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ABSTRACT
Model Finding is an established method to increase the con-
fidence in the correctness of a UML/OCL model, e. g., by
automatically determining valid system states or counterex-
amples. In the recent past, numerous approaches have been
proposed for this purpose. In order to cope with the under-
lying complexity, approaches based on satisfiability solvers
have been found promising. They require a translation of
all OCL constraints of the model for a corresponding solver.

In this paper, SMT-based model finding is investigated. It
is shown that certain OCL operations are causing huge SMT
formulations which harm the solving process. However, this
is not necessary if a fixed structure of the model can be
assumed. Motivated by this, a new concept called ground
setting properties is introduced which allows for an efficient
translation of OCL into SMT. This concept is illustrated
by means of a running example and compared to existing
solutions.

1. INTRODUCTION
With the increasing complexity of software as well as hard-

ware systems, researchers started to investigate the integra-
tion of modeling languages in the design of all kinds of sys-
tems. In this context, modeling languages, such as the Uni-
fied Modeling Language (UML [1]) as one of the best-known
representatives, received much attention. Related languages
such as the Object Constraint Language (OCL) [2] addition-
ally allow to extend a UML model with additional textual
constraints, e. g., to define invariants or operation contracts.

A crucial requirement in the design process of a system in
general is its validation and verification, i. e., the question
how to check whether the given system is consistent and will
work as intended. Consequently, researchers and engineers
developed corresponding methods and tools for the valida-
tion and verification of system descriptions in UML/OCL.
As an example, the UML-based Specification Environment
(USE) [3] provides well-established methods that can be
applied. Besides that, researchers began to exploit formal
methods for the validation and verification of UML/OCL

models. Approaches based on theorem provers like PVS [4],
HOL-OCL/Isabelle [5], and KeY [6] have been applied for
this purpose. They are capable of checking large models,
but often require a strong formal background of the de-
signer. As a consequence, researchers started to investi-
gate the application of fully automatic proof engines includ-
ing methods based on constraint programming (CSP) [7, 8,
9], description logic [10, 11], the modeling language Alloy
based on relational logic [12, 13, 14], or Boolean satisfiabil-
ity (SAT) [15, 16, 17, 18, 19].

Most of the automated approaches translate the UML
model into a problem formulation of another domain where
powerful solving engines can be applied. After the prob-
lem formulation has been solved, the respective results are
translated back to the UML domain, e. g., in terms of a sys-
tem state or a sequence of them. The process of obtaining a
valid model instance (or proving that none exists) is called
model finding and the respective tools are called model find-
ers. However, for all automated model finders scalability is
almost always an issue.

In this paper, we consider in detail how the translation
of OCL constraints to the SAT-based SMT domain is con-
ducted for model finding. These investigations unveil that
for certain OCL operations (in particular, nested OCL navi-
gation and iterator expressions) frequently a huge SMT for-
mulation is created which significantly harms the efficiency
of model finding. Moreover, further investigations show that
the vast majority of the resulting SMT formulations are of-
ten not necessary and, in fact, are ignored during the actual
model finding. Vice versa, just skipping the SMT formula-
tion prior to model finding yields an SMT instance which
does not represent the model in an adequate fashion.

Hence, we propose a compromise by introducing the con-
cept of ground setting properties. They allow the designer
to additionally provide some obvious information which, in
many cases, is easily available prior to model finding. Af-
terwards, this information is utilized in order to prune huge
parts of SMT formulations which are not necessary anymore
considering the additional information. By this, SMT for-
mulations can be generated which have only a fraction of the
size of the originally created ones. Using an initial imple-
mentation, this yields reductions of up to 4 orders of magni-
tude of the used memory and allows to solve problems that
could not be handled before.

The remainder of this work is structured as follows. The
following section provides the basics and notations used in
this work and reviews the main idea as well as concepts of
SMT-based model finding. In Section 3 the running example
is introduced. Afterwards, in Section 4 the resulting model



is used to investigate the translation of invariants defined in
OCL to SMT constraints and to show how this may yield
unnecessarily huge SMT formulations. Motivated by this,
we introduce the concept of ground setting properties and
discuss their relations to related work in Section 5. Finally,
Section 6 deals with the implementation and evaluation, be-
fore Section 7 concludes the paper.

2. PRELIMINARIES
In order to keep the paper self-contained, this section pro-

vides the notation for UML/OCL models used in this paper.
Furthermore, the basics on SMT-based Model Finding are
briefly reviewed. For a more detailed treatment of the re-
spective issues, we refer to the related work cited in this
section.

2.1 UML/OCL Models
Whenever UML/OCL models are mentioned in this pa-

per, class diagrams enriched with OCL description means
are meant. A class diagram consists of classes C and ref-
erences R (also called associations). A class is a 3-tuple
composed of sets of attributes, invariants, and operations
and is formally denoted by c = (A, I,O) ∈ C. A refer-
ence r = (c1, c2, (l1, u1), (l2, u2)) ∈ R is a 4-tuple, where
c1, c2 ∈ C are the two connected classes and the latter two
entries of the 4-tuple are multiplicity constraints. They re-
strict how often the reference is allowed to be instantiated
for each object of the class c1 or c2, respectively. In the re-
mainder of this work, we state with the term model elements,
denoted by µ, the union of all attributes (of all classes) and
all references. The invariants I of each class are (additional)
OCL constraints [2] which restrict the possible system states
that can be instantiated from the UML/OCL model.

Note that we restrict ourselves to binary associations.
This restriction does not decrease expressiveness, since it has
been shown that models containing n-ary associations can
be mapped into a semantically equivalent model solely com-
posed of binary associations by adding a helping class and
some invariants to the affected classes [20]. Furthermore,
modeling languages such as EMF [21] do not support n-ary
associations at all without loading the UML metamodels.

Example 1. Figure 1 shows a class digram, i. e., in our
terms a UML/OCL model, composed of the classes System
and Counter. Both classes are connected with a reference,
indicated by a line. The multiplicities as well as the ref-
erence end names (used, e. g., as identifier for navigation
through OCL constraints) are annotated above and below the
line, respectively. The class Counter has an integer attribute
for its id and another one for its value. Additionally,
there are two invariants for the class Counter. The invari-
ant greaterEqualZero enforces the attribute value to
be greater or equal than 0. The second invariant uniqueId
requires that the id of the counter is unique within all in-
stances of the counters of the connected system.

For a given UML/OCL modelm, a system state σ = (Υ,Λ)
is a tuple composed of a set of object instances of the classes
of m and a set of links, i. e., instances of the references of m.
A system state is called valid, if the multiplicities of the ref-
erences and also all invariants are satisfied. Otherwise, the
system state is called invalid. If for a given model m at
least one valid system state exists, m is called consistent.
Otherwise, m is called inconsistent.

Counter
id: Integer
value: Integer

System

context Counter
inv greaterEqualZero: self.value >= 0

context Counter
inv uniqueId: self.system.counters.forAll( c |
(self <> c) implies (self.id <> c.id)

)

1..*

counters

1

system

Figure 1: A model of a simple counter

2.2 SMT-based Model Finding
In order to check whether a given UML/OCL model is

consistent or whether it satisfies, e. g., certain behavioral
properties, several approaches for model finding have been
introduced recently (see, e. g., [4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
15, 16, 14, 18, 19]).

They take a given UML/OCL model and aim for deter-
mining a valid system state or a sequence of system states
witnessing the consistency or behavioral property, respec-
tively. In this work, we are focusing on model finders which
are based on solvers for Satisfiability Modulo Theory (SMT).

For this work, SMT can be seen as an extension of the
Boolean satisfiability problem (SAT problem), which is de-
fined as follows: Let f : Bn → B be a Boolean function.
Then, the SAT problem is to determine an assignment for
the variables of f such that f evaluates to true or to prove
that no such assignment exists. SMT extends this concept
by additionally allowing to formulate the problem in bit vec-
tor logic rather than pure Boolean logic. In the remainder
of this work, SMT formulations are provided in SMT-LIB
syntax specified in [22]. Here, each constraint is provided
following the Polish notation, i. e., each operation is encap-
sulated by parenthesis and the operator is provided before
the list of (ordered) operands. For a detailed list of all oper-
ators and the logic descriptions the reader is referred to [22].

For SMT problems, very efficient solving engines are avail-
able which are capable of solving rather large formulations
(see http://www.smtcomp.org). Motivated by that, re-
searchers investigated their potential for the task of model
finding – yielding SMT-based model finders as, e. g., intro-
duced in [16, 17, 18, 19]. To this end, the question “Does a
consistent system state or a sequence of system states show-
ing the considered behavior exist?” has to be formulated in
terms of a satisfiability problem. This requires the provi-
sion of problem bounds, i. e., an interval for the number of
instantiations for each class. Then, a symbolic formulation
representing all possible system states (or all sequences of
system states) is created and formulated using the above-
mentioned SMT-LIB syntax.

More precisely, for each attribute in all possible object
instances of all classes, an SMT variable is created. The
size, i. e., the bit vector length, of these variables depends
on the domain of the attribute. For example, for an inte-
ger 8 bits may be used, while a set of integers consequently
may require 256 bits (28 = 256). A Boolean attribute can
be represented by one bit.1 References are symbolically en-
coded by creating a bit vector variable for each object which
can be used within a link. The corresponding sizes depend

1Note that, for sake of clarity, we are not considering null
and invalid values, but only the regular domain of an
attribute.



1 ((_ card_ge 1) |System@0::counters|)
2 ((_ card_ge 1) |System@1::counters|)
3 ((_ card_eq 1) |Counter@0::system|)
4 ((_ card_eq 1) |Counter@1::system|)
5 ((_ card_eq 1) |Counter@2::system|)
6 (bvsgt |Counter@0::value| #x00)
7 (bvsgt |Counter@1::value| #x00)
8 (bvsgt |Counter@2::value| #x00)
9 (and (=> (= ((_ extract 0 0) |Counter@0::system|) #b1)

10 (and (=> (= ((_ extract 0 0) |System@0::counters|) #b1)
11 (=> (not (= #b001 #b001))
12 (not (= |Counter@0::id| |Counter@0::id|))))
13 (=> (= ((_ extract 1 1) |System@0::counters|) #b1)
14 (=> (not (= #b001 #b010))
15 (not (= |Counter@0::id| |Counter@1::id|))))
16 (=> (= ((_ extract 2 2) |System@0::counters|) #b1)
17 (=> (not (= #b001 #b100))
18 (not (= |Counter@0::id| |Counter@2::id|))))))
19 (=> (= ((_ extract 1 1) |Counter@0::system|) #b1)
20 . . .))

Listing 1: SMT constraints for the system-counter model

system ← ?

Counter@0
id ← ?
value ← ?

system ← ?

Counter@1
id ← ?
value ← ?

system ← ?

Counter@2
id ← ?
value ← ?

System@0

counters ← ?

System@1

counters ← ?

Figure 2: A system state for the simple counter model

on the possible number of opposite ends and, hence, on the
problem bounds. The following example illustrates the main
ideas.

Example 2. Consider again the system-counter model
from Figure 1 and assume we want to check whether this
model is consistent for exactly two instances of class Sys-
tem and exactly three instances of class Counter. Figure 2
sketches the variables created for the corresponding SMT for-
mulation. For all three Counter instances, there is one vari-
able for the attribute id and another one for the attribute
value. The variables for the reference ends are placed in
boxes below (above) the System ( Counter) object instances.
Here, each dot within a gray dashed rectangle represents a
single bit of the bit vector variable indicating whether there
is a link between the objects (highlighted by a gray line) or
not.

Passing just this list of variables to an SMT solver obvi-
ously leads to an arbitrary assignment of all variables and
consequently to an arbitrary system state. Hence, SMT con-
straints must be added in order to restrict the set of possi-
ble assignments such that a valid assignment is determined
which represents a consistent system state. This particu-
larly requires constraints enforcing the multiplicities as well
as the OCL invariants. Basic concepts for that have been
introduced in [16] and more detailed mappings, e. g., from
OCL to SMT are available in [17]. The following example
only illustrates the main ideas.

Example 3. Consider again the example from Figure 1
and the corresponding SMT variables as shown in Figure 2.
In order to determine valid assignments only, SMT con-
straints as sketched in Listing 1 are added. The first five
lines enforce the multiplicities of the reference between the
two classes, while the next three lines enforce the invariant
greaterEqualZero. Invariant uniqueId is enforced by
the constraints in the remaining lines (partially illustrated
for Counter@0 only).

Passing the resulting SMT formulation to an SMT solver
either yields a satisfying assignment to all SMT variables or
a proof that no such assignment exists. In the former case,
a consistent system state or a sequence of system states can
easily be derived from the assignment to the SMT variables.
In the latter case, it has been proven that no such system
state or sequence of system states exists (within the defined
problem bounds).

3. CONSIDERED RUNNING EXAMPLE
The contributions of this work will be illustrated and eval-

uated by means of a running example, namely a model of
the One Tile Game – a variant of the well-known Wythoff’s
Game which is a so-called Nim game. This section briefly
reviews the game and its rules as well as its formulation in
terms of a UML/OCL model. Based on that, the considered
problem as well as the proposed solution are explained in
the remainder of this work.

3.1 Considered Scenario
The One Tile Game is played with a single tile on a board

with x columns and y rows. At the beginning, the tile is
placed on the north-east field of the board. Then, two play-
ers A and B alternatingly move the tile either one or two
fields towards the south, the south-west, or the west. Fig-
ure 4 sketches the allowed moves at the beginning on a 6×6
board. Player A starts the game. A player wins the game,
if he/she is capable of performing the last valid move, i. e.,
if the other player is not able anymore to move the tile on
the board.



Board
rows: Integer
columns: Integer
validMoves: Set<Integer>

Field
row: Integer
column: Integer
endPosition: Boolean
winner: Player

�enum�

Player

A
B

1 board
1..* fields

context Board
inv restrictFields : self.fields->size() = self.rows * self.columns
inv restrictMoves : self.validMoves = Set{1, 2}
inv restrictRowValues : self.fields->forAll( f | 1 <= f.row and f.row <= self.rows)
inv restrictColumnValues : self.fields->forAll( f | 1 <= f.column and f.column <= self.columns)
inv uniqueRowColumn : self.fields->forAll( f1, f2 | (f1 <> f2) implies

(f1.row <> f2.row or f1.column <> f2.column)
)

context Field
inv restrictEndPositions : self.endPosition = self.board.validMoves->forAll( i |

(self.row - i <= 0) and (self.column - i <= 0)
)

inv andTheWinnerIs :
if (self.endPosition)
then self.winner = Player::B
else if (self.board.fields->select( f |

self.board.validMoves->exists( i |
(f.column = self.column - i and f.row = self.row )

or (f.column = self.column and f.row = self.row - i)
or (f.column = self.column - i and f.row = self.row - i)

)
)->exists( f | f.winner = Player::B )

)
then self.winner = Player::A
else self.winner = Player::B
endif

endif

Figure 3: The one-tile-game as UML/OCL model

1 2 3 4 5 6

1

2

3

4

5

6

Figure 4: One Tile Game – a Nim variant

If we assume that both players are playing with a perfect
strategy – and they can do so because the One-Tile-Game
has perfect information, i. e., all information about decisions
and/or possible moves is available at any time –, it is obvi-
ous that the winner of the game can be determined before
starting the game.2 Because of this, it is possible to mark
each field of the board with the player that is going to win
the game if the game starts on this field. Now, the ques-
tion which player wins the game when it is started on an
arbitrary field can be tackled as a model finding instance.
To this end, a UML/OCL model (here, in terms of a class
diagram) has to be available.

2Note that Player B wins, if the game starts on field (1,1),
since Player A has to make the first move but no valid op-
tions to do so.

3.2 Corresponding UML/OCL Model
To model the One Tile Game with UML/OCL, i. e., as a

class diagram, we introduce a class representing the entire
board as well as a class representing the single fields of the
board as shown in Figure 3. Further, an enum Player is
defined, which is used as data-type to mark what player is
going to win when the game starts on a particular field.

The class Board additionally provides attributes to define
the number of rows and columns. Another attribute, namely
validMoves, stores all the possible numbers of fields which
the tile can be moved. More precisely, this means, that for
the One Tile Game 1 and 2 should be the only elements
in validMoves, since the tile can be moved either 1 or
2 fields. This attribute allows for a quick consideration of
further variants of the game in which you can move the tile
by more or less fields.

Since all fields in the actual game have a unique position
defined by its row and column, the class Field is equipped
with corresponding attributes. Besides this, an attribute
endPosition indicates whether a valid move is still possi-
ble from this field or not (i. e., endPosition defines whether
the field is the terminal/end field). Additionally, an at-
tribute winner is used to mark the winner for this field
as described above – if, e. g., winner is set to A, Player A
would win if the game is started on this field and an optimal
strategy is used. Finally, each field is connected through a
reference with exactly one board, while the board must be
connected to at least one field.

Up to this point, a nearly arbitrary number of objects per
class as well as arbitrary values for the attributes would con-
stitute a valid system state for this class diagram. However,
since we are still aiming only for configurations of object in-
stances which correctly represent different versions of boards



as well as the respectively correct winners for each field, the
attribute values have to be restricted by OCL invariants as
shown at the top of Figure 3. More precisely, for a board
with x rows and y columns the number of connected fields
should be restricted by the product of rows and columns.
This is done by means of the invariant restrictFields.
Since in the One Tile Game, the tile can only be moved by
one or two fields, validMoves is restricted by the invari-
ant restrictMoves. Because the values of row as well
as column of each field are restricted and unique within
a board, three additional invariants for Board have been
added. Altogether, the five invariants ensure that a valid
system state represents a board where all corresponding
fields are properly representing a board as required for the
One Tile Game.

Next, invariants further restricting the set of valid sys-
tem states are added. These invariants enforce correct
markings of the respective winners for each field and
are provided at the bottom of Figure 3. More precisely,
restrictEndPositions is added enforcing that, for each
field, endPosition is set to true if no valid moves can
be performed from this field anymore or to false other-
wise. The invariant andTheWinnerIs first checks if the
fields constitutes an end position; then the winner must be
Player B. Otherwise, it is checked whether there is at least
one reachable field with winner set to Player B; then the
winner must be Player A. If not, Player B wins.

Passing the resulting class diagram together with its in-
variants to a model finder eventually yields a valid system
state representing various possible instances of the One Tile
Game and their respective marking of winners. However,
existing SMT-based model finders significantly suffer from
OCL descriptions as depicted in Figure 3 and, hence, are
hardly applicable particularly for large instances. In order
to illustrate the problem (and provide a solution), a more
detailed look on how OCL invariants are handled by state-
of-the-art model finders is necessary.

4. TRANSLATION OF OCL INVARIANTS
AND RESULTING PROBLEM

In this section, the translation of OCL invariants into an
equivalent SMT formulation (to be used for model finding as
reviewed in Section 2.2) is investigated in more detail. Based
on this, we afterwards show how dedicated OCL constraints
may cause a “blow-up” of the resulting SMT formulation
and, hence, pose a serious obstacle to the efficiency of SMT-
based model finding. By this we are illustrating the main
problem which is considered in this work. After that, Sec-
tion 5 introduces our solution with which we are addressing
this problem.

4.1 Translation of OCL Invariants
As reviewed in Section 2.2, SMT-based model finding first

creates variables in order to represent all possible system
states symbolically. Considering the running example intro-
duced in the previous section, all variables of a correspond-
ing symbolic formulation for a 3× 3 board are illustrated in
Figure 5. Since the assignment of all variables is unknown
prior to model finding, all values are denoted by a “?”. Note
that the reference ends are handled by variables inside the
objects, namely fields or board, respectively.

Next, SMT constraints enforcing the invariants of the
UML/OCL model to the symbolic formulation are created.
For the five invariants of class Board, this can be con-
ducted using existing solutions such as proposed in [16, 17].

Field@0
row ← ?
column ← ?
endPosition ← ?
winner ← ?
board ← ?

Field@1
row ← ?
column ← ?
endPosition ← ?
winner ← ?
board ← ?

Field@2
row ← ?
column ← ?
endPosition ← ?
winner ← ?
board ← ?

Field@3
row ← ?
column ← ?
endPosition ← ?
winner ← ?
board ← ?

Field@4
row ← ?
column ← ?
endPosition ← ?
winner ← ?
board ← ?

Field@5
row ← ?
column ← ?
endPosition ← ?
winner ← ?
board ← ?

Field@6
row ← ?
column ← ?
endPosition ← ?
winner ← ?
board ← ?

Field@7
row ← ?
column ← ?
endPosition ← ?
winner ← ?
board ← ?

Field@8
row ← ?
column ← ?
endPosition ← ?
winner ← ?
board ← ?

Board@0
rows ← ?
columns ← ?
validMoves ← ?
fields ← ?

Figure 5: Symbolic formulation for a 3× 3 board

More precisely, the forAll iterations in the invariants
restrictRowValues and restrictColumnValues are
unfolded for all fields, i. e., the internal constraints are
translated nine times, while the forAll with two iterators
in the invariant uniqueRowColumn is unfolded 9 · 9 = 81
times. The size operation is internally translated into
|Field| + 1 constraints – each of them checks if for an
i ∈ {0, . . . , |Field|} the board is connected to exactly i fields.
Listing 2 sketches the resulting SMT constraints for the in-
variant restrictRowValues.

However, existing solutions such as proposed in [16, 17]
will reach their limits when translating invariants of the class
Field. In order to illustrate that, let us first consider the
invariant restrictEndPositions: Here, self.board
represents a reference of the connected board which is un-
known prior to model finding (since the precise connections
are to be determined by a model finder). Accordingly, a cor-
responding SMT formulation has to consider all possibilities.
Assuming that only one object of class Board is instantiated,
this does not cause a problem (since this would result in only
one possible reference). But as soon as Board would be in-
stantiated multiple times, the number of possible references
quickly multiplies.

The consideration of all possibilities really becomes a
problem when the access of the attribute validMoves is
translated into SMT. Again, the precise value of this at-
tribute is unknown prior to model finding. In principle, this
set can contain integers between 0 and 255 (assuming an
integer is encoded with 8 bits). For each of these possi-
ble integers, the internal OCL constraint must be trans-
lated into an equivalent SMT constraint. Afterwards, all
these SMT constraints are joined by an and expression
and the result must be equal to self.endPosition. For
Field@0, this yields an SMT constraint as sketched in List-
ing 3.3 Since such an SMT constraint enforcing the invari-

3Note that, in Listing 3, unsigned bit vectors have been
used and, thus, the comparison looks a bit different as in
the corresponding OCL constraints.



1 (and (=> (= ((_ extract 0 0) |Board@0::fields|) #b1)
2 (and (bvule #x01 |Field@0::row|)
3 (bvule |Field@0::row| |Board@0::rows|)))
4 (=> (= ((_ extract 1 1) |Board@0::fields|) #b1)
5 (and (bvule #x01 |Field@1::row|)
6 (bvule |Field@1::row| |Board@0::rows|)))
7 (=> (= ((_ extract 2 2) |Board@0::fields|) #b1)
8 . . .)
9 . . .

10 (=> (= ((_ extract 8 8) |Board@0::fields|) #b1)
11 (and (bvule #x01 |Field@8::row|)
12 (bvule |Field@8::row| |Board@0::rows|))))

Listing 2: SMT constraints for the invariant restrictRowValues

1 (= |Field@0::endPosition|
2 (and (ite (= ((_ extract 0 0) |Board@0::validMoves|) ; check if i = 0 is in validMoves
3 #b1)
4 (and (or (bvult (bvsub |Field@0::row| #x00) ; #x00 represents i = 0
5 |Field@0::row|)
6 (not (= (bvsub |Field@0::row| #x00)
7 #x00)))
8 (or (bvult (bvsub |Field@0::column| #x00)
9 |Field@0::column|)

10 (not ((= (bvsub |Field@0::column| #x00)
11 #x00)))))
12 true)
13 (ite (= ((_ extract 1 1) |Board@0::validMoves|)
14 #b1) . . .)
15 . . .
16 (ite (= ((_ extract 255 255) |Board@0::validMoves|)
17 #b1) . . .) ) )

Listing 3: SMT constraints for the invariant restrictEndPositions

ant restrictEndPositions has to be created for all nine
field instances (with the 256 internal checks caused by the
unknown set), this easily “blows up” the resulting SMT in-
stance – a serious problem which significantly degrades the
performance of SMT-based model finding.

The second invariant of Field, namely andTheWinnerIs,
causes even more problems. Consider here the condition
of the inner if-then-else expression. First, the correct
reference of the board must be identified – this is similar to
the first invariant. On top of that, the select-expression
additionally has to consider all possible fields. Within the
scenario of the running example, this iteration should only
consider fields which are reachable by a valid move. In order
to decide if a field is reachable by a valid move or not, an
iteration over self.board.validMoves and its up to 256
different values is required. Moreover, a constraint checking
whether player B wins the game for at least one of these
selected fields has to be added. Since what fields are selected
here is unknown prior to model finding, the constraints have
to be generated for all fields.

4.2 Consequences and Resulting Problem
In the cases discussed above, a huge overhead in the SMT

formulation is created. In fact, already the running exam-
ple considered here with a 3 × 3 board requires a total of
approx. 2 MB and 500 MB of memory to store the SMT for-
mulations just for the invariants restrictEndPositions
and andTheWinnerIs, respectively.4 Here, the considera-

4Files of the resulting SMT formulations are online available:
http://informatik.uni-bremen.de/agra/divers/gsp/

tion of all possible cases, particularly for (nested) OCL nav-
igation and iterator expressions, poses a significant obstacle
to SMT-based model finding. Similar observations can be
made for other UML/OCL models relying on navigation or
iterator expressions on unknown large collections.

In contrast to that, most of the SMT constraints are
never used by the applied model finder. For example, as
soon as the model finder concludes that the iteration of
validMoves only defines two fields because of the corre-
sponding invariant (rather than all 256 ones which are pos-
sible in general), a huge amount of the generated SMT con-
straints is rendered to be irrelevant for further consideration.

The same happens as soon as the references between the
fields and board as well as the positions of the fields are as-
signed by the model finder – then, it becomes clear which
fields indeed are reachable from another field. Hence, al-
though a complete and general SMT formulation is required
in general, most of the constraints are not required as soon as
partial assignments, e. g., on validMoves and row/column
for the position, are applied.

Unfortunately, information on valid moves or reachable
fields is not directly available in the model as given in Fig-
ure 3. However, the designer can easily assume a dedicated
structure which explicitly provides such information without
harming the generality of the model finding task. In fact,
the order of the fields in the running example is practically
irrelevant as long as they are organized in a grid-fashion.
Employing such information could prevent the generation of
a general SMT formulation which generically considers all
possible cases. Instead, it would help to create only those



SMT constraints which are actually needed in the model
finding process. To this end, the user has to provide addi-
tional information prior to the automatic translation from
OCL to SMT.

On a first glance, a partial system state might be a good
solution to incorporate those additional information in the
translation flow. Unfortunately, this does not satisfacto-
rily address the problem. Using partial system states, the
solving engine can immediately satisfy huge parts of the re-
sulting formulation (e. g., providing a fix structure of the
board in the One-Tile-Game immediately satisfies the 5 in-
variants of class Board and huge parts of the 2 invariants
of class Field). However, although they are immediately
satisfied, simply not generating these constraints in the first
place is not easily possible, since the generation procedure of
the SMT constraints for the OCL expressions does not have
knowledge about what constraints are affected by a partial
system state. Hence, another solution is required.

5. GROUND SETTING PROPERTIES FOR
EFFICIENT TRANSLATION OF OCL

In this section, we propose the concept of ground setting
properties which enables the designer to explicitly specify
and provide the structure of a given model to be considered
during model finding. This additional information allows
for omitting huge parts of the SMT formulation and, hence,
yields a significantly more efficient model finding. In the
following, ground setting properties themselves and how to
specify them is described. Afterwards, we outline how the
generation of an SMT formulation profits from ground set-
ting properties. Finally, the difference of this concept com-
pared to similar and related work is discussed.

5.1 Ground Setting Properties
As discussed above, the significant overhead of the SMT

formulation can be avoided if additional information (e. g.,
about the structure) of the considered model is explicitly
given. In order to provide the model finder with this in-
formation, ground setting properties are introduced in this
section.

In addition to other existing properties which a model
element µ might already have (such as, e. g., Changable,
Name, and Unsettable in EMF), we are proposing to add
a further property called ground setting by an annotation.
Each ground setting property of a model element µ has one of
the two Boolean values: If the values of all instances of µ can
be assumed to have a fixed value, then the ground setting
property is set to true (stating that additional information
can be exploited when generating the SMT formulation). If
at least one value of an instance of µ can not be assumed
to have a fixed value, then the ground setting property is
set to false (stating that the generic SMT formulation to
be created has to consider all possibilities).5 In the former
case (the ground setting property of µ is set to true), the
additional information to be exploited has to be provided by
corresponding values for each instance of µ.

Applying this concept to the running example, ground set-
ting properties are set as summarized in Table 1, where 3
and 7 represents true and false, respectively. More pre-
cisely, the ground setting properties of the attributes rows,
columns, and validMoves of class Board can be set to
true (because the designer usually knows the sizes of the
board to be considered as well as the value of the attribute

5Note that false is assumed as default value.

Table 1: Ground setting properties for the running example
Class Model element Ground Setting Property

Board
rows 3

columns 3
validMoves 3

Field

row 3
column 3

endPosition 7
winner 7

Reference fields-board 3

Board@0
rows ← 3
columns ← 3
validMoves ← {1, 2}

Field@0
row ← 1
column ← 1
endPosition ← ?
winner ← ?

Field@1
row ← 1
column ← 2
endPosition ← ?
winner ← ?

Field@2
row ← 1
column ← 3
endPosition ← ?
winner ← ?

Field@3
row ← 2
column ← 1
endPosition ← ?
winner ← ?

Field@4
row ← 2
column ← 2
endPosition ← ?
winner ← ?

Field@5
row ← 2
column ← 3
endPosition ← ?
winner ← ?

Field@6
row ← 3
column ← 1
endPosition ← ?
winner ← ?

Field@7
row ← 3
column ← 2
endPosition ← ?
winner ← ?

Field@8
row ← 3
column ← 3
endPosition ← ?
winner ← ?

Figure 6: Additional values for the running example

validMoves). Furthermore, the ground setting properties
of the attributes row and column of class Field can be set
to true (because, without loss of generality, the positions of
the fields can be set). Finally, the ground setting property of
the reference between Board and Field is also set to true,
because the designer knows which fields are connected to
which board. For all remaining model elements, the ground
setting properties are set to false – those are the attributes
from which we would like the values to be determined by the
model finder.

Besides that, additional information on the values for all
model elements µ whose ground setting property is set to
true has to be provided. Therefore, a partial system state
is used. Thanks to the ground setting annotation at the
model level, it is now possible to access the information of
the partial system state during the translation from OCL to
SMT; without the annotation for ground setting properties,
this would be not possible. For the running example, these
values are summarized in Figure 6 (the links between ob-
jects are indicated by a connecting line in the background).
Overall, this provides more information which does not sig-
nificantly harm the generality of the model finding task (as
discussed above), but, as described next, allows for a much
more efficient SMT formulation.

5.2 Efficient Translation of OCL
Given the information from the subsection before, it is

now possible to identify a model element where the ground
setting property is set to true. For those model elements,
the SMT formulation can directly use the provided value



1 (= |Field@0::endPosition|
2 (and ( // constraints for 1 )
3 ( // constraints for 2 ) )
4 // constraints for 1:
5 (and (or (bvult (bvsub |Field@0::row|
6 #x01)
7 |Field@0::row|)
8 (not (= (bvsub |Field@0::row|
9 #x01)

10 #x00)))
11 (or (bvult (bvsub |Field@0::column|
12 #x01)
13 |Field@0::column|)
14 (not ((= (bvsub |Field@0::column|
15 #x01)
16 #x00)))))

Listing 4: Opt. SMT cnstrs. for restrictEndPositions

1 // constraints for 1:
2 (and (or (bvult (bvsub #x01
3 #x01)
4 #x01)
5 (not (= (bvsub #x01
6 #x01)
7 #x00)))
8 (or (bvult (bvsub #x01
9 #x01)

10 #x01)
11 (not ((= (bvsub #x01
12 #x01)
13 #x00)))))

Listing 5: Additionally applying values

1 (= |σo::Field@0::endPosition|
2 true)

Listing 6: Completely optimized SMT constraints

instead of unfolding it completely and causing the problems
described in Section 4. More precisely, it is now possible
to directly use the respective value in the SMT formulation
(of course it must be mapped to a bit string before) rather
than relying on an SMT variable. In particular for (nested)
OCL navigation and iterator expressions, this avoids the
huge enumeration of all possibilities.

Applying this to the running example, the values of the
validMoves set are given and, thus, the SMT formula-
tion for the invariant restrictEndPositions can now
be shortened as sketched in Listing 4. Because of the
same reason, also the variables in the constraints, i. e.,
Field@0::row and Field@0:column, for the two ele-
ments can be replaced with its precise values. This is il-
lustrated in Listing 5.

Already this yields substantial reductions. However, fur-
ther optimizations can be achieved since many arguments of
SMT constraints become constant due to the ground setting
properties. This allows for pre-calculating the result of con-
straints and the direct application in the SMT formulation.
Iteratively applying these pre-calculations to the constraint
in Listing 5 finally yields the value true. Analogously, the
second constraint in Listing 4 can be optimized to true.
Putting both results together, the original SMT constraint
from Listing 2 deflates to the one shown in Listing 6.

5.3 Discussion and Related Work
Ground setting properties sufficiently address the prob-

lem of generating huge SMT formulations for standard
SMT-based model finding. However, other previously pro-
posed solutions may provide an alternative solution as well.
In this section, we review corresponding related work and
discuss why they address the problem considered here in an
inadequate fashion only.

An obvious solution to the considered problem might be
the utilization of partial system states – without annota-
tions for ground setting properties – which are also used to
provide the values for model elements where the ground set-
ting property is set to true. Instead of leaving all attributes
and references unassigned, the designer could, e. g., provide a
partial system state in which relevant model elements (such
as validMoves, rows, and columns of the class Board as
well as the attributes row and column of the class Field
in the running example) are already pre-defined as done in
Figure 6. Then, e. g., for each attribute, a further constraint
is added which enforces the corresponding SMT variable to
assume the respective value. By this, information on the
structure of the board would be known, but only for the
SMT solver and not for the translation process from OCL
to SMT – the size of the SMT formulation would remain the
same (in fact, the size would even slightly increase). More-
over, even if additional information from the partial system
state would be exploited to improve the SMT formulation,
many tools provide default values. Those default values are
a problem because for the OCL to SMT translation an in-
ternal system state of the model is generate and whenever
one of the attributes or references is used within OCL it
is not possible differentiate between a default value (mostly
null) and a real pre-assignment provided by the designer
by a partial system state or not. Ground setting properties
as proposed in this work provide a solution which entirely
avoids problems like that.

The UML-based specification environment (USE) [3] of-
fers a so-called model validator [14] which uses relation logic,
Kodkod, Alloy, and SAT solvers. The main flow is thereby
similar to SMT-based model finding, i. e., the USE model
validator uses Kodkod [15] to transform the model, which
itself uses Alloy [12] to eventually generate an equivalent
SAT formulation to be solved. This model validator al-
lows for a restriction of the domain of each attribute before
starting with the complete translation chain among other
configuration possibilities. By this, the designer could, e. g.,
add useful information which restricts the search space of
the problem – similar to the ground setting properties pro-
posed here. However, so far it is not possible to pre-assign
a specific attribute of a respective class instance. Hence,
the internal SAT constraints generated, e. g., for the nested
select-exists-exists in the inner condition of the in-
variant andTheWinnerIs would cause a similar “blow-up”
when increasing the number of Field instances as in the
SMT-based solution (this is also confirmed by experimen-
tal evaluations later in Section 6).

Finally, Kodkod [15] internally supports symmetry break-
ing in order to avoid permutations within the search space
to be considered by the solver. This is a great advantage
compared to the approaches proposed in [16, 23] where no
similar techniques have been used. However, to the best of
our knowledge the “blow-ups” as described earlier will not
be avoided in the last transformation step (to SAT). Hence,
a similar problem as discussed in this work remains.



6. IMPLEMENTATION AND EVALUATION
The concept of ground setting properties has been im-

plemented on top of an SMT-based model finder which
has been implemented within the Eclipse framework. Here,
UML/OCL models are represented in terms of the Eclipse
Modeling Framework (EMF). In this section, we briefly re-
view this environment and describe how the proposed con-
cept has been realized and can be used. Afterwards, we
evaluate the improvement of the performance which can be
observed by exploiting ground settings.

6.1 Implementation
In order to apply the proposed solution, we have re-

implemented the general concepts of SMT-based model find-
ing as presented in [16, 23]. This resulted in an implemen-
tation as an Eclipse plugin using both, Java and Xtend. As
the SMT solving engine, Z3 [24] is utilized. This setting
has been enriched by the proposed concept of ground set-
ting properties as described in Section 5. Eventually, this
resulted in an extended framework which enables designers
to easily add and configure ground setting properties as well
as provide corresponding values.

Figure 7 exemplary illustrates this for the considered
model of the One-Tile-Game. In Figure 7a the emf file of
the One-Tile-Game is shown for the general model finding
approach. This means that no ground settings properties are
present. However, in order to add and configure a ground
setting property, the designer must only add the following
line in the text editor before a model element:

@ModelFinder(groundSettingProperty="true")

The result for the One-Tile-Game model is depicted in Fig-
ure 7b. If the designer prefers to work on the ecore files
of the EMF, the same results can be achieved with Sample
Ecore Model Editor provided by the EMF itself. There, the
annotations can be added and configured with some clicks
only.

The corresponding values can afterwards be provided us-
ing the XMI format which enables designers to declare a
(partial) system state. The provided system state implicitly
includes problems bounds for the number of objects to be
instantiated for each class. Such an XMI file can be cre-
ated using the editors provided by the EMF – the precise
details can be analyzed and changed using, e. g., the Sample
Reflective Ecore Model Editor as shown in Figure 8.

6.2 Evaluation
In this section, we compare the performance of SMT-

based model finding with ground setting properties to the
performance of the original approach. In addition to that,
we also conducted comparisons to the USE model valida-
tor with restricted domains as discussed in Section 5.3. For
SMT-based model finding, our implementations have been
applied within Eclipse in version Mars.2. For USE, we ap-
plied version 4.2.0-465 with version 5588 of the model val-
idator. All experiments have been carried out on an Intel i5
with 2.6 GHz cores and 8 GB memory using a Windows 7
64 bit and a Java 64 bit installation.

In a first evaluation, we considered the sizes of the ob-
tained SMT formulations.6 Table 2 provides the obtained
numbers for the running example with several board sizes.

6Since the USE model validator does not provide any in-
formation on the size of the resulting SAT instance, only
SMT-based model finding is considered in this part of the
evaluation.

(a) without ground setting properties

(b) with ground setting properties

Figure 7: One-Tile-Game model in the EMF format

Here, the problem investigated in Section 4 can clearly be
seen. Since a general formulation is created which considers
all possibilities, a “blow-up” in the SMT formulation results.
Already for rather tiny boards gigabytes of memory are con-
sumed by the formulation; boards sizes of just 5 × 5 could
not even be handled because of memory limitations. In con-
trast to that, just some kilobyte of memory are required once
ground setting properties are applied and exploited.7

In a second experiment, we compared the run times of
the considered approaches. Figure 9 provides the resulting
numbers in terms of three plots: the brown one shows the
run times when applying the USE model validator while the
red and blue one shows the run times when applying the
SMT model finder without and with ground setting proper-
ties, respectively. The x-axis provides the size of the board,
while the y-axis provides the run time in CPU seconds. Also

7Note that, without calculating the size of the SMT in-
stance, the general SMT-based model finder was capable
of determining solutions for 5 × 5 and 6 × 6 as well (but
approached its limits for problems sizes of 7× 7 or larger).



Figure 8: A visualization of the XMI file showing also the properties of the Board instance.

Table 2: Size of resulting SMT formulations
Field size 3× 3 4× 4 5× 5
without gr. set. prop. 491.0 MB 3.4 GB MO
with gr. set. prop. 7.4 kB 13.8 kB 22.4 kB

Field size 10× 10 20× 20 30× 30
without gr. set. prop. MO MO MO
with gr. set. prop. 96.1 kB 403,9 kB 936.5 kB
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Figure 9: Run times for different board sizes

this evaluation clearly shows the superiority of the proposed
approach. While the SMT-based model finder hardly can be
applied even for rather tiny instances (which is not surpris-
ing considering the size of the SMT formulation as covered
above), the USE model validator is, after all, capable of han-
dling board sizes up to 15 × 15. However, both approaches
are clearly outperformed by the proposed approach with
ground setting properties which can even handle a 36 × 36
board in less than 20,000 seconds.

7. CONCLUSION
In this work, the translation from OCL to SMT for UML

model finding has been investigated. Examples as well as ex-
periments have shown that, in particular, nested navigation
and iteration expressions of the OCL cause a severe “blow-
up” of the SMT formulation. In contrast, a significant part
of the SMT formulation is never used and can be omitted
as soon as some additional information, e. g., of the struc-
ture of the model at hand is known prior to model finding.
Motivated by that, we introduced the concept of ground set-
ting properties – an additional property for model elements
– which enables the designer to provide this additional infor-
mation. Exploiting these properties and information, huge
parts of the SMT-formulation can be pruned – eventually
allowing for a significantly more efficient SMT-based model
finding.

Our initial investigations showed that, exploiting ground
setting properties, reductions of up to four orders of mag-
nitude are possible and that instances which could not be
handled before can now be tackled in negligible runtime. We
expect that such improvements are not only possible for the
considered One Tile Game setting, but also for other models
which are generically described but usually assume a regu-
lar structure. This particularly holds, e. g., for models from
domains such as graph problems (including their vast appli-
cations, e. g., in route finding, resource allocation, etc.) or
hardware design for which, thus far, many SMT constraints
have to be created in a general case, but most of them are
not needed once a fix structure is instantiated for a dedicated
model finding task. Since a detailed evaluation would have
been beyond the scope of this work, we left corresponding
cases studies and investigations for future work.

Acknowledgements
This work was supported by the German Federal Min-
istry of Education and Research (BMBF) within the project
SPECifIC under grant no. 01IW13001, the German Re-
search Foundation (DFG) within the Reinhart Koselleck
project under grant no. DR 287/23-1, the Graduate School
SyDe funded by the German Excellence Initiative within the
University of Bremen’s institutional strategy as well as the
Siemens AG.



8. REFERENCES
[1] J. Rumbaugh, I. Jacobson, and G. Booch, Eds., The

Unified Modeling Language reference manual. Essex,
UK: Addison-Wesley Longman Ltd., 1999.

[2] OMG – Object Management Group, “Object
Constraint Language,” 2014, version 2.4, February
2014. [Online]. Available:
http://www.omg.org/spec/OCL/2.4
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