
Taking One-to-one Mappings for Granted:
Advanced Logic Design of Encoder Circuits

Alwin Zulehner1 Robert Wille1,2
1Institute for Integrated Circuits, Johannes Kepler University, Linz, Austria

2Cyber-Physical Systems, DFKI GmbH, Bremen, Germany
alwin.zulehner@jku.at robert.wille@jku.at

Abstract—Encoders play an important role in many areas such
as memory addressing, data demultiplexing, or for interconnect
solutions. However, design solutions for the automatic synthesis of
corresponding circuits suffer from various drawbacks, e.g. they
are often not scalable, do not exploit the full degree of freedom, or
are applicable to realize certain codes only. All these problems are
caused by the fact that existing design solutions have to explicitly
guarantee a one-to-one mapping. In this work, we propose an
alternative design approach which relies on dedicated description
means for both, the specification of an encoder as well as its
circuit. Based on that, synthesis can be conducted without the
need to explicitly take care of guaranteeing one-to-one mappings.
Experiments show that this indeed overcomes the drawbacks of
current design solutions and leads to an improvement in the
resulting number of gates by up to 92%.

I. INTRODUCTION

Encoding devices represent a vital part of numerous applica-
tions realized in today’s electronic systems such as addressing
memories and caches, data demultiplexing, etc. (see [13],
[3]). With the rise of System on Chip and Network on
Chip architectures, they gained further importance by the fact
that those architectures usually rely on a rather sophisticated
interconnect solutions [2], [7], [12], [8]: In order to address
the underlying limitations with respect to performance and/or
power efficiency, communications between components of
those architectures is usually conducted by dedicated encod-
ings instead of the originally provided raw data. All these
applications eventually motivate the design automation of
corresponding encoders, i.e. the automatic synthesis of circuits
which transform an n-bit word into another n-bit word while,
at the same time, guarantee a one-to-one mapping from inputs
to outputs.

However, how to specify and, afterwards, synthesize the
corresponding encoders is a non-trivial task. In contrast to
other circuit designs, encoders require a more or less explicit
consideration of all possible patterns. In its most straight-
forward fashion, this can be conducted by a complete spec-
ification in terms of a truth-table as shown in Table Ia.
This however results in an exponential complexity for the
specification alone (not to mention the actual synthesis) – a
rather unsuitable solution for practically relevant encoders.

As a compromise, incomplete encodings (also known as
discretized or approximate encodings; see [1]) have been con-
sidered where the desired input/output mapping is specified for
a (non-exponential) selection of the patterns only (e.g. the most
important ones). For all other input patterns, the corresponding
output patterns are considered don’t care. Fig. Ib shows an
example of such an encoding. While this allows for a compact
specification of the desired encoder, it still poses significant
challenges to the synthesis process: Although all non-specified
patterns are don’t care, a valid one-to-one mapping has to
be guaranteed for them as well (otherwise a code would
result that cannot be decoded anymore). As this, again, leads
to an exponential complexity, often rather simple solutions
are enforced for this purpose (e.g. enforcing the realization
of the identity function for the remaining patterns whenever
possible).1 This, in turn, significantly reduces the degree of

1This requires that the specified mapping from inputs to outputs is cyclic.

freedom to be exploited during the synthesis (suddenly a
circuit has to be synthesized where, again, all patterns are
restricted) and, hence, yields rather expensive circuits.

A completely different approach to deal with this problem
is based on clustering [2], [1]. Here, the n-bit specification of
the desired encoder is provided by several clusters of encoders
with significantly smaller size. Table Ic illustrates the main
idea: Instead of defining the encoder for all n = 3 input/output
combinations, the mapping of the first input/output (i.e. x3)
and the last two inputs/outputs (i.e. x2x1) are provided sep-
arately. While this addresses the exponential complexity, this
scheme is not generically applicable to all possible encodings.
For example, if e.g. a 2-bit encoder realizing the mapping
{(00, 10), (01, 00), (10, 01), (11, 11)} is desired, no clustering
can be conducted since the relation between the two bits is
entangled.

Besides the problems reviewed above, many synthesis meth-
ods for encoders do not exploit the full potential provided by
the given design task. In many domains such as the design of
low-power encoders, not an explicit input/output mapping is
desired, but only one which satisfies a dedicated objective.
For example, specifications derived from probability-based
mapping [14] only require that certain inputs are getting
mapped to outputs of a dedicated Hamming weight (as il-
lustrated at the left-hand side of in Table Id). But since, again,
existing synthesis methods require an explicit specification
of the input/output mapping, those specifications are usually
mapped to an explicit specification prior to synthesis (as
illustrated at the right-hand side of in Table Id). By this, all
the shortcomings reviewed above are inherited, i.e. also these
solutions have a limited scalability and/or do not exploit the
full degree of freedom yielding to rather expensive circuits.

Overall, state-of-the-art methods for the design of encoders
suffer from the fact that
• they are not scalable (if complete specifications are

considered),
• they do not exploit the full degree of freedom (because fix

input/output mappings are enforced initially if incomplete
encoders or encoders based on Hamming weights are
considered), or

• they are not generically applicable (if clustering is to be
applied to encoders where inputs/outputs are entangled).

All these problems are actually caused by the fact that existing
solutions rely on rather unsatisfactory methods for guarantee-
ing the needed one-to-one mapping.

In this work, we provide a solution which overcomes these
problems. To this end, we first utilize an alternative description
means in Section II that allows for a compact specification of
the desired encoders while, at the same time, considers the full
degree of freedom (e.g. provided by don’t care cases, more
flexible descriptions e.g. in terms of Hamming weight, etc.).
Based on that, a synthesis method is sketched in Section III
and detailed in Section IV which realizes the desired encoder
while, at the same time, inherently guarantees a one-to-one
mapping. To this end, circuit descriptions based on so-called
reversible logic are utilized. This way, the actual design ob-
jective can be specified (including don’t care cases, Hamming

TABLE I: Specifications of encoders
(a) Complete
x3x2x1 x3x2x1

000 000
001 101
010 011
011 111
100 010
101 100
110 110
111 001

(b) Incomplete
x3x2x1 x3x2x1

000 000
001 –
010 010
011 –
100 –
101 001
110 –
111 –

(c) Clustering
x3 x2x1 x3 x2x1

0 00 1 01
0 01 1 11
0 10 1 00
0 11 1 10
1 00 0 01
1 01 0 11
1 10 0 00
1 11 0 10

(d) H. weight
x3x2x1 Hw x3x2x1

000 1 001
001 0 000
010 2 011
011 3 ⇒ 111
100 2 110
101 1 010
110 2 101
111 1 100

weights, etc.) without the need to explicitly take care of
guaranteeing one-to-one mappings. Experimental evaluations
summarized in Section V show that this solution indeed allows
for the design of encoders, for which the number of gates in
the resulting circuits is reduced by up to 92% (approx. 60%
on average) compared to conventional approaches.

II. A DECISION DIAGRAM
FOR THE SPECIFICATION OF ENCODERS

In this section, we show how to efficiently represent the
specification of the desired encoders without the need to
explicitly take care of guaranteeing one-to-one mappings. To
this end, we introduce a description means which has been
inspired from so-called Quantum Multiple-Valued Decision
Diagrams (QMDDs) introduced in [9], [11]. QMDDs allow
for the efficient representation and manipulation of quantum
computations – a future way of doing computations which
relies on quantum-mechanical characteristics such as dedicated
quantum bits, superposition, entanglement, etc. (see [10] for
details). Moreover, since all quantum computations are in-
herently reversible, all descriptions of quantum functionality
(and, hence, also QMDDs) do have to guarantee one-to-one
mappings.

In this work, we are exploiting this characteristic in order to
address the problem of how to represent a one-to-one mapping
when designing coders. More precisely, we took the original
definition of QMDDs and removed all quantum-related issues
such as working with quantum values, superposition, etc.
This eventually led to a decision diagram – called 1:1DD in
the following – in which the specification of an encoder is
represented as a one-to-one mapping matrix M rather than a
truth table. In this matrix, the n-bit inputs and n-bit outputs are
represented by columns and rows of the matrix, respectively.
A 1-entry in the matrix indicates that an input (column) is
mapped to an output (row). In contrast, a 0-entry indicates
that there is no relation between the input and the output. The
following example illustrates the idea.

Example 1. Consider the specification of a fully specified
encoder as shown in Table Ia. The corresponding matrix
representation M is shown in Fig. 1a. Since the encoder maps
e.g. input x3x2x1 = 010 to output x′3x

′
2x
′
1 = 011, the third

column of the matrix contains its 1-entry in the fourth row.2

To efficiently represent M , 1:1DDs provide a decision dia-
gram structure where each node partitions the matrix according
to a variable xi (n ≥ i ≥ 1). More precisely, let’s assume xn
is the most significant variable of M . Then, the matrix can
be decomposed into four sub-matrices, where each of them
represents one of the four possible mappings of xn, i.e.
• from 0 to 0 (left upper sub-matrix; denoted M0�0),
• from 1 to 0 (right upper sub-matrix; denoted M1�0),
• from 0 to 1 (left lower sub-matrix; denoted M0�1), and
• from 1 to 1 (right lower sub-matrix; denoted M1�1).

Each of these sub-matrices are again represented in terms of
a node in the decision diagram. By recursively continuing

2Since we are considering input/output mappings with equal bit-widths
in the following, we will not distinguish e.g. between an input xi and
output x′i anymore. Instead, we consistently denote that by the mapping of
the variable xi.

0
0
0

0
0
1

0
1
0

0
1
1

1
0
0

1
0
1

1
1
0

1
1
1

000 1 0 0 0 0 0 0 0

001 0 0 0 0 0 0 0 1

010 0 0 0 0 1 0 0 0

011 0 0 1 0 0 0 0 0

100 0 0 0 0 0 1 0 0

101 0 1 0 0 0 0 0 0

110 0 0 0 0 0 0 1 0

111 0 0 0 1 0 0 0 0

x2
x3

x1
Inputs

O
ut

pu
ts

(a) Matrix

x3

x2 x2 x2 x2

x1 x1 x1 x1

1

0 0 0 0 0 0 0 0

0 0 00 0 0 0 0 0 0 0 0

(b) 1:1DD
Fig. 1: Representations for the encoder specified in Table Ia

this partition, smaller sub-matrices result until a single value
(i.e. a terminal) is reached. Since the resulting sub-matrices
often include a significant amount of redundancies or are
even identical, sharing is possible (similar to other decision
diagrams such as BDDs [5]). Moreover, zero sub-matrices
(i.e. matrices which are solely composed of 0’s) frequently
occur which, independently of their dimension, can simply be
represented by a 0-stub. This eventually allows for a rather
compact representation.

Example 1 (continued). Fig. 1b shows the resulting 1:1DD
representation of the matrix shown in Fig. 1a. Note that the
successors of a node, i.e. the first, second, third, and fourth
edge, represent M0�0, M1�0, M0�1, and M1�1, respectively.

As an example, the bold path to the 1-terminal3 denotes that
the mapping of the variables x3, x2, and x1 from 0, 1, and
0 to 0, 1, and 1, respectively, is a valid input/output mapping
of the function represented by the 1:1DD. On the other side,
no mapping e.g. of the variables x3 and x2 from 1 and 0 to
0 and 0 exists, respectively (as represented by the path to the
0-stub highlighted with dashed lines).

Using 1:1DDs as introduced above allows for the compact
specification of complete encoders and, by this, addresses
one of the main problems discussed in Section I. Moreover,
1:1DDs can also be utilized in order to represent incomplete
specifications or specifications based on alternative objectives
such as Hamming weights. More precisely:
• An incomplete specification can be represented by a

1:1DD where the columns for which no output is speci-
fied contain 0-entries only. As an example, Fig. 2a shows
a 1:1DD representation of the specification from Table Ib.

• A specification based on Hamming weights can be rep-
resented by a 1:1DD following the convention that a
Hamming weight of h is represented by output 2h − 1.
As an example, Fig. 2b shows a corresponding 1:1DD
representation of the specification from Table Id.

Note that, in both cases, these 1:1DDs do not technically
represent one-to-one mappings (in the former case, mappings
are missing; in the latter case several mappings to the same
output exist). However, they provide a description means
which compactly represents all the relevant information that
is needed for synthesis. How this can be utilized during the
synthesis process itself is described next.

III. SYNTHESIS OF THE ENCODERS

The 1:1DDs introduced above allow for a compact specifica-
tion of the desired encoders. Based on this, also their synthesis
can be conducted. This requires an inherent guarantee that a
one-to-one mapping is realized. For the synthesis step, we
propose to accomplish that by using reversible logic [6], [15]
– a circuit model which is composed of reversible gates and,

3For brevity, paths to the 1-terminal are called 1-paths in the following.

x3

x2 x2

x1 x1

1

0 0

0 0 0 0 0

0 0 0 0 0 0

(a) Incomplete (c.f. Table Ib)

x3

x2 x2 x2

x1 x1 x1

1

0

0 0 0 0 0

0 0 0 0 0 0 0 0

(b) H. weight (c.f. Table Id)
Fig. 2: 1:1DDs for other encoder specifications

by this, inherently allows for the realization of one-to-one
mappings only.4 In this section, we first review the main
concepts of this circuit model. Afterwards, the general idea of
the proposed synthesis scheme which utilizes the description
means introduced in Section II together with the reversible
logic circuit model in order to realize the desired encoder are
described. Details on the implementation are then provided in
Section IV.
A. Reversible Logic

Circuits realized in reversible logic are structurally different
to conventional ones. They do not directly allow feedback
and fanout and, hence, need to be described by n circuit
lines which are passed through a cascade of gates [6], [15].
Moreover, in order to ensure reversibility, each gate is allowed
to realize a reversible function only. In the domain of reversible
logic, the Toffoli gate is one of the most established gate types
as it is reversible and universal, i.e. each reversible function
can be realized with Toffoli gates only.

This eventually leads to the definition of a reversible circuit
as a cascade G = g1g2g3 . . . gk of k reversible gates gi over
a set of circuit lines X = {xn, . . . , x2, x1}. A reversible
gate (here: Toffoli gate) gi = TOF (Ci, ti) consists of a set
Ci ⊆ {xj | xj ∈ X} ∪ {xj | xj ∈ X} of positive (xj)
and negative (xj) control lines and a target line t ∈ X with
{ti, ti} ∩ Ci = ∅. A circuit line cannot be used as positive
and negative control line at the same time. The value of the
target line ti is inverted iff the value of all positive control
lines xj ∈ Ci evaluate to 1 and all negative control lines
xj ∈ Ci evaluate to 0. All other lines pass through the gate
unchanged. In the following, positive control lines, negative
control lines, and the target line of a Toffoli gate are visualized
with symbols , , and ⊕, respectively.

Example 2. Fig. 3 shows a reversible circuit composed of
three circuit lines and three Toffoli gates. Furthermore, the
circuit is labeled with the values on the circuit lines for
input x3x2x1 = 001. The first gate g1 = TOF ({x1}, x3)
inverts the value of the target line x3 since the con-
trol line x1 is initialized 1. Because of the same reason
(control lines are accordingly initialized), the second gate
g2 = TOF ({x3, x2}, x1) inverts target line x1. In contrast,
the third gate g3 = TOF ({x1}, x2) does not invert target
line x2, because the control line x1 is 0.

Because of their dedicated structure as well as gate types,
reversible circuits allow for the realization of one-to-one map-
pings only. By this, they are inherently addressing the main
problem discussed above: They do not require to explicitly
take care of guaranteeing one-to-one mappings. At the same
time, once a reversible circuit realizing the desired encoder is
available, it can easily be converted into a conventional circuit
description (since, after all, Toffoli gates realize conjunctions

4Note that, in the past, reversible logic has already been considered for
designing encoders as e.g. in [16] or, more recently, in [17]. However, in both
cases the design has been conducted based on descriptions such as truth-tables,
i.e. only encoders of rather small size (up to 12 bits) have been considered.

x3 x′3
x2 x′2
x1 x′1

0

0

1

g1

1

0

1

g2

1

0

0

g3

1

0

0

Fig. 3: Reversible circuit

xi

xi−1 xi−1

0 0

Fig. 4: Identity structure
of positive/negaive control signals exclusively-ORed with the
target signal). This way, encoders can be synthesized by
focusing on the objectives only (not on how to guarantee
one-to-one mappings), while the result is still suitable for the
further design steps.

B. Resulting Synthesis Scheme
Summarizing the considerations from above, the synthesis

task is reformulated as follows: For a 1:1DD representing the
desired encoder in terms of a matrix M (as introduced in
Section II), determine a circuit G = g1g2g3 . . . gk based on the
model of reversible logic (as reviewed in Section III-A) which
realizes M . This can be conducted by applying reversible
gates gi to M so that, eventually, the identity matrix I
results. In other words, let’s assume a cascade of reversible
gates G−1 = gkgk−1 . . . g2g1 applied to M transforms M
into I . Then, due to the reversibility, the inverse cascade
G = g1g2g3 . . . gk realizes M .

This leaves the question how to efficiently determine the
gates needed in order to transform M to I . Since the identity I
only represents mappings from 0 to 0 and from 1 to 1, each
node in the 1:1DD has to be transformed such that its second
edge and third edge point to a 0-stub (as shown in Fig. 4 for
a node xi). Hence, for a given 1:1DD M , the task remains
how to apply reversible gates so that eventually this structure
results.

This task is addressed by successively transforming the
1:1DD towards the identity. To this end, the nodes of the
1:1DD are considered in a breadth-first traversal from the
top to the bottom. In each step, the currently considered
node (representing the partition according to variable xi) is
transformed into the desired structure. This is accomplished by
applying Toffoli gates which move all 1-paths of the second
and third edge to the first and fourth edge (eventually leading
to nodes as shown in Fig. 4).

Obviously, the sequence of gates required to accomplish
the desired structure for the currently considered node of the
1:1DD depends on the represented objective, i.e. whether a
complete, incomplete, or Hamming weight-based specification
is provided. Hence, details on this are separately provided later
in Section IV. But since the main principles are similar in all
these cases, how Toffoli gates affect the 1:1DD nodes (and
how this can be utilized during synthesis) is briefly shown
before.

A main principle is that Toffoli gates swap 1:1DD-paths.
More precisely, applying e.g. a gate TOF (C, xi) to a given
1:1DD inverts the input of the mapping of variable xi for all
paths represented by C. This way Toffoli gates may be used
to swap e.g. a mapping from 0 to 1 to a mapping from 1 to 1
and, by this, moving paths from the third edge to the fourth
edge – bringing it closer to the identity structure. Again, an
example illustrates the idea.

Example 3. The simplest gate TOF (∅, x2) inverts the value,
from which variable x2 maps, for all paths and, therefore,
simply exchanges the first (third) and the second (fourth) edge
of the 1:1DD node (as illustrated in the left part of Fig. 5). The
gate TOF ({x1}, x2) inverts the value, from which variable x2
maps, for all paths where variable x1 maps from 1 to anything
(as illustrated in the right part of Fig. 5). This already yields
the identity structure for the top node of the 1:1DD in Fig. 5.
In a similar fashion, various other modifications on the 1:1DD
can be conducted.

x2

x1 x1 x1 x1

1

0 0 0 0 0 0 0 0 0 0 0 0

x2

x1 x1 x1 x1

1

0 0 0 0 0 0 0 0 0 0 0 0

x2

x1 x1

1

0 0

0 0 0 0

x2 x′2
x1 x′1

x2 x′2
x1 x′1

Fig. 5: Effects of applying Toffoli gates to 1:1DDs

In addition to that, we have to make sure that applying
Toffoli gates does not affect previously traversed nodes. This
can be accomplished by adding control lines describing the
path to the currently considered node to each Toffoli gate.

Example 4. Consider the 1:1DD in Fig. 5 and assume that
the rightmost 1:1DD node with label x1 is currently processed.
Each gate applied for processing this node has to include a
positive control line x2. By this, only paths with x2 = 1 are
changed, i.e. paths which run through the fourth edge of the
top node (representing a mapping from 1 to 1).

IV. DETAILED SYNTHESIS SCHEMES

Based on the general ideas discussed above, this section
provides details on how the synthesis is conducted when either
a complete, incomplete, or Hamming weight-based specifica-
tion is provided. More precisely, we show how to determine
a sequence of gates that transforms a node of the respectively
given 1:1DD to the desired identity structure. Following the
synthesis flow outlined in Section III and without loss of
generality, we assume that the currently considered node is
labeled with variable xi (n ≥ i ≥ 1) and that all previously
traversed nodes (i.e. all nodes labeled with variable xl, where
n ≥ l > i) already established the identity structure.

A. Case 1: Complete Specification
The key idea is to swap paths such that all 1-paths are moved

from the second to the first edge while, at the same time, all
1-paths from the third edge are moved to the fourth edge. To
this end, we determine the sets of 1-paths for each edge of
the currently considered node (denoted by P1, P2, P3, and
P4, respectively) as well as the corresponding sets of 0-paths
of the currently considered node (i.e. paths that terminate in
a 0-stub; denoted by P 1, P 2, P 3, and P 4, respectively). A
path represents an input and, hence, contains a literal for each
variable xj with 1 ≤ j < i which either occurs in positive
phase (xj) or negative phase (xj). Variable xi is neglected,
because it is inherently known (xi for paths in P1 and P3,
as well as xi for paths in P2 and P4). Since the 1:1DD
node describes a fully specified function, the sets P1 and P3
are disjoint (both represent a mapping with input xi = 0),
i.e. P1 ∩ P3 = ∅. Moreover, the set of 0-paths P 1 in the first
edge is equal to the set of 1-paths P3 in the third edge. Finally,
since a completely specified encoder describes a reversible
function, the cardinalities of the sets P2 and P 1 = P3 have to
be equal.

Example 5. Consider the top node of the 1:1DD depicted in
Fig. 1b (representing the complete encoder specification from
Table Ia). The sets of inputs with a 1-path are defined by
P1 = {x2x1, x2x1}, P2 = {x2x1, x2x1}, P3 = {x2x1, x2x1},
and P4 = {x2x1, x2x1}. Note that P1 ∩ P3 = P2 ∩ P4 = ∅
and that P 1 = {x2x1, x2x1} = P3 are the 0-paths of P1.

Because of the relation between 1-paths and 0-paths dis-
cussed above, each 1-path of the second edge can be swapped
with a 0-path of the first edge. To keep the number of required
Toffoli gates as small as possible, we swap a 1-path p ∈ P2

with its most similar 0-path p′ ∈ P 1. In fact, if there exist
corresponding paths p and p′ which are identical (p = p′),
only a Toffoli gate with target line xi and a set of control lines

that represent p is required.5 If p 6= p′, p has to be adjusted to
match p′ before the paths can be swapped as described above.
To this end, a Toffoli gate with target line xj is added for each
variable xj that occurs in p and p′ in different phases. Note that
all these Toffoli gates contain a positive control line xi, since
only the paths in the second and fourth edge shall be changed.
Swapping all 1-paths of the second edge with the 0-paths of
the first edge inherently swaps the 1-paths of the third edge
with the 0-paths of the fourth edge and, hence, transforms the
currently considered node to the identity structure.

Example 5 (continued). Consider again the top node of the
1:1DD depicted in Fig. 1b. As can be seen, there exists a
1-path p ∈ P2 which is identical to a 0-path p′ ∈ P 1,
namely p = x2x1 = p′. To swap the 1-path with the 0-path,
a gate TOF ({x2, x1}, x3) is applied. The remaining 1-path
p = x2x1 of P2 has to be adjusted to match the 0-path
p′ = x2x1. This requires a gate TOF ({x3, x2}, x1). Since
afterwards p = p′, the paths can be swapped using a gate
TOF ({x2, x1}, x3) – resulting in the 1:1DD shown in Fig 6a
where the currently considered node assumes the identity
structure.

B. Case 2: Incomplete Specification
The synthesis of incompletely specified encoders is similar

to the completely specified case described above. However
the 1:1DD contains fewer 1-paths (and, hence, contains more
0-paths), i.e. less paths have to be considered in order to
accomplish the identity structure. Consequently, the number
of 0-paths p′ ∈ P 1 is larger than the number of 1-paths
p ∈ P2 for most nodes (i.e.

∣∣P 1

∣∣ > |P2|) which introduces
some degree of freedom. This degree of freedom allows for
choosing the subset of P 1 containing the 0-paths that require
the fewest number of Toffoli gates when swapped with the
1-paths of P2. Note that we have to consider the 1-paths in
the third edge separately, because swapping all 1-paths of the
second edge with 0-paths of the first edge does not necessarily
swap all 1-paths of the third edge with 0-paths of the fourth
edge. In the case that

∣∣P 1

∣∣ = |P2| for the currently considered
node, synthesis is conducted as described for the completely
specified case.

Once the second and third edge are transformed to 0-stubs,
the currently considered 1:1DD node does not necessarily have
the desired identity structure – the first or the fourth edge
may be a 0-stub as well. In this case, we insert an edge to
accomplish the identity structure (exploiting the degree of
freedom that some one-to-one mappings can arbitrarily be
defined). In other words, inserting an edge is nothing but
adding missing 1-paths in a way that suits best to derive the
desired identity structure.

Example 6. Consider the top node of the 1:1DD shown
in Fig. 2a (representing the incomplete encoder specification
from Table Ib), which contains only three 1-paths. The respec-
tive set of paths are P1 = {x2x1, x2x1}, P2 = {x2x1}, and
P3 = P4 = ∅. The degree of freedom allows for arbitrarily
choosing 0-paths from P 1 = {x2x1, x2x1} that should be
swapped with the 1-paths p ∈ P2. There is only one path
p = x2x1 ∈ P2. Furthermore, this path is also contained in
P 1. To swap the two paths, gate TOF ({x2, x1}, x3) is applied
as discussed above. The resulting 1:1DD is shown on the left
hand side of Fig. 6b. Since the fourth edge of the top node
of the 1:1DD is a 0-stub, we insert an edge such that the
top node assumes the identity structure (shown on the right
hand side of Fig.6b). Inserting the edge doubles the number
of 1-paths of the currently considered node from 3 to 6.

5As discussed in Section III, the set of control lines is additionally be
enriched with literals that represent the path to the currently considered node.

x3

x2 x2

x1 x1 x1 x1 x1

1

0 0

0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

(a) Completely specified

x3

x2

x1 x1

1

0 0 0

0 0

0 0 0 0 0

x3

x2

x1 x1

1

0 0

0 0

0 0 0 0 0

add edge

(b) Incompletely specified
Fig. 6: Synthesis of encoders

C. Case 3: Hamming Weight-based Specification
Synthesis of encoders described by 1:1DDs based on Ham-

ming weights requires different transformations to generate
the desired identity structure. Since only the Hamming weight
of the outputs is fixed, we have a certain degree of freedom
which can be exploited. However, to get a starting point, we
first initialize each output with a fix value: Each output which
is supposed to assume a Hamming weight h is initialized
with 2h − 1 (as already discussed at the end of Section II by
means of Fig. 2b). At the same time, we keep the flexibility
to change the permutation of the corresponding assignments
later in the process (as long as they keep the Hamming weight).
Besides that, we utilize a key observation that, for an encoder
with n variables, exactly

(
n
h

)
different patterns with Hamming

weight h have to be defined. Finally, the Hamming weights
can easily be derived from the paths of the 1:1DD, since the
first and the second edge describe a mapping to 0, while
the remaining two edges represent a mapping to 1. In the
following, this is explicitly highlighted by representing edges
mapping to 0 (1) with dotted (solid) lines in the 1:1DD.

Example 7. Consider again the specification based on Ham-
ming weights as discussed before in Table Id. In order to
synthesize an encoder for that, we first create a 1:1DD in
which all mappings to a Hamming weight h = 0 are mapped
to 20 − 1 = 0, all mappings to a Hamming weight h = 1
are mapped to 21 − 1 = 1, all mappings to a Hamming
weight h = 2 are mapped to 22 − 1 = 3, and so on. This
yields the 1:1DD as shown in Fig. 2b. Now, for each input, the
desired Hamming weight can easily be determined by simply
following the respective 1-path and counting the number of
1-edges (i.e. solid edges). As an example, the 1:1DD has
exactly

(
3
2

)
= 3 entries with Hamming weight 2, i.e. three

paths from the root to the 1-terminal with one dotted and two
solid edges.

As before, the goal is to transform the currently considered
node such that an identity-structure results. This also influ-
ences the respectively considered Hamming weights. While,
overall, exactly

(
i
h

)
different patterns with Hamming weight h

exists, this number changes to exactly
(
i−1
h

)
in case xi is

mapped from 0 to 0 and to
(
i−1
h−1

)
in case xi is mapped from 1

to 1. Since we are not interested in the precise output patterns
(as long as they assume the desired Hamming weight), this is
the only requirement we have to ensure when performing the
transformation. Hence, in a first step, we analyze how many
1-paths assume the Hamming weight h when the input of the
currently considered node is 0 (represented by the first and
the third edge) and how many 1-paths assume the Hamming
weight h when the input of the currently considered node is 1
(represented by the second and fourth edge).

Example 8. Consider the top node of the 1:1DD shown
in Fig. 2b. From the first and third edge, we can easily
obtain how many 1-paths with Hamming weight h exists when

TABLE II: Distribution of the Hamming weights
input x3 = 0 input x3 = 1

Hw. 1st e. 3rd e. desired 2nd e. 4th e. desired
0 1 0 1 0 0 0
1 1 0 2 2 0 1
2 1 0 1 2 0 2
3 0 1 0 0 0 1

x3

x2 x2 x2

x1 x1 x1

1

0

0 00 0 0

0 0 0 0 00 0 0

(a) Move paths

x3

x2 x2

x1 x1 x1

1

0 0

0 0

0 0 0 0 00 0 0

(b) Rotate outputs
Fig. 7: Synthesis specifications based on Hamming weights

setting x3 = 0 (to this end, simply count the number of 1-paths
from the currently considered node that include exactly h solid
edges). Similarly, we can obtain from the second and fourth
edge how many 1-paths with Hamming weight h exists when
setting x3 = 1. Table II provides the respective numbers. Now,
these numbers are compared to the actually desired values,
namely

(
2
h

)
for case x3 = 0 and

(
2

h−1
)

for case x3 = 1. As
can be seen, we have one path too much with Hamming weight
3 (for x3 = 0) and one too much with weight 1 (for x3 = 1).

In order to consolidate the respective paths so that the
desired distribution of Hamming weights is established, we
have to swap paths – similar as we did above for the complete
and incomplete case. To this end, we determine the set of paths
P1−3 and P2−4 for Hamming weights that occur too often
when setting xi = 0 and xi = 1, respectively. The paths in
these sets have to be swapped (as discussed above) to obtain
the desired distribution of Hamming weights.

Example 8 (continued). When considering x3 = 0 (i.e. the
first and the third edge), one path with Hamming weight
3 occurs too often. Since there is only one such path
(namely x2x1), P1−3 = {x2x1}. Furthermore, when consid-
ering x3 = 1, one path with Hamming weight 1 occurs too
often. The degree of freedom allows to choose one of the two
paths with Hamming weight 1 (namely x2x1 or x2x1) that
has to be swapped. We chose P2−4 = {x2x1} = P1−3, which
results in a smaller cascade of Toffoli gates to swap the paths
in P1−3 and P2−4. In fact, only gate TOF ({x2, x1}, x3) is
required. The resulting 1:1DD is shown in Fig. 7a.

After establishing the desired distribution of 1-paths with
Hamming weight h, the second edge may still contain 1-paths.
However, they can be easily shifted to the fourth edge by
permuting their outputs. More precisely, we rotate the outputs
of the not yet considered variables (including xi) to the
right by one position, i.e. the outputs of xi, xi−1, . . . , x1 are
changed to the outputs of x1, xi, . . . , x2. Since we chose to
represent Hamming weight h with 2h − 1 the output of x1,
which becomes the new output of xi after the rotation, is
1. Therefore, the mappings of x1 from 1 to 0 are changed
to mappings from 1 to 1 – leading to the desired identity
structure. Permuting outputs does not require to apply gates
and, since only the Hamming weights of the outputs matter,
is a valid modification of the function to be synthesized.

Example 8 (continued). Consider again the 1:1DD in Fig. 7a.
The 1-paths of the second edge have outputs x3x2x1 = 001
(i.e. Hamming weight 1) once and outputs x3x2x1 = 011
(i.e. Hamming weight 2) twice. After rotation these 1-paths,
they have outputs 100 and 101, respectively, and are therefore

moved to the fourth edge. The resulting 1:1DD is shown
in Fig. 7b. This yields the desired identity structure for the
considered node while the objective is still satisfied.

V. EXPERIMENTAL EVALUATION
We have implemented the proposed approach in C. As basis

for the implementation of the 1:1DDs, the QMDD package
provided in [11] has been utilized. By this, a tool resulted
which realizes Toffoli circuits for a given encoder specification
(without the need to explicitly take care of guaranteeing
one-to-one mappings). Afterwards, this circuit has been re-
synthesized for a conventional technology using ABC [4], a
synthesis tool based on rewriting of And-Inverter Graphs. This
allows to determine the number of 2-input gates, required to
synthesize the circuit.

To compare the proposed approach to conventional method-
ologies, several encoding specifications to be realized have
been considered which are frequently used in related work
– including probability density functions as found in DSP
applications with an increasing, decreasing, or Gaussian shape
as well as probability functions obtained from analysis of real-
life Linux programs. For all these specifications, the desired
Hamming weight for 1000 input patterns are provided. In order
to realize these specifications with the conventional design
methodology (as e.g. applied in [7], [2], [14], [1] and denoted
by Conventional in the following), the Hamming weights
are translated to precise output patterns. Moreover, for all
remaining input patterns the necessary one-to-one mapping is
specified by enforcing the realization of the identity function
for them. Like for the proposed approach, we use ABC [4]
to synthesize the specification for conventional technology. As
already discussed in Section I, these steps are inevitable in the
current design of encoders but significantly reduce the degree
of freedom to be exploited during the synthesis. In contrast, the
method proposed here allows to fully exploit these freedoms.

This is also confirmed by the obtained numbers which are
summarized in Table III. The first columns provide thereby
the bit-width of the desired encoder as well as its name.
Afterwards, the number of required 2-input gates is provided
which is required when the conventional approach is applied
and when the method proposed in this work is applied.
The last column of the table lists the reduction of 2-input
gates of the proposed approach compared to the conventional
methodology.

The experimental results clearly show the benefit of the
proposed approach. We observe a substantial reduction of the
number of gates in the encoder circuits. Taking the one-to-
one mapping for granted allows to exploit the full degree of
freedom during synthesis and results in smaller circuits. In the
case of having an incompletely specified function combined
with the Hamming weight objective, this degree of freedom
leads to a reduction of up to 92% (approx. 60% on average).

VI. CONCLUSIONS

In this paper, we proposed a novel approach for the synthesis
of encoders which takes one-to-one mappings for granted and,
by this, overcomes main problems of conventional solutions
with respect to scalability, applicability, and the exploitation
of the degree of freedom. The proposed approach utilizes
description means which is explicitly suited for corresponding
specifications and a circuit description which inherently en-
sures a one-to-one mapping. This allows for exploiting the full
degree of freedom (e.g. for incompletely specified encoders
or encoders based on Hamming weights) during synthesis.
Experimental evaluations show that the proposed approach
allows for synthesizing encoder circuits with up to 92%
less gates compared to conventional design methodologies.
This confirms the promises of the proposed approach for the
synthesis of encoders and motivates more detailed evaluations
to be conducted in future work.

TABLE III: Experimental Evaluation
Width Function Conventional Proposed Reduction [%]

16 inc. 21649 9869 54.41
16 dec. 10595 9590 9.49
16 Gauss 16716 9731 41.79
16 inv. Gauss 17712 9726 45.09
16 bison 31050 13588 56.24
16 espresso 32257 14369 55.45
16 flex 31507 13178 58.17
16 gcc 29019 12841 55.75
16 gnuplot 30651 13848 54.82
16 gopher 33074 14418 56.41
16 gzip 32273 14471 55.16
32 inc. 48091 15689 67.38
32 dec. 15984 13270 16.98
32 Gauss 35022 15774 54.96
32 inv. Gauss 36147 15775 56.36
32 bison 159999 34615 78.37
32 espresso 159834 37004 76.85
32 flex 200829 38323 80.92
32 gcc 170687 37073 78.28
32 gnuplot 146023 34249 76.55
32 gopher 155483 36286 76.66
32 gzip 171997 38739 77.48
64 inc. 47177 26232 44.40
64 dec. 24593 18549 24.58
64 Gauss 63029 29900 52.56
64 inv. Gauss 69732 20930 69.99
64 bison 928848 89194 90.40
64 espresso 976491 93197 90.46
64 flex 1289836 95041 92.63
64 gcc 1020144 87045 91.47
64 gnuplot 846739 83831 90.10
64 gopher 830333 90780 89.07
64 gzip 902930 91655 89.85

ACKNOWLEDGEMENTS

This work has partially been supported by the European
Union through the COST Action IC1405.

REFERENCES
[1] L. Benini, A. Macii, M. Poncino, and R. Scarsi. Architectures and

synthesis algorithms for power-efficient businterfaces. IEEE Trans. on
CAD of Integrated Circuits and Systems, 19(9):969–980, 2000.

[2] L. Benini, G. D. Micheli, E. Macii, M. Poncino, and S. Quer. Power
optimization of core-based systems by address bus encoding. Trans.
VLSI Syst., 6(4):554–562, 1998.

[3] L. Benini, G. D. Micheli, D. Sciuto, E. Macii, and C. Silvano. Address
bus encoding techniques for system-level power optimization. In Design,
Automation and Test in Europe, pages 861–866, 1998.

[4] R. K. Brayton and A. Mishchenko. ABC: an academic industrial-strength
verification tool. In Computer Aided Verification, pages 24–40, 2010.

[5] R. E. Bryant. Graph-based algorithms for Boolean function manipula-
tion. IEEE Trans. on Comp., 35(8):677–691, 1986.

[6] R. Drechsler and R. Wille. From truth tables to programming languages:
Progress in the design of reversible circuits. In International Symposium
on Multiple-Valued Logic, ISMVL, pages 78–85, 2011.

[7] A. García-Ortiz, D. Gregorek, and C. Osewold. Optimization of
interconnect architectures through coding: A review. In Electronics,
Communications and Photonics Conference, pages 1–6, April 2011.

[8] K. Lee, S. Lee, and H. Yoo. Low-power network-on-chip for high-
performance soc design. IEEE Trans. VLSI Syst., 14(2):148–160, 2006.

[9] D. M. Miller and M. A. Thornton. QMDD: A decision diagram structure
for reversible and quantum circuits. In Int’l Symp. on Multi-Valued
Logic, page 6, 2006.

[10] M. Nielsen and I. Chuang. Quantum Computation and Quantum
Information. Cambridge Univ. Press, 2000.

[11] P. Niemann, R. Wille, D. M. Miller, M. A. Thornton, and R. Drechsler.
QMDDs: Efficient quantum function representation and manipulation.
IEEE Trans. on CAD, 35(1):86–99, 2016.

[12] A. G. Ortiz, L. S. Indrusiak, T. Murgan, and M. Glesner. Low-power
coding for networks-on-chip with virtual channels. J. Low Power
Electronics, 5(1):77–84, 2009.

[13] P. R. Panda and N. D. Dutt. Reducing address bus transitions for low
power memory mapping. In European Design and Test Conference,
ED&TC, pages 63–71, 1996.

[14] S. Ramprasad, N. R. Shanbhag, and I. N. Hajj. A coding framework for
low-power address and data busses. IEEE Trans. VLSI Syst., 7(2):212–
221, 1999.

[15] M. Saeedi and I. L. Markov. Synthesis and optimization of reversible
circuits - a survey. ACM Comput. Surv., 45(2):21, 2013.

[16] R. Wille, R. Drechsler, C. Osewold, and A. Garcia-Ortiz. Automatic
design of low-power encoders using reversible circuit synthesis. In
Design, Automation and Test in Europe, pages 1036–1041, 2012.

[17] R. Wille, O. Keszocze, S. Hillmich, M. Walter, and A. G. Ortiz. Syn-
thesis of approximate coders for on-chip interconnects using reversible
logic. In Design, Automation and Test in Europe, 2016.

