
Automatic Test Pattern Generation for Multiple
Missing Gate Faults in Reversible Circuits

Work in Progress Report

Anmol Prakash Surhonne1,2, Anupam Chattopadhyay1, and Robert Wille3

1 Nanyang Technological University, Singapore
2 Technical University of Munich, Germany

3 Institute for Integrated Circuits, Johannes Kepler University Linz, Austria
anmolpra001@e.ntu.edu.sg, anupam@ntu.edu.sg, robert.wille@jku.at

Abstract. Logical reversibility is the basis for emerging technologies like
quantum computing, may be used for certain aspects of low-power de-
sign, and has been proven beneficial for the design of encoding/decoding
devices. Testing of circuits has been a major concern to verify the in-
tegrity of the implementation of the circuit. In this paper, we propose
the main ideas of an ATPG method for detecting two missing gate faults.
To that effect, we propose a systematic flow using Binary Decision Di-
agrams (BDDs). Initial experimental results demonstrate the efficacy
of the proposed algorithms in terms of scalability and coverage of all
testable faults.

1 Introduction

Reversible circuits represent an emerging technology based on a computation
paradigm which significantly differs from conventional circuits. In fact, they al-
low bijective operations only, i. e., n-input n-output functions that map each
possible input vector to a unique output vector. Reversible computation enables
several promising applications and, indeed, surpasses conventional computation
paradigms in many domains including but not limited to quantum computation
(see, e. g., [1]), certain aspects of low-power design (as experimentally observed,
e. g., in [2]), encoding and decoding devices (see, e. g., [3, 4]), or verification (see,
e.g., [5]).

Accordingly, also the consideration of the design of reversible circuits received
significant interest. In comparison to conventional circuit design, new concepts
and paradigms have to be considered here. For example, fanout and feedback are
not directly allowed. This affects the design of reversible circuits and requires al-
ternative solutions. To this end, several design approaches have been introduced.
An overview of that is, e. g., provided in [6, 7].

In parallel, how to physically build reversible and quantum circuits is being
investigated and led to first promising results (see, e. g., [8, 9]). With this, also
the question of how to prevent and detect faults in the physical realization
became relevant. In particular for quantum computation, this is a crucial issue:
Quantum systems are much more fault-prone than conventional circuits, since
the phenomenon of quantum de-coherence forces the qubit states to decay –
resulting in a loss of quantum information which, eventually, causes faults. Faults
also do originate from the fact that quantum computations are conducted by a
stepwise application of gates on qubits.

As a result, researchers studied different fault models and the respective
methods for Automatic Test Pattern Generation (ATPG). In that regard, one



of the earliest works on different fault models for quantum circuits is [10], which
proposed these models based on the implementation principles of quantum cir-
cuits using trapped ion technology [1]. The types of fault model included, for
example, the single missing gate fault (SMGF), the partial missing gate fault
(PMGF), and the multiple missing gate fault (MMGF). However, mainly ATPG
methods for single faults have been proposed thus far (see e.g. [11–13]).

2 Background

To keep the remainder of this work self-contained, this section briefly reviews
the basics of reversible circuits as well as ATPG and the fault models considered
for this kind of circuits.

2.1 Reversible Circuits

Reversible circuits are digital circuits with the same number of input signals and
output signals. Furthermore, reversible circuits realize bijections, i.e. each input
assignment maps to a unique output assignment. Accordingly, computations
can not only be performed from the inputs to the outputs but also in the other
direction. Reversible circuits are composed as cascades of reversible gates. The
Toffoli gate [14] is widely used in the literature and also considered in this paper.

Definition 1. Given a set of variables or signals X = {x1, x2, . . . , xn}, a Toffoli
gate G(C, t) is a tuple of a possibly empty set C ⊂ X of control lines and a
single target line t ∈ X \C. The Toffoli gate inverts the value on the target line
if all values on the control lines are set to 1 or if C = ∅. All remaining values
are passed through unaltered. In the following, Toffoli gates are also denoted as
Multiple Controlled Toffoli (MCT) gates.

2.2 Test of Reversible Circuits

As in conventional circuits, Automatic Test Pattern Generation (ATPG) meth-
ods for reversible circuits aim at determining a set of stimulus patterns (denoted
as testset) in order to detect faults in a circuit with respect to an underlying
fault model. A single missing gate fault is defined as follows.

Definition 2. Let G(C, t) be a gate of a reversible circuit. Then, a Single Miss-
ing Gate Fault (SMGF) appears if instead of G no gate is executed (i.e. G
completely disappears). The method to detect SMGF is widely studied and can
be referred in previous works.

Definition 3. Let G be a set of k gates from a reversible circuit. Then, a Mul-
tiple Missing Gate Fault (MMGF) appears if instead of G no gates are executed
(i.e. all gates G completely disappear in G).

In the following, we consider MMGFs with two missing gates. However, the
methods described below can easily be extended for an arbitrary number of
faulty gates. From here on forward, MMGF is referred to as missing of two
gates. In order to detect MMGFs, the respective gates have to be activated so
that the faulty behaviour can be observed at the outputs of the circuit. However,
in case of multiple faults, the absence of one gate within the circuit may cause the
deactivation of another gate in the circuit – leading to masking effects. Besides
that, the absence of two gates may lead to no change in the outputs – leading to
an undetectable fault. Because of that, the dependencies of two gates considered
as one MMGF have to be analyzed in order to generate a test pattern.



Definition 4. Two gates Gx and Gy (x < y) are said to be dependent if the
target line of Gx is involved in the activation of the SMGF of Gy. More precisely,
a Toffoli gate Gy is dependent from gate Gx, if the target line of Gy is the control
line of Gx or if Gy is dependent on another gate Gz which is dependent from Gx.

3 ATPG for MMGF Detection

This section describes the proposed approach for ATPG of MMGFs. The goal
is to obtain a test set that covers all possible faults with a minimum number
of test patterns. The proposed solution has four phases. First, test patterns for
SMGFs, i.e. for the single faults, are obtained and compactly stored in a BDD.
Based on that, the dependencies already discussed in the previous section are
analyzed. The results from these two steps (i.e. the patterns for all SMGFs as
well as the information about the dependencies of the gates in the currently
considered circuit) are then utilized in order to obtain MMGF test sets. Finally,
a covering algorithm is applied to minimize the obtained test set – yielding a
minimal result covering all MMGFs.

3.1 Test Generation for SMGFs

In order to obtain all desired test patterns, it is assumed that only one gate is
faulty at a time in this step. Also, the faults are detected at the primary outputs
of the circuits and no distinction is made between different types of lines like
output, garbage etc. Constant inputs of the circuit are assumed to be variable
for the purpose of testing. For a circuit with n lines and N gates, there are N
SMGFs, and the test patterns are obtained by activating the considered gate.
Overall, this yields 2n−k possible test patterns that can be obtained for testing
a SMGF. In order to compactly store them, Binary Decision Diagrams (BDDs,
[15]) are applied.

3.2 Dependency Analysis

The next step is to analyse the dependencies between all combinations of two
faulty gates as discussed in Section 2.2. The following pseudo-code describes how
the dependencies between the gates are obtained.

Algorithm 1 Dependency Analysis

N : Number of gates of the circuit.
Gx : Gate numbered x.
Table[N ] : Table storing the dependencies of the N gates.
for i = 0 ; i < N ; i++ do

for j = 0 ; j < i ; j ++ do

if targetLine(Gj) = controlLine(Gi) then
Insert Gj to Table[i].
Insert all the gates Gj is dependent from to Table[i].

end if

end for

end for



3.3 MMGF Test Generation

Using the test patterns for SMGFs as well as information about the dependen-
cies of all combinations of two faulty gates, now the respective test patterns for
MMGFs with two faulty gates can be obtained. More precisely, without loss of
generality, consider two gates Gx and Gy as well as their test patterns for corre-
sponding SMGFs (denoted as S(Gx) and S(Gy)). If these two gates are indepen-
dent to each other, we determine two test patterns (denoted as M(Gy, Gx)1 and
M(Gy, Gx)2): one test pattern to activate the gate Gx and not Gy and another
to activate Gy. More precisely:

M(Gy, Gx)1 = S(Gy) M(Gy, Gx)2 = (S(Gx) ∩ S(Gy))

If the two gates are dependent on each other, we determine two other tests
patterns: one test pattern to activate the gate Gx and not Gy and vice versa.
More precisely:

M(Gy, Gx)1 = (S(Gy) ∩ S(Gx)) M(Gy, Gx)2 = (S(Gx) ∩ S(Gy))

Besides that, masking may occur leading to untestable faults (as discussed
in Section 2.2). A fault is untestable using this method

M(Gy, Gx)i = {∅} where i = {1, 2}

Using this as basis, the respective determinations can efficiently be conducted
on the BDD. More precisely, the BDD containing the SMGF test patterns are
manipulated for all the MMGF yielding a BDD with n inputs and 2 ∗ NC2

3.4 Minimal Test Set Determination

Once all the test patterns for the individual MMGFs are obtained, it is tried to
derive the minimal testset covering all the faults. To that effect, two different
techniques are proposed.

First, row and column reduction of a covering table [16] is implemented
following a greedy scheme. Second, a covering algorithm is implemented using
the BDDs to determine a minimum cover of the stored patterns. For a circuit
with n lines, the covering BDD has 2n inputs and 1 output. Having that, the
minimum test set is equivalently represented by the minimum-weighted path
from the output of the BDD to the 1-terminal of the BDD, where the then arc
has a weight of 1 and the else arc has a weight of 0.

4 Experimental Results

The ideas proposed above have prototypically been implemented on a Ubuntu
Linux system running on a Intel(R) Core(TM) i7−3630QM CPU 64bit@2.4Ghz
and 6GB of RAM. For the first two steps, i.e. determining the SMGF testset and
the dependency analysis, Revkit [17] has been applied. For the remaining steps,
the BDD package CUDD [18] was employed. All experiments were conducted
on benchmark circuits obtained from Revlib [19]. Table 1 presents the obtained
experimental results. The results show that the algorithm performed well for
larger circuits covering a large number of faults. We obtained 100% fault cover-
age for circuits like rd73 140 and rd84 142, whereas the worst performance was
for the circuit ex3 229 with a coverage of 28.6. This was due to a large number



Table 1: Experimental Results
SMGF MMGF

Circuit N n Type TP TPG TPBDD TF D U %D %U TG TBDD

cm82a 208 22 8 MCT 4 9 8 231 21 107 9.1 46.3 0.08s 6s
ex3 229 7 6 MCT 2 3 3 21 4 15 19 71.4 0.01s 0.01s
graycode6 47 5 6 MCT 1 4 3 10 0 0 0 0 0.01s 0.04s
ham3 102 5 3 MCT 2 4 4 10 6 1 60 10 0.01s 0.01s
hwb4 52 11 4 MCT 2 6 6 55 41 3 74.5 5.5 0.01s 0.04s
hwb5 55 24 5 MCT 3 12 11 276 192 78 69.6 28.3 0.03s 0.1s
majority 239 8 6 MCT 3 4 4 28 6 18 21.4 64.3 0.01s 0.01s
mini-alu 167 6 4 MCT 3 5 5 15 15 1 100 6.7 0.01s 0.02s
mod10 171 10 4 MCT 3 6 6 45 29 20 64.4 44.4 0.01s 0.03s
mod5adder 128 15 6 MCT 2 8 7 105 59 66 56.2 62.9 0.02s 0.12s
mod5d1 63 7 5 MCT 1 4 4 21 4 2 19 9.5 0.01s 0.02s
mod8-10 177 14 5 MCT 2 6 6 91 53 41 58.2 45.1 0.01s 0.03s
rd32-v0 66 4 4 MCT 2 2 2 6 2 2 33.3 33.3 0.01s 0.03s
rd53 137 16 7 MCT 2 9 8 120 44 36 36.7 30 0.05s 0.07s
sym6 145 36 7 MCT 1 6 6 630 0 180 0 28.6 0.1s 0.13s
xor5 254 7 6 MCT 1 3 3 21 2 10 9.5 47.6 0.01s 0.06s
ham7 105 21 7 MCT 3 9 5 210 35 14 16.7 6.7 0.05s -
hwb5 53 55 5 MCT 4 21 21 1485 1396 98 94 6.6 0.02s 0.15s
hwb6 56 126 6 MCT 8 43 43 7875 7614 328 96.7 4.2 1.7s 1.9s
3 17 13 6 3 MCT 2 4 4 15 12 7 80 46.7 0.01s 0.01s
root 255 99 13 MCT 14 14 - 4851 660 660 13.6 13.6 16s -
rd73 140 20 10 MCT 3 6 - 190 72 0 37.9 0 1s -
rd84 142 28 15 MCT 3 8 - 378 125 0 33.1 0 90s -
adr4 197 55 13 MCT 6 13 - 1485 65 525 4.4 35.4 38s -
ham15 108 70 15 MCT 8 26 - 2415 1474 154 61 6.4 100s -
hwb7 59 289 7 MCT 14 71 - 41616 40735 742 97.9 1.8 48s -
hwb7 60 166 7 MCT 8 32 - 13695 13683 71 99.9 0.5 7s -
0410184 169 46 14 MCT 1 9 - 1035 315 274 30.4 26.5 8s -

N - Number of gates n - Number of lines.
TP - Number of test patters covering all SMGF.
TPG - Number of test patterns covering all MMGF using greedy method.
TPBDD - Number of test patterns covering all MMGF using BDD based covering algorithm.
TF - Total Number of MMGF faults. D - Number of dependencies.
U - Number of untestable faults.
TG Time taken for obtaining test patterns using greedy method.
TBDD Time taken for obtaining test patterns using BDD based covering algorithm.
%D - Percentage of dependencies = (D/TF ) ∗ 100
%U - Percentage of untestable faults = (U/TF ) ∗ 100

of NOT gates, and hence the performance could be improved by DFT tech-
niques. For the circuits rd32− v0 66 and root 255, the SMGF and MMGF test
patterns are identical. This is because all the dependent faults of these circuits
are untestable. Considering the two covering methods, i.e. the greedy heuristic
vs. the BDD-based approach, clearly shows the difference in runtime – especially
for large circuits, where the BDD-based covering could not be completed after
a long time. This was expected as the BDD-based approach obtains an exact,
i.e. minimal cover, while the heuristic solution only approximates that. Besides
that, it can be observed that the test set size determined by the greedy heuristic
is, for most cases, the same as the minimal size obtained by the BDD-based ap-
proach. That is, the quality of the heuristic is rather good and often yields test
sets which are close to the optimum. It should also be noted that the untestable
faults are due to the function of the algorithm, and other methods can be used



to detect these faults, which will be considered in the future work where we try
to increase the coverage to 100%.

Acknowledgement.
This work has partially been supported by the EU COST Action IC1405.

References

1. M. Nielsen and I. Chuang, Quantum Computation and Quantum Information.
Cambridge Univ. Press, 2000.

2. A. Berut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, and E. Lutz,
“Experimental verification of landauer’s principle linking information and thermo-
dynamics,” Nature, vol. 483, pp. 187–189, 2012.

3. R. Wille, R. Drechsler, C. Osewold, and A. Garcia-Ortiz, “Automatic design of
low-power encoders using reversible circuit synthesis,” in Design, Automation and
Test in Europe, 2012, pp. 1036–1041.

4. A. Zulehner and R. Wille, “Taking one-to-one mappings for granted: Advanced
logic design of encoder circuits,” in Design, Automation & Test in Europe, 2017.

5. L. Amarú, P.-E. Gaillardon, R. Wille, and G. De Micheli, “Exploiting inherent
characteristics of reversible circuits for faster combinational equivalence checking,”
in Proceedings of the 2016 Conference on Design, Automation & Test in Europe.
EDA Consortium, 2016, pp. 175–180.

6. R. Drechsler and R. Wille, “From truth tables to programming languages: Progress
in the design of reversible circuits,” in Int’l Symp. on Multi-Valued Logic, 2011,
pp. 78–85.

7. M. Saeedi and I. L. Markov, “Synthesis and optimization of reversible circuits - a
survey,” ACM Computing Surveys, 2011.

8. L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood,
and I. L. Chuang, “Experimental realization of Shor’s quantum factoring algorithm
using nuclear magnetic resonance,” Nature, vol. 414, p. 883, 2001.

9. B. Desoete and A. D. Vos, “A reversible carry-look-ahead adder using control
gates,” INTEGRATION, the VLSI Jour., vol. 33, no. 1-2, pp. 89–104, 2002.

10. I. Polian, T. Fiehn, B. Becker, and J. P. Hayes, “A family of logical fault models
for reversible circuits,” in Asian Test Symp., 2005, pp. 422–427.

11. K. N. Patel, J. P. Hayes, and I. L. Markov, “Fault testing for reversible circuits,”
Asian Test Symp., pp. 410–416, 2003.

12. J. P. Hayes, I. Polian, and B. Becker, “Testing for missing-gate-faults in reversible
circuits,” Asian Test Symp., pp. 100–105, 2004.

13. R. Wille, H. Zhang, and R. Drechsler, “ATPG for reversible circuits using simula-
tion, Boolean satisfiability, and pseudo Boolean optimization,” in IEEE Computer
Society Annual Symposium on VLSI, 2011, pp. 120–125.

14. T. Toffoli, “Reversible computing,” in Automata, Languages and Programming,
W. de Bakker and J. van Leeuwen, Eds. Springer, 1980, p. 632, technical Memo
MIT/LCS/TM-151, MIT Lab. for Comput. Sci.

15. R. E. Bryant, “Graph-based algorithms for Boolean function manipulation,” IEEE
Trans. on Comp., vol. 35, no. 8, pp. 677–691, 1986.

16. M. Bushnell and V. Agrawal, Essentials of electronic testing for digital, memory
and mixed-signal VLSI circuits. Springer Science & Business Media, 2004, vol. 17.

17. M. Soeken, S. Frehse, R. Wille, and R. Drechsler, “RevKit: An open source toolkit
for the design of reversible circuits,” in Reversible Computation 2011, ser. Lecture
Notes in Computer Science, vol. 7165, 2012, pp. 64–76, RevKit is available at
www.revkit.org.

18. F. Somenzi, “Cudd: Cu decision diagram package release 2.4. 2,” 2009.
19. R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drechsler, “Revlib: An online

resource for reversible functions and reversible circuits,” in Int’l Symp. on Multi-
Valued Logic, 2008, pp. 220–225.


