock),

• Fixed. A fixed instant of the clock (e. g., myClock(4)
precedes myOtherClock(8)),

• Relative. A relative instant of the clock (e. g.,
myClock(i) precedes myOtherClock(i-7)),
or

• Conditional. A conditional instant of the clock (e. g.,
Instant i1 is myClock suchThat k>14).

In general, the clocks these instants form can either refer to
a constant physical (and possibly dense) time or to logical
events, which not necessarily follow constant timing rules,
but can occur with varying periods in physical time. In our
scenario, the target system (i. e., SystemC) is discrete and,
because of that, can only simulate logical time. The processor
clock itself is a logical clock counting cycles. Hence, all times
derived and simulated in this context are logical.

If there is more than one clock, all clocks and their respec-
tive instants can be structured through instant relations [11]:

Definition 2. Given a set of clocks C, a binary instant
relation 4 (called precedence) can be defined stating that one
instant occurs before or coincidently with the other. From 4,
three further instant relations can be derived, namely

• precedence (denoted by 4), i. e., one of
the clock ticks takes place before or
coincidently with the other tick (e. g.,
i1 precedes i2),

• coincidence (denoted by≡,4 ∩ <), i. e., two clock ticks
take place coincidently (e. g., i1 coincidentWith i2),
and

• strict precedence (denoted by ≺ , 4 \ ≡), i. e., one of the
clock ticks takes place strictly before and not coincidently
with the other tick (e. g., i1 strictly precedes i2).

Example 2. CCSL can be used to describe complex temporal
relations. As an example, consider the clocking as already
described in Example 1. Based on this, more precise state-
ments about the instants of the clocks are given in Fig. 2.
Lines 1–2 denote, that the ith tick of sensor1 is followed
by or coincident with the ith tick of sensor2 and is again
followed by or coincident with the (i+1)th tick of sensor1.
In the CCSL statements, the same is stated in lines 4–5 for

sensor1

sensor2
0 1 2 3 4 5

Fig. 3. Instant relations with two precedes statements

the kth and (k+1)th tick of sensor2 as well as the kth tick
of sensor1. Fig. 3 illustrates the relations. Obviously, all
relations could only be satisfied, if sensor1 and sensor2
tick coincidently.

Instant relations only affect the instants to which they are
referring to, not the clocking behavior itself. Because of that,
no behavior can be derived from the instant relations and
enforcing instants to appear is not possible. Consequently, the
clock constraints represent the actual clocking behavior while
instant relations provide a more detailed description of the
intended timing behavior. Thus, instead of generating behavior,
instants are thus far applied by some approaches to monitor
the timing behavior and to report unwanted behavior (e. g., a
meltdown instant) [7]. Respectively, from the clock constraints
indeed the actual behavior can be derived as described, e. g.,
in [7], [10].

III. MOTIVATION AND PROPOSED IDEA

In this section, we briefly discuss and illustrate the current
exploitation of CCSL for verification purposes. Afterwards,
we discuss how this state-of-the-art can significantly be im-
proved. This eventually motivates the verification methodology
proposed in the work. To this end, the following example is
considered:

Example 3. A simple satellite application for space systems
shall be designed. The satellite shall take photos of the earth
and the sun. In between, it has to ensure that its orbit is still
correct, i. e., it has to check (and, if necessary, correct) its
height. As it has only one camera, it shall alternately take
photos of the sun and the earth. The height control is a
complex task leaving not enough processor performance for
image processing, thus, the satellite can not take photos and
control its height at the same time.

As reviewed in the previous section, CCSL provides de-
scription means to describe the ticking of the clocks to be
implemented (in terms of clock constraints). Using these
notations, the clock behavior of this system can be specified:

Example 4. Fig. 4 shows a possible specification of the clocks
to be used in order to realize the timing of the satellite
application. The clocks photo_earth and photo_sun
specified in line 2 and line 3 trigger the camera to take a
photo of the earth and the sun, respectively. The constraints
in line 6 and in line 7 respectively ensure that these clocks do
not tick at the same time and indeed alternate between each

1C l o c k C o n s t r a i n t S y s t e m s a t e l l i t e {
2Clock p h o t o _ e a r t h ;
3Clock pho to_sun ;
4Clock c h e c k _ h e i g h t ;
5

6p h o t o _ e a r t h # pho to_sun ;
7p h o t o _ e a r t h a l t e r n a t e s W i t h pho to_sun ;
8p h o t o _ e a r t h # c h e c k _ h e i g h t ;
9pho to_sun # c h e c k _ h e i g h t ;
10}

Fig. 4. CCSL description of a satellite

other. Checking height is triggered by clock check_height
(line 4) which must not tick concurrently with the other two
clocks as restricted by the last two constraints in lines 8/9.

Besides that, CCSL allows to describe certain timing behav-
ior which is intended to be executed on the realized system.
To this end, detailed constraints over single instants can be
specified in terms of instant relations:

Example 5. In order to further refine the specification of the
satellite application, instant relations as depicted in Fig. 5
are added. They state that between a tick of photo_sun
and the consecutive tick of photo_earth the height shall
be checked, i e. clock check_height shall tick. This is
expressed by two strict precedence instant relations. The
identifier for the instants are the indices i and j. The two
consecutive instants of photo_sun and photo_earth are
the ith ticks of their clocks, while the control_height tick
in between is the jth tick of its clock.

Eventually, a CCSL description results which, using, e. g.,
the approaches from [8], [9], [10], can be checked for consis-
tency. However, whether the intended behavior as specified by
the instant relations from Fig. 5 can indeed be realized consid-
ering the clock constraints from Fig. 4 is not covered by these
verification methods. Instead, the state-of-the-art methodology
continues with an implementation of the timing constraints
(e. g., using code-generation approaches such as [7]). As this
might result in the creation of monitors (as, e. g., suggested
in [7]), corresponding checks can be conducted after the
implementation has been finalized.

Obviously, this causes a significant drawback: Checking
the intended timing behavior is considered rather late in the
design process, namely not until a fully-fledged implemen-
tation is available. If it turns out that the intended behavior
is not possible, re-spins of the implementation or even the
CCSL specification have to be conducted. This leads to long
debugging loops and poses a serious threat to time-to-market
constraints.

Motivated by this, we are proposing an alternative method-
ology which aims for verifying at the CCSL level, i. e., prior
to implementation, whether the given descriptions allow for
the intended timing behavior. To this end, we apply a slightly

1pho to_sun (i) s t r i c t l y p r e c e d e s
2c h e c k _ h e i g h t (j) ;
3c h e c k _ h e i g h t (j) s t r i c t l y p r e c e d e s
4p h o t o _ e a r t h (i) ;

Fig. 5. CCSL instant relations

different interpretation of the CCSL description means. Instead
of considering instant relations as behavior to be monitored,
we apply them as properties to be satisfied by the clock con-
straints. Based on this, we propose a verification methodology
whose general idea rests on three main steps:

1) Formulating the properties to be checked according to
the instant relations

2) Deriving a symbolic representation of all possible tick-
ing behavior of the clocks according to the clock con-
straints

3) Checking whether the resulting symbolic representation
indeed satisfies the properties derived from the instant
relations

In the remainder of this work, the implementation and
application of this general idea is described and discussed,
respectively.

IV. IMPLEMENTATION

In the following, we describe the three steps to be conducted
in order to verify instant relations against clock constraints
in detail. All steps are illustrated by means of the satellite
example from above.

A. Formulating the Properties

Single instant relations already provide a formal description
of timing behavior to be verified. However, as they may be
connected to each other (cf. Example 5), a sole consideration
may not provide a sufficient verification objective or property
to be verified. In fact, an instant relation is only satisfied, if
all other relations connected to it are also satisfied. Hence,
a property to be checked has to be composed of a group of
instant relations. To this end, we use the notation of an instant
group defined as follows:

Definition 3. Let i be an instant and⊕ ∈ {≡,≺,4} an instant
relation symbol. Let further (ij ⊕k il) be an instant relation
and I the set of all instant relations. Then, an instant group I
is a set of instant relations such that

∀ (i1 ⊕1 i2) ∈ I : ∃ (i3 ⊕2 i4) ∈ I : {i1, i2} ∩ {i3, i4} 6= ∅.

An instant group is maximal, iff

∀ (i1 ⊕1 i2) ∈ I : @ (i3 ⊕2 i4) ∈ I :

({i1, i2} ∩ {i3, i4} 6= ∅) ∧ (i3 ⊕2 i4) /∈ I

Example 6. Consider again the instant relations from
Fig. 5. Both instant relations refer the same instant,
control_height, one on the left and one on the right

photo_sun(i) control_height(j) photo_earth(i)

Fig. 6. An instant relation group

side of the relation. Thus, both relations are connected by
the instant control_height, and finally form one group.
Eventually, this results in an instant group as shown in Fig. 6
and, hence, a property to be verified.

In this definition, the maximality of the instant group is
crucial. Each instant in a group of instants is defined with
respect to all other instants. This means, for the occurence of
one instant the occurence of all other instants connected to it is
a mandatory requirement. Thus, all connected instants have to
be considered altogether, since missing one means missing the
whole group. As a result, the maximality of a group guarantees
to consider all necessary instants.

B. Deriving a Symbolic Representation

Next, a symbolic representation of all possible clock tick-
ings is required. To this end, an automaton representation as
proposed in [10] is utilized. Here, all possible clock ticks
which may occur in a certain time step are represented in terms
of states. The starting states are hereby all states which do
not contain clocks that are dependent on other clocks ticking
earlier. Transitions allow for moving from one state to another
and, hence, describe the valid sequences of ticks according to
the clock constraints. To this end, transitions may have guard
conditions over global variables (such as counters for periodic
behaviors) which state whether a transition may be taken or
not. The values of these global variables may be changed
during a transition by means of update functions. In general,
the states describe how clocks can be grouped together for
ticking while the transitions describe how they are related to
each other regarding chronological or external constraints. The
concepts of the resulting automaton are illustrated by means
of the following example.

Example 7. Consider again the clock constraints from Fig. 4.
The corresponding automaton representation is provided in
Fig. 7. As no clock can tick together with another clock,
only three states have to be considered (one in which each
clock is allowed to tick). The states control_height
and photo_earth are initial states—the third one cannot be
an initial state because of the alternatesWith-statement
requiring photo_earth ticking prior to photo_sun. The
guard and update conditions consider additional Boolean
variables balt (denoting who ticks next) and f (denoting if this
is the initial alternation) which direct the alternation between
photo_earth as well as photo_sun and are initially set
to true. This ensures that the clock photo_earth ticks first

photo_sunphoto_earth

control_height

1

2

3

4

V0 = (balt = true, f = true)
1© guard: balt =true

update: balt ←false
2© guard: balt =true

update: balt ←false
3© guard: (balt =false)∨(f =true)

update: (balt ←true)∧(f ←false)
4© guard: (balt =false)∨(f =true)

update: (balt ←true)∧(f ←false)

Fig. 7. Automaton representing the CCSL

and, afterwards, the states photo_earth and photo_sun
are only reached if the respectively other clock has ticked
before.

C. Checking the Properties

Having the automaton, all clock ticking behavior which
is possible according to the clock constraints is available
in a symbolic fashion. Now, it has to be verified whether
this ticking behavior indeed allows for the execution of a
sequence of clock ticks which satisfies the property given by
the instant group. In a naive fashion, this can be conducted,
e. g., by enumeration. However, we propose a solution which
exploits the computational power of satisfiability solvers such
as [12]. To this end, we represent the considered problem as an
instance of the satisfiability problem: “Is it possible to execute
a sequence defined by the instant group on the automaton
derived from the clock constraints?”

1) Creating the Instance: In order to formulate the corre-
sponding instance, the execution of a sequence of clock ticks is
symbolically considered. Each step in this sequence is denoted
as a (symbolic) simulation step in the remainder of the section.
All possible clocking ticks are encoded in terms of variables
to be assigned by the satisfiability solver. More precisely, for
each clock c ∈ C, the following variables are introduced and
added to the sequence for every simulation step:

• A Boolean variable tc representing whether c does tick
(tc = 1) or does not tick (tc = 0) in the current step.

• An integer variable indc representing the index of the
current tick of the clock c. The variable is initially
undefined and set to 0 when c ticks first. Afterwards,
its value is increased by 1 with any further tick.

Additionally, another integer variable step is introduced which
serves as counter for the respective (symbolic) simulation
steps. For the formulation, we assume that a maximum num-
ber stepmax of simulation steps to be considered is available.

s0 s1 s2

step = 0

tps = 0

tpe = 1

tch = 0

indps = −
indpe = 0

indch = −

step = 1

tps = 0

tpe = 0

tch = 1

indps = −
indpe = 0

indch = 0

step = 2

tps = 1

tpe = 0

tch = 0

indps = 0

indpe = 0

indch = 0

pe0 ch0 ps0

pe1 pe2 ps1 ps2 ch1 ch2

Fig. 8. Additional variables for instant checking

Finally, constraints are added to enforce the satisfiability
solver to choose the variable assignments in the consecutive
simulation steps according to the behavior of the automaton.
This yields an instance representing all possible ticking se-
quences of length stepmax which is allowed by the clock
constraints.

Example 8. Consider again the clock constraints from Fig. 4
and the instant group from Fig. 5. In Fig. 8, a possible
simulation sequence including the introduced variables is
depicted. The assignment represents the simulation of the
following clock ticks:

{photo_earth} → {control_height} →
{photo_sun}.

The variable step counts the simulation steps and, thus,
increases with each step. For each step, the assignments to tc,
c ∈ {ps, ch, pe} (representing the clocks photo_sun,
control_height, photo_earth), state the ticking
clocks. For example, in the first step, photo_earth ticks,
hence tpe is assigned 1, while tps and tch are assigned 0.
Correspondingly, the index variable for clock photo_earth,
i. e., indpe is initialized with 0.

Note that, for illustration purposes, the example above as
shown in Fig. 8 considers particular assignments. However,
in order to symbolically represent all possible sequences of
simulation steps, the created satisfiability instance is composed
of unassigned variables only. The precise assignment has to
be determined by the satisfiability solver.

2) Adding the Properties: Simply passing the satisfiability
instance created thus far to a satisfiability solver would simply
yield an assignment representing an arbitrary sequence of
simulation steps possible by the clock constraints. However,
we are interested in a dedicated sequence which shows the
executability of a considered instant group. Hence, additional
constraints are added to the satisfiability instance enforcing
the solver to choose assignments in this regard.

The instant relation groups refer instants with certain in-
dices. This means, we need to extract the corresponding state
number of the referred instants and to check whether the
ordering of the obtained state numbers follows the constraints
from the instant relations.

To extract the state number for a certain index, for all clocks
and all stepmax simulation steps, an Integer variable ci with
0 ≤ i ≤ stepmax is added for each c ∈ C denoting the
simulation step number of the ith tick of c. To model the
corresponding ith ticks, special constraints are added to the
SAT solver. The considered property extracts the variables ci
from the encoded instance and connects them by precedence
or coincidence statements. Hence, the connection between
the corresponding ci is restricted using simple comparison-
statements to model precedence (≤), strict precedence (<), or
coincidence (=).

The final verification task is then to check the following
statement:

∃ k ∈ 0 ≤ k ≤ stepmax : JIKk,

where JIKk is the evaluation of the instant relation group
concerning the given index k as the index variable from
the CCSL specification1, e. g., (A2 < B3) for k = 2 and
A(k) strictly precedes B(k+1). This means that
the respective index variables ci connected by the relations are
chosen for every k according to the definition in the CCSL
statements.

Example 9. Consider again the instance from Example 8.
Now, additional variables are created for each clock, e. g.,
pe0, pe1, pe2, . . . for photo_earth, which denote in which
step this clock has been ticking for the 0th, 1st, 2st, etc. time.
For example, the variable pe0 pointing to step = 0 as
illustrated in Fig. 8 states that the 0th tick occurred in step 0.
The variables without assignment (as shown in the bottom of
Fig. 8) simply state that their respective tick has not been
conducted yet.

Having this formulation, the order of clock ticks is symbol-
ically described. Now, this can be constrained in a fashion
that a particular order (namely as given by the instant group)
is enforced. Considering the instant group from Fig. 5, this
requires constraining the variables ps0, ch0, and pe0. In fact,
as the corresponding clock tickings are restricted by strict
precedes statements, the constraint

(ps0 < ch0) ∧ (ch0 < pe0)

has to be employed to ensure a valid order of the respective
ticks.

3) Solving the Instance: The instance is now given to a
satisfiability solver (in our case an SMT solver) which tries
to determine an assignment satisfying all constraints. If such
an assignment can be determined, the corresponding values of
each variable can be translated back to a particular sequence

1Note that the evaluation will be false, if one of the index variables
remained unassigned.

TABLE I
BEHAVIORAL ANALYSIS FOR INSTANT RELATION GROUPS

Instance Clk. Inst. Rel. Grp. States Trans. Res. Time (s)
alternates_corr 3 3 2 1 3 7 3 2.7
alternates_incorr 3 3 2 1 3 7 7 5.1
sensors1 4 3 2 1 5 13 3 4.1
sensors2 4 3 2 1 5 13 3 4.0
sensors3 4 6 4 2 5 13 7 4.0
sensors4 8 3 2 1 80 1053 3 733.6
sensors5 8 4 4 1 80 1053 3 773.3

of simulation steps. This works as witness demonstrating that
the behavior defined by the instant group indeed is possible
with the additionally considered clock constraints.2

In contrast, if the satisfiability solver proves that no assign-
ment exists which satisfies all constraints, it has been shown
that no sequence of stepmax simulation steps exists which
satisfies both, the clock constraints as well as the constraints
enforced by the instant group. In this case, stepmax can be
increased, e. g., until the diameter of the automaton is reached
or until the expected maximum number of time steps in which
the behavior is supposed to become evident is reached. If
this still yields no satisfiable assignment, it has been proven
that the given instant group cannot be executed under the
defined clock constraints. This unveils an error in the CCSL
specification which can be addressed by the designer prior to
the implementation.

V. APPLICATION AND EVALUATION

Using the method described above, clock constraints can
automatically be checked against given instant relations and,
hence, the timing behavior can be verified prior to its im-
plementation. In order to confirm the applicability of the
proposed methodology, the three steps described in Section IV
have been implemented in Java/Xtend. Afterwards, we applied
the resulting tools to the CCSL descriptions from Figs. 1/2
(denoted by sensors) as well as from Figs. 4/5 (denoted
by alternates). In order to evaluate correct as well as incorrect
specifications, different variations of the first example have
been considered (distinguished by the suffix corr and incorr,
respectively). Furthermore, the later example (sensors) has
been considered with a different amount of sensors (and,
hence, clocks to be considered).

The results of the application are summarized in Table I. The
first columns provide the name of the respective example in-
cluding its number of clocks (Clk.), number of instants (Inst.),
number of instant relations (Rel.), and the eventually resulting
number of instant groups (Grp.) derived from the respectively
given CCSL representation (derived in step 1 of the proposed
methodology; see Section IV-A).

2Note that this does not guarantee the occurrence of a group in an actual
system, as this additionally depends on the precise implementation of the
system. Nevertheless, this proof shows that the desired timing behavior is, in
principle, possible.

The results from the second step, i e. from the derivation of
the automaton (see Section IV-B), are summarized in the next
columns. Here, the number of the states (denoted by States)
and the number of transitions (denoted by Trans.) are reported.
Note that these numbers only report the size of the final
automaton. Intermediate results may be significantly larger due
to the need to consider all possible subsets of clock tickings in
the automaton—this has already been identified as bottleneck
in [10].

Finally, the result of the third step (see Section IV-C) and,
hence, the overall result is presented in the final two columns.
More precisely, it is denoted whether the instant relations
indeed can be realized by the clock constraints or not (denoted
by 3 and 7 in Column Res.). Furthermore, the total run-time
(in CPU seconds) is given in the column Time.

Overall, the applicability of the proposed approach can be
confirmed. In fact, the considered instant relations can be
verified against the given clock constraints in acceptable run-
time. More importantly, the proposed solution even helped
unveiling design flaws in the examples considered above.
Actually, the alternates-examples behaved as expected, i. e.,
the correct instance has been proven correct, while the error
in the incorrect version has been detected.

Moreover, the sensor-example from Figs. 1/2 (where no
error has been introduced on purpose) has also been found
erroneous. If the two instant groups are considered separately
(as done in the experiments summarized in row sensors1 and
sensors2), the clock constraints indeed realize the intended be-
havior. But enforcing both together (as done in the experiments
summarized in row sensors3) would require both clocks (i. e.,
sensor1 and sensor2) to tick together. This is implicitly
prohibited due to the exclusion between sensor2 and echo
(cf. Fig. 1). As a consequence, these instant groups cannot be
realized using the clock constraints—the specified behavior is
not possible. While not obvious at a first glance, this flaw can
easily be detected using the proposed methodology.

VI. CONCLUSIONS

In this work, we considered the verification of CCSL clock
constraints against their corresponding instant relations. By
this, we provided a methodology which, prior to an implemen-
tation, allows for checking whether an intended timing behav-
ior is indeed possible with the specified clocking behavior. To
this end, we applied an interpretation of instant relations which
does not solely rely on monitoring purposes only any more.
Furthermore, a symbolic formulation of the clocking behavior

is created and, afterwards, checked against the desired instant
functionality. Satisfiability solvers are employed to conduct the
actual checks. A case study confirmed the general applicability
of the proposed methods. Moreover, the proposed solution
allowed for identifying errors in CCSL description which were
not obvious at the first glance.

ACKNOWLEDGMENTS

This work has been supported by the Graduate School
SyDe, funded by the German Excellence Initiative within the
University of Bremen’s institutional strategy, by the German
Research Foundation (DFG) within the Reinhart Koselleck
project DR 287/23-1, by the German Federal Ministry of
Education and Research (BMBF) within the project SPECifIC
under grant no. 01IW13001 and the project SELFIE under
grant no. 01IW16001 as well as the Siemens AG.

REFERENCES

[1] R. Drechsler, M. Soeken, and R. Wille, “Formal Specification Level:
Towards Verification-driven Design Based on Natural Language Process-
ing,” in Forum on Specification and Design Languages (FDL), 2012, pp.
53–58.

[2] Object Management Group, OMG Systems Modeling Language (OMG
SysMLTM). Object Management Group, 2012.

[3] ——, UML Profile for MARTE: Modeling and Analysis of Real-Time
Embedded Systems. Object Management Group, 2011.

[4] C. André, F. Mallet, and J. DeAntoni, “VHDL Observers for Clock Con-
straint Checking,” in International Symposium on Industrial Embedded
Systems (SIES), 2010, pp. 98–107.

[5] F. Mallet, “Automatic Generation of Observers from MARTE / CCSL,”
in Symposium on Rapid System Prototyping (RSP), 2012, pp. 86–92.

[6] H. Yu, J.-P. Talpin, and L. Besnard, “Polychronous controller synthesis
from MARTE CCSL timing specifications,” in International Conference
on Formal Methods and Models for Codesign (MEMOCODE), 2011, pp.
21–30.

[7] J. Peters, R. Wille, and R. Drechsler, “Generating SystemC Implemen-
tations for Clock Constraints Specified in UML/MARTE CCSL,” in
International Conference on Engineering of Complex Computer Systems
(ICECCS), 2014, pp. 116–125.

[8] F. Mallet and L. Yin, Correct Transformation from CCSL to Promela
for verification. Institut National de Recherche en Informatique et en
Automatique, 2012.

[9] L. Yin, F. Mallet, and J. Liu, “Verification of MARTE/CCSL Time
Requirements in Promela/SPIN,” in International Conference on En-
gineering of Complex Computer Systems (ICECCS), 2011, pp. 65–74.

[10] J. Peters, R. Wille, N. Przigoda, U. Kühne, and R. Drechsler, “A Generic
Representation of CCSL Time Constraints for UML/MARTE Models,”
in Design Automation Conference (DAC), 2015.

[11] C. André and F. Mallet, Clock Constraints in UML/MARTE CCSL.
Institut National de Recherche en Informatique et en Automatique, 2008.

[12] L. M. de Moura and N. Bjørner, “Z3: an efficient SMT solver,” in Tools
and Algorithms for Construction and Analysis of Systems, 2008, pp.
337–340.

