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Abstract

Information fusion is the task of combining data collected from different sources into a unified
representation. Here, a main challenge is to deal with the inherent uncertainty contained in the
information, such as sensor noise, conflicting information, or incomplete knowledge. In current
approaches, one usually employs independence assumptions in order to reduce the complexity.
Because of this, the full potential of the gathered data is often not fully exploited and the fusion
may lead to additional uncertainty. In order to reduce this uncertainty, further information in
form of background and expert knowledge can be utilized, which is often available for real-world
scenarios. However, reasoning on this knowledge is a computational complex task. In this work,
we propose a methodology which utilizes formal methods for that reasoning, which allows to
relax some of the independence assumptions. We demonstrate the proposed methodology using
evidential grid maps – a belief function-based environment representation, in which different
kinds of uncertainty are represented explicitly. Our methodology is evaluated based on basic
structures as well as on real-world data sets. The results show that the uncertainty in the maps is
significantly reduced by considering dependencies among cells.

Keywords: Uncertainty Reduction, Formal Methods, Information Fusion, Belief Functions,
Occupancy Grid Maps

1. Introduction

When a technical system acts in or interacts with an environment, it relies on a suitable
representation of this environment. In many practical applications, the required information is
provided by multiple sources, such as sensory data or expert knowledge. Additionally, informa-
tion fusion techniques [1] are usually needed to create a unified representation. One of the largest
research fields on this topic is mobile robotics [2], where the robot collects data using its sensors
and builds a spatial representation of its environment.

In the past decades, many different representation forms have been proposed and even more
approaches were developed to build these from scratch [3]. The algorithms have to evaluate
the data from different sources with respect to their uncertainty (e.g. sensor noise, conflicting

Email addresses: andreas.grimmer@jku.at (Andreas Grimmer), jclemens@informatik.uni-bremen.de
(Joachim Clemens), robert.wille@jku.at (Robert Wille)

Preprint submitted to International Journal of Approximate Reasoning May 2, 2017



information, and incomplete or missing knowledge) and, afterwards, derive the most accurate
representation from it, which is compatible with all provided information. Obviously, this is
a complex task, since practically relevant environment sizes reaches from tens to thousands of
meters and typical sensors provide a huge amount of data every second. Both lead to a large
combinatorial complexity. In order to make the computation feasible, most approaches use re-
strictive independence assumptions, such as conditional independencies of particular parts in the
environment. As a consequence, these algorithms cannot exploit the full potential of the data
(later, Section 3 illustrates and discusses this in more detail).

In this work1, we propose the exploitation of formal methods to address this issue.
Formal methods are well-known for their capabilities to efficiently traverse and prune large
search spaces. In particular, we exploit the deductive power of maximum satisfiability
solvers (MAX-SAT, [5, 6]) in order to consider dependencies among different parts of the
environment, which are dropped by standard approaches for the reasons discussed above. This
allows us to use expert knowledge about the environment to reduce the uncertainty in the derived
results and to infer the true state of the corresponding parts of the environment.

We apply the proposed methodology to occupancy grid maps [7], a popular spatial represen-
tation in robotics. In particular, we are using evidential grid maps [8], which are based on the
belief function theory [9] and are well suited for navigation tasks [10, 11]. Furthermore, they
explicitly represent different kinds of uncertainty [12], which provide additional information to
our methodology that is not present in probabilistic grid maps. We demonstrate how the pro-
posed methodology reduces the uncertainty by using expert knowledge about the environment.
In particular, we apply our approach in the context of evidential grid maps representing office en-
vironments. More precisely, a set of hand-crafted benchmarks containing basic room structures
as well as two real-world maps are used as benchmarks in our evaluations.

The reminder of this paper is structured as follows: In Section 2, we review the background
on evidential grid maps and information fusion using this kind of maps. In Section 3, the limita-
tions of the current approaches are discussed and a motivation for the proposed methodology is
provided. In Section 4, we present our general idea, while in Section 5, we describe the solution
in detail. In Section 6, the results of an empirical evaluation using small structures as well as
real-world datasets are presented and discussed. The paper concludes with a summary and an
outlook.

2. Background

This section reviews the background on occupancy grid maps in general and evidential grid
maps in particular. Afterwards, the corresponding fusion process is re-visited, which is applied
in order to generate a more precise grid map from the combination of data. Finally, we present
how we convert evidential grid maps into a categorical representation for using them as input for
the methodology proposed in this work. In order to ease the descriptions, we keep the considered
models as simple as possible.

2.1. Evidential Grid Maps
One particular and frequently used spatial environment representation are occupancy grid

maps [7], which distinguishes between empty and occupied areas in the environment.

1This work extends a previous conference paper [4].
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Definition 1. An occupancy grid map represents a spatial environment in terms of a discretized
grid, where each grid cell may either be empty (denoted by e) or occupied (denoted by o).

The information on whether a cell is empty or occupied is obtained from different sources,
e.g. gathered by sensors, prior knowledge, etc. Because these sources of information may be
afflicted with uncertainty (e.g. sensor noise, contradictory sensor measurements among different
sensors or over time, vague expert knowledge, or the simple non-availability of information), a
formalism to represent uncertain information in a given map is required. To this end, the state of
a cell is usually modeled probabilistically with a single occupancy probability distribution P(o).
Here, for example, P(o) = 0.3 represents that the corresponding cell in the grid may be occupied
with probability of 30%, what implies that it may be empty with probability of 70% (P(e) = 0.7),
since the probability theory requires that P(o) + P(e) = 1.

The proposed methodology, however, benefits from an explicit representation of different
dimensions of uncertainty, since e.g. the complete lack of information cannot explicitly be
expressed by probabilities. A uniform distribution (P(e) = 0.5 and P(o) = 0.5) could work,
but bears the risk of being misinterpreted with the fact that the cell is considered to be
empty/occupied with probability of 50% due to conflicting measurements. Therefore, the
belief function theory [9, 13], which is often considered as a generalization of the well-known
Bayesian probability theory, is used in this work. This theory allows us to assign belief mass not
only to the singletons of a hypotheses space (here e and o), but also to all subsets including {e, o}
and ∅. The belief mass is assigned using so-called mass functions, which are defined as follows.

Definition 2. Let Θ be the frame of discernment, i.e. the hypotheses space, and A ⊆ Θ a hypoth-
esis of Θ. Then, a mass function is a mapping m : P(Θ)→ [0, 1] assigning a mass value to each
hypothesis A of Θ such that2 ∑

A⊆Θ

m(A) = 1. (1)

In terms of an evidential grid map, the frame of discernment is defined as

Θ = {e, o} (2)

and a mass function indicating the state of a grid cell is defined as

m(A) ∈ [0, 1], ∀A ⊆ Θ, (3)

while satisfying Eq. (1).
The belief function theory allows for explicitly stating different dimensions of uncer-

tainty [12]. More precisely,

• certain information can be represented by assigning mass to e or o,

• a lack of information can be expressed by assigning mass to the disjunction {e, o} (i.e. Θ),
and

• conflicting information can be expressed by assigning mass to the empty set (i.e. ∅).

2Note that we are using unnormalized mass functions here, which allow m(∅) , 0.
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In contrast, the probability theory can express uncertainty only by the ratio between P(e)
and P(o). For example, a complete lack of information and conflicting information are both
mapped to a uniform distribution and are therefore indistinguishable as discussed above.

Example 1. Figure 1a shows an example of an evidential grid map m1 as it could have been
derived from sensory data. The four quadrats within a cell indicates the masses on e, o, Θ,
and ∅. As shown, the bottom left part is well observed with high mass assigned empty (e) and
occupied (o). However, a significant amount of uncertainty exists in the remainder of this map,
where high mass is assigned Θ, indicating a lack of information.

2.2. Information Fusion

In order to reduce the amount of uncertainty in the map and to build a complete representation
of the environment, information is usually gathered from more than one source. The information
sources can be from different types or from the same type and collected over time. This results
in several maps, which, eventually, have to be fused into a unified representation. This process is
called information fusion or, in the context of multiple sensors, multi-sensor fusion. A consistent
consideration of the uncertainty of the different maps is thereby required.

There are several works on information fusion to build evidential grid maps using different
types of sensors, including sonar [8, 14, 15], laser scanners [16, 17], and radar [18]. Besides
of robotics, evidential grid maps have also been created from sensory data in automotive appli-
cations [19, 20, 21, 22, 23]. However, the algorithms focus on the mapping problem only and
assume that the pose, i.e. the position and orientation of the robot gathering the data, is known.
Accordingly, they do not consider the full joint estimation problem of building an environment
map and simultaneously consider the respective localization. However, for example in robotics,
both issues frequently have to be solved at the same time. In other words, Simultaneous Local-
ization And Mapping (SLAM, [24]) is required.

In [25], an approach to model the SLAM problem in the belief function theory has been
proposed as a generalization of the successful FastSLAM algorithm [26, 27]. The approach was
further improved and applied to path planning and active exploration in [11]. In general, the
algorithm allows one to use different combination rules [9, 13, 28, 29, 30]. A comparison of
different rules in the context of evidential mapping can be found in [15, 17] and in the context
of evidential SLAM in [25]. However, the conjunctive rule of combination [13] is the only one
that yields mass on ∅ and, hence, allows for a representation of conflicting evidence.3 Because
of that, this rule is applied in the following consideration.

Definition 3. Let m1 and m2 be two mass functions defined over the same frame of discernment Θ

and induced by two distinct pieces of evidence. The combination (fusion) of these two mass
functions with the conjunctive rule of combination ∩© results in the mass function m1∩©2 = m1 ∩©m2
which is defined as

m1∩©2(A) =
∑

B∩C=A

m1(B)m2(C), ∀A ⊆ Θ. (4)

3There exist different interpretations on the meaning of the mass on ∅. Our interpretation is closely related to the
particular application and a detailed discussion on this topic can be found in [11, 12].
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For mass functions in the context of evidential grid maps that are defined over Θ = {e, o}, the
conjunctive rule of combination reduces to

m1∩©2(A) =


m1(A)m2(A) + m1(A)m2(Θ) + m1(Θ)m2(A), if A = {o}, {e},
m1(Θ)m2(Θ), if A = Θ,

1 −
∑

B∈P(Θ)\∅ m1∩©2(B), if A = ∅.

(5)

Example 2. In order to reduce the uncertainty of the map m1 from Figure 1a, further data has
been gathered, resulting in a second map m2 as shown in Figure 1b. Applying the conjunctive
rule of combination in Eq. (5) results in the fused representation m1∩©2 shown in Figure 1c.

Here, all cells with high mass on e or o in both input maps have high mass on the respective
set in the fused map as well (see e.g. cell (0, 4) or cell (3, 1)). But, beyond that, uncertainty is
reduced in all cells with high mass on Θ in only one of the input maps (see e.g. cell (0, 2) or
cell (4, 3)). In contrast, new conflicts arise when the input maps contain contradictory evidences.
This is the case e.g. for cell (4, 0) where m1({e}) = 0.9 and m2({o}) = 0.9, which is fused to
m1∩©2(∅) = 0.8 – representing another dimension of uncertainty.

2.3. Evidential Grid Maps with Categorical Mass Functions
The use of MAX-SAT solvers, as proposed in the next sections, requires the input to be

Boolean or pseudo-Boolean. For this reason, we are using categorical mass functions as input
for our methodology. Those are defined as follows.

Definition 4. Let Θ be the frame of discernment, i.e. the hypotheses space, and A ⊆ Θ a hypoth-
esis of Θ. Then, a categorical mass function is a mapping m : P(Θ) → {0, 1} assigning a mass
value to each hypothesis A of Θ such that∑

A⊆Θ

m(A) = 1. (6)

A categorical mass function in the context of evidential grid maps indicates the state of a grid
cell as

m(A) =

1, if A = B,
0, ∀A ⊆ Θ \ B,

B ⊆ Θ. (7)

In order to convert an evidential grid map consisting of non-categorical mass functions to an
evidential grid map that contains only categorical ones, the mass of each cell is assigned the set
with the highest value, i.e.

m(A) =

1, if A = B,
0, ∀A ⊆ Θ \ B,

B = arg max
C⊆Θ

m′(C), (8)

where m′ denotes the non-categorical mass function of a single cell and m is the resulting cate-
gorical mass function.

Example 3. To use the fused map m1∩©2 from Figure 1c as input for our methodology, the mass
functions of its cells are converted to categorical ones using Eq. (8). The resulting map is shown
in Figure 1d, where the symbols in the cells indicate that the mass value of the respective set is 1 –
implying that the mass on all other A ⊆ Θ is 0. For example, m1∩©2({e}) = 0.9 in cell (0, 4) results
in all mass assigned e, m1∩©2({o}) = 0.9 in cell (3, 1) results in all mass assigned o, m1∩©2(Θ) = 0.8
and m1∩©2(Θ) = 0.7 in cell (0, 2) and cell (4, 3), respectively, results in all mass assigned Θ, and,
finally, m1∩©2(∅) = 0.8 in cell (4, 0) results in all mass assigned ∅.
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Legend of a non-categorical cell
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(a) Initial map m1
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(b) Further map m2
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(c) Fused map m1∩©2
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(d) Categorical map of m1∩©2

Figure 1: Obtained information in terms of evidential grid maps.
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3. Motivation

Information fusion as reviewed in the previous section is an effective method to combine
different sources of information and to reduce the uncertainty of grid maps. However, the full
potential of the gathered data is not exploited by simply fusing the information to a combined
representation, since some areas may remain unexplored. Moreover, it may lead to additional
uncertainty when the combined mass functions conflict each other. In order to resolve these
conflicts and to further reduce the uncertainty of the maps, additional information in the form
of background and expert knowledge can be applied, which is often available for real-world
scenarios.

For example, in an office building, robots usually find a certain amount of empty space to
move on (i.e. sub-grids of cells with mass on e) that, in turn, is divided by walls (i.e. sub-grids of
cells with mass on o). This background and expert knowledge can be utilized to conclude that

• an uncertain cell which is surrounded by empty cells likely is empty as well or

• an uncertain cell within a “line” of occupied cells likely belongs to a wall and, hence, is
occupied as well.

Typical structures like those can be utilized in terms of further rules. By this, much more precise
maps with less uncertainty may result.

Example 4. Consider again the representation of the fused information m1∩©2 shown in Figure 1d.
Applying the information provided by the rules sketched above allows us to conclude that

• the unknown cell (1, 3) with mass on Θ is empty, because most of the neighboring cells (in
fact, all of them) are empty as well (i.e. have their mass on e),

• the unknown cell (2, 1) with mass on Θ is occupied, because it is in a line with occupied
cells (i.e. cells with mass on o), and

• the conflict in cell (4, 0) with mass on ∅ may be resolved in favor of map m2, since this cell
is in a line with occupied cells (i.e. cells with mass on o) and, hence, is very likely occupied
as well.

Various of such rules can be derived. However, their application may lead to contradictions,
e.g. when a rule implies that a cell has to be empty while another rule implies that it has to be
occupied. In fact, this might be the case for cell (2, 1) in Figure 1d. As discussed in Example 4,
this cell is assumed to be occupied due to the “wall”-rule described above. But besides that, also
the “empty subgrid”-rule (assuming this cell to be empty) might be applicable, since most of the
neighboring cells are empty. Because of this, different priorities are assumed for each rule. In
this work, we formalize this as follows.

Definition 5. Let R be the set of all rules, which can be applied to all cells in a given grid map.
For each rule r ∈ R, an additional weight wr is provided which represents the priority of rule r
against other rules r′ ∈ R \ {r}.

Based on these priorities, a subset R̂ ∈ P(R) of rule combinations is desired which does not
introduce new conflicts and maximizes the overall weight. More formally,

• for a given mass assignment m of a map, R̂ shall not lead to new mass on ∅ and
7



• all remaining subsets R′ ∈ P(R) \ R̂ that also do not introduce new conflicts have to have a
smaller or equal overall weight, i.e. wR′ ≤ wR̂ with wR =

∑
r∈R wr.

Following this optimization criteria, as much as possible further information is concluded while,
at the same time, new conflicts are avoided.

However, determining R̂ obviously is a computationally complex task: For each combination
of rules, all possible mass assignments to all grid cells have to be considered. Since a total of
|P(R)| = 2|R| combinations are possible, this results in an exponential complexity.

Furthermore, the combination of different sources is a complex task on its own, even without
considering additional rules. Each cell has a combinatorial complexity of |P(Θ)| = 2|Θ|, which
results in |P(Θ)|M = 2|Θ|M possible maps, where M is the number of cells. In order to handle this
complexity, all solutions proposed thus far apply significant restrictions, including pure grid map-
ping with known pose and probabilistic grid maps [7], the original FastSLAM algorithm [26], its
variants for building probabilistic grid maps [27, 31], and the Evidential FastSLAM algorithm
with belief function grid maps as considered here [11]. In particular, all these approaches apply
a so-called (conditional)4 independence assumption, which factorizes the joint distribution over
all grid cells into marginal cell distributions. More precisely,

mY (A) =

M∏
i=1

mYi (A), ∀A ⊆ Θ (9)

is applied, where mY is the mass function for the complete map Y and mYi is the mass function for
a single cell Yi. This allows one to update the cells independently of each other which reduces the
complexity from the high-dimensional space of all maps |P(Θ)|M to single cells M ·|P(Θ)|. On the
downside, however, it prevents one to express any dependencies among cells. As a consequence,
none of the rules sketched above would be applicable under this assumption.

In this work, we propose a methodology, which relaxes the independence assumption after
the initial fusion process and applies additional rules as sketched above to dissolve uncertainties
in the fused map. The application of rules, but also a propagation of information would not be
possible when each cell is considered independently. The following example demonstrates this.

Example 5. Consider the input map represented in Figure 2a, which allows to apply the “empty
subgrid”-rule only on cell (1, 1) because this cell has 6 or more neighbor cells also being empty.
This results in the intermediate result shown in Figure 2b. The obtained information now allows
to apply the “empty subgrid”-rule again, namely on cell (2, 2). This can similarly propagate to
cells (2, 1) and (3, 1), eventually yielding the map shown in Figure 2d. This example demonstrates
how the derived mass assignments can propagate and how these derived assignments can be used
for further application of rules.

Overall, considering all combination of rules is a computationally complex task, but it leads
to the best possible result based on the available information and rules.

4. General Idea

As discussed in the previous section, obtaining the best possible utilization of background
and expert knowledge (provided in terms of rules) for a fused map is a computationally complex

4For simplification, the conditional part is omitted here. See [11] for the full equations.
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Figure 2: Demonstration of rule propagations.

problem. For this purpose, all possible combinations of rules have to be considered. For a set of
rules R, this multiplies together to a search space of 2|R| different combinations to be explored,
i.e. an exponential complexity.

To cope with this complexity, we propose to exploit the deductive power of formal methods.
Their intelligent decision heuristics, powerful learning schemes, and fast implication methods
allow to efficiently traverse large search spaces. They have been proven to be very effective for
many practically relevant design problems such as equivalence checking [32], property check-
ing [33], or automatic test pattern generation [34]. Our thesis is that this deductive power can
also be utilized in order to determine the best solution from all the possible rule combinations.
To this end, we particularly utilize solvers for the weighted MAX-SAT problem [5, 6].

The weighted MAX-SAT problem is an extension of the Boolean satisfiability (SAT) problem.
Both problems are defined as follows:

Definition 6. The Boolean satisfiability problem determines an assignment to the variables of a
Boolean function Φ : {0, 1}n → {0, 1} such that Φ evaluates to 1 or proves that no such assign-
ment exists. The function Φ is thereby given in Conjunctive Normal Form (CNF). Each CNF is a
conjunction of clauses where each clause is a disjunction of literals and each literal is a proposi-
tional variable or its negation. A CNF is satisfied if all clauses are satisfied, a clause is satisfied
if at least one literal is satisfied, and a positive (negative) literal is satisfied if the corresponding
variable is set to 1 (0).

Definition 7. Let Ψ be a set of weighted clause pairs (ri,wi) with ri being an actual clause (i.e. a
disjunction of literals) and wi an associated weight. Then, the weighted MAX-SAT problem
determines an assignment such that the total weight of the satisfied clauses is maximized. These
clauses are so-called soft constraints. In addition to the soft constraints, it is possible to define
a set of clauses that are mandatory to be satisfied as in the pure satisfiability problem, so-called
hard constraints.

Example 6. Let Φ = (x1 + x2 + x3)(x1 + x3)(x2 + x3). Then, x1 = 1, x2 = 1, and x3 = 1 is a
satisfying assignment solving the SAT problem.

Accordingly, let Ψ = {(x1 + x2, 2), (x1, 4), (x1 + x2, 3)}. Then, x1 = 1 and x2 = 1 is a solution
to the MAX-SAT problem, maximizing the total weight to 7.

Note that the required representation, i.e. the CNF clauses, can easily be derived from any
Boolean function in linear time (see e.g. [35] and [36]). Hence, for sake of clarity we provide the
following formulations in general pseudo-Boolean algebra.
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5. Symbolic Representation

Instead of naively enumerating and checking all possible combinations, we are formulat-
ing the question what combination of rules leads to the best possible information in terms of a
MAX-SAT problem. Therefore, we first formulate a symbolic representation of the fused map
that then allows us to formulate the rules as constraints.

5.1. Symbolic Formulation of the Fused Map
The symbolic formulation has to represent all possible states of the fused map, i.e. all possible

mass assignments of the respective cells.

Definition 8. Consider a fused grid map mY of size w × h, where w is the width and h is the
height of the map. Then, all possible states of this map are symbolically represented by four-
valued variables cxy with 0 ≤ x ≤ w − 1 and 0 ≤ y ≤ h − 1, where

• cxy = e represents that the cell at (x, y) is assumed to be empty (i.e. mYxy ({e}) = 1),

• cxy = o represents that the cell at (x, y) is assumed to be occupied (i.e. mYxy ({o}) = 1),

• cxy = Θ represents that the state of the cell at (x, y) is unknown (i.e. mYxy (Θ) = 1), and

• cxy = ∅ represents that the state of the cell at (x, y) is conflicting (i.e. mYxy (∅) = 1).

Here, Yxy denotes the cell at position (x, y) and mYxy is the corresponding mass function.

Since this representation eventually has to be passed to a MAX-SAT solver, which accepts
Boolean input variables only, we apply a four-valued formulation: Each variable cxy is actually
represented by two Boolean variables c1

xy and c0
xy. All constraints proposed in the following are

formulated accordingly.
The resulting set of cxy-variables constitutes an initial MAX-SAT instance, which is entirely

composed of unbounded variables and represents all possible states of the considered map. Next,
this symbolic representation is restricted based on the available information. In fact, some as-
signments are already pre-defined by the fusion process. This is incorporated by employing the
hard constraints

cxy = e (10)

or
cxy = o (11)

for each cell (x, y) whose information is already certain (i.e. which has mass mYxy ({e}) = 1 or
mass mYxy ({o}) = 1, respectively). All other variables remain unrestricted for now. This results in
a MAX-SAT instance which symbolically represents all possible instances of the map left to be
considered.

Example 7. Consider again the map from Figure 1d. Applying the formulation from above
results in a symbolic representation as sketched in Figure 3a. A “?” denotes cells whose infor-
mation from the fusion process is considered to be uncertain.5 Certain information on these cells
are now supposed to be determined by the MAX-SAT solver based on further rules derived from
background and expert knowledge.

5Due to the artificial nature of the considered example (aimed for illustrating all issues in a simple fashion), the
amount of uncertainty is relatively small.
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Figure 3: Solutions obtained by the MAX-SAT solver.

5.2. Default Cell Assignments
Passing the MAX-SAT instance formulated above to a corresponding solving engine would

lead to an arbitrary assignment to the remaining cxy-variables representing the state of the cells
denoted by “?”. Since we are not interested in arbitrary assignments, we employ a rule in the
formulation that, by default, sets all cells to their respective uncertainty value. More precisely,
for each uncertain cell (x, y) the soft constraint (rde f ault

xy ,wde f ault) is added to the instance. The
added rule depends on the uncertainty value, i.e. it is

rde f ault
xy := cxy = Θ (12)

for cells with mYxy (Θ) = 1, and
rde f ault

xy := cxy = ∅ (13)

for cells with mYxy (∅) = 1. Note that these rules are not explicitly enforced, but realized as soft
constraints, which can but do not have to be enforced by the MAX-SAT solver during the search
process.

5.3. Incorporation of the Rules
Much more important are rules which are based on the background and expert knowledge,

e.g. the “empty subgrid”-rule as well as the “wall”-rule discussed in Section 3. The “empty
subgrid”-rule is formulated for an uncertain grid cell at position (x, y) as a soft constraint
(rempty

xy ,wempty) with

rempty
xy :=

 ∑
(x′,y′)∈NB(x,y)

cx′y′ = e

 ≥ 6 ∧

 ∑
(x′,y′)∈NB(x,y)

mYx′y′ ({e})

 ≥ 3 ∧ cxy = e, (14)

where the function NB(x, y) gives the set of all neighbor cells of the position (x, y). In order
that this rule evaluates to true and therefore is applied, the following three conditions have to
be satisfied: (1) at least six neighbors are assumed to be empty, (2) three neighbors have to be
fixed as empty by the fused grid map mY (this ensures that the application of the rule is based
on initial information provided by the fused map and not only on results of a propagation of rule
applications),6 and (3) the considered cell at position (x, y) has to be empty as well. The required

6Note that, if cell (x, y) is in a corner or an edge of the grid, the values 6 and 3 are adjusted accordingly.
11



number of neighbors which are assumed to be empty or have to be fixed as empty can be adjusted
depending on the considered maps. Note that applying this “empty subgrid”-rule on the cell at
position (x, y) disallows the solver to simultaneously apply one of the “default”-rules on this cell.

Analogously, the “wall”-rule is formulated for an uncertain grid cell at position (x, y) as a
soft constraint (rwall

xy ,w
wall) with

rwall
xy :=

{( x−1∑
x′=0

cx′y = o +

w−1∑
x′=x+1

cx′y = o
)

= w − 1 ∧
( x−1∑

x′=0

mYx′y ({o}) +

w−1∑
x′=x+1

mYx′y ({o})
)
≥ w · 0.7∨

( y−1∑
y′=0

cxy′ = o +

h−1∑
y′=y+1

cxy′ = o
)

= h − 1 ∧
( y−1∑

y′=0

mYxy′ ({o}) +

h−1∑
y′=y+1

mYxy′ ({o})
)
≥ h · 0.7

}
∧ cxy = o.

(15)

In order that this rule evaluates to true, either the row or the column in which the considered cell
is located, has to be completely assumed occupied and information of e.g. 70% of the cells have
to be provided by the initially given fused map (again in order to avoid an unwanted propagation
of rule applications). Additionally, the considered cell itself has to be occupied as well. The
respective amounts of cells can be adjusted depending on the considered map here as well. Note
that this rule depends on the grid size (i.e. the variables h and w), which is always known.

Although the information fusion process is based on multiple initial maps, it is possible that
the resulting fused map still contains areas which are completely unexplored, i.e. mYxy (Θ) = 1
for multiple neighboring positions (x, y). For cells in these areas, usually no information shall be
derived by rules. This implemented by the “unexplored”-rule (runexplored

xy ,wunexplored) with

runexplored
xy := mYxy (Θ) ∧

 ∑
(x′,y′)∈NB(x,y)

mYx′y′ (Θ)

 = 8 ∧ cxy = Θ (16)

This rule ensures that a cell with its initial mass assigned Θ and whose neighbor cells are as-
signed Θ as well is not changed. It is assigned a high weight wunexplored compared to the other
rules. Note that this rule explicitly distinguishes between uncertainty caused by missing infor-
mation and uncertainty caused by conflicting information. It is not reasonable to infer something
based on vacuous information in a region that was not observed so far. In contrast, a conflict
(i.e. mass on ∅) indicates that the robot has collected information about the corresponding region
already. Accordingly, the methodology should try its best do reduce this uncertainty by the use
of the other rules. Both cases are indistinguishable when a Bayesian grid map is used and, as a
consequence, it would not be possible to formulate the “unexplored”-rule.

All presented rules allow to handle a certain amount of erroneous data, since they do not
require that all cells satisfy a specific constraint. For example, the presented “empty subgrid”-
rule requires that only 6 of 8 neighbors of a cell are assigned empty in order to derive that this
cell is empty as well. In addition, all rules use multiple cells to derive a single cell, which makes
the rules robust to erroneous data.
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5.4. Determining the Best Combination of the Rules

Rules as introduced above as well as other ones derived from further background and expert
knowledge can be applied to each cell (x, y), which defines the total set of rules R, i.e.

R =

w−1⋃
x=0

h−1⋃
y=0

{(rde f ault
xy ,wde f ault), (rempty

xy ,wempty), (rwall
xy ,w

wall), (runexplored
xy ,wunexplored)}. (17)

This set R represents all soft-constraints, which have to be considered by the MAX-SAT solver.
But obviously not all of them can be enforced at the same time (as discussed several times above).
Therefore, the MAX-SAT solver is used to determine the activation of the rules for which the
sum of the weights is maximized and, therefore, represents the best combination of the rules.

Example 8. Consider again the map from Figure 1d and its symbolic representation sketched
in Figure 3a. Furthermore, it is assumed e.g. by an expert that the highest weight is assigned
the “unexplored”-rule, the second highest weight is assigned the “wall”-rule, and the third
highest weight is assigned the “empty grid”-rule. The “default”-rules have the lowest weight.
Employing the proposed formulations leads to an optimal satisfying solution from which the map
shown in Figure 3b can be derived. Here, all the uncertainties are removed. More precisely:

• Cell (1, 3) is assumed to be empty due to rule rempty
13 .

• For cell (2, 1), two rules can be applied, namely rwall
21 and rempty

21 . However, since the weight
of the “wall”-rule wwall is higher than the weight of the “empty grid”-rule wempty, this cell
is assumed to be occupied.

• Finally, the conflict in cell (4, 0) is resolved with rule rwall
40 , since the weight of the

“wall”-rule wwall is higher than the weight of the “default”-rule wde f ault.

Results like this are obtained in a significantly more efficient fashion by MAX-SAT solvers
than e.g. by simple enumeration.

6. Experimental Evaluation and Case Study

The proposed methodology has been implemented in Java resulting in a method for reasoning
and uncertainty reduction in evidential grid maps. To this end, the solver Z3 [37] has been
utilized, which provides a MAX-SAT implementation based on [38]. All experiments have been
conducted on a 3.8 GHz Intel Core i7 machine with 32GB of memory running 64-bit Ubuntu
16.04. In the following, we summarize our evaluation setup and the obtained results.

6.1. Evaluation Setup

This section provides the details of the evaluation setup, i.e. the considered benchmarks, the
selected rules, the used quality criteria, and the used baseline. Based on this setup, we evaluate
whether the proposed methodology is able to correctly reduce the uncertainty in evidential grid
maps and we compare the results with a baseline.
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Considered Benchmarks. As benchmarks, we consider hand-crafted benchmarks (Section 6.2)
containing basic room structures (e.g. maps composed of occupied and vacant spaces like walls
and floors) as well as two real-world maps (Section 6.3) generated by the Evidential FastSLAM
algorithm [11]. The hand-crafted benchmarks allow us to generate various wall elements and
to randomly add uncertainties into the maps. Thus, we can evaluate the proposed methodol-
ogy with respect to different structures and different degrees of uncertainty. The two real-world
maps demonstrate the usefulness of the proposed methodology for realistic and practical relevant
scenarios.

Selection of the Rules. The proposed methodology presented above describes four rules, which
are suitable for room structures with walls. However, it is not restricted to this kind of map and
can be extended with other and more advanced, map-specific rules. In fact, the used rules have to
be selected and developed depending on the given maps (i.e. their structures and their allocation
of the uncertainty). For example, if the maps also contain chairs and desks, specialized rules may
be useful, which ensure that chairs and desks always consist of exactly four legs.

For our evaluations, we generalized the above described “wall”-rule (see Eq. 15) in order to
also support (1) diagonal walls and (2) walls, which do not span the entire grid. This enhanced
rule allows to represent composite wall structures (e.g. rooms, wall projections, doors). It is also
configurable with respect to the wall length (i.e. the number of occupied cells which have to be
in a row/column or diagonal so that it is detected as a wall). This parameter depends on the
structure of the map and its resolution.

The weights of the rules control how “aggressively” they are applied compared to other rules.
Rules with high weights are more likely that they get applied. How to configure the weights
depends again on the given map and the used rules. In our evaluations, we experimentally con-
sidered different weights of the rules and, eventually, derived a good compromise. Additionally,
we exemplarily show how different weights change the results.

Quality Criteria. In order to evaluate the quality of the resulting maps, we use different criteria.
For defining these quality criteria, the following three maps are required:

• The fused map represents the input for the proposed methodology. The corresponding
mass function is denoted as mY in the following.

• The derived map represents the output after applying the proposed methodology. The
corresponding mass function is denoted as mD in the following.

• The ground truth map represents the reality, which is, of course, not known to the method-
ology. The corresponding mass function is denoted as mGT in the following.

Using these three map types, we can formally define the quality criteria. Therefore, we define
a cell at position (x, y) in the fused map to be uncertain, if the constraint

uncrtxy := {(mYxy (Θ) ∨ mYxy (∅)} ∧ {mGTxy ({o}) ∨ mGTxy ({e})} (18)

is satisfied. This constraint ensures that the value of the considered cell in the input map is
unknown (i.e. either Θ or ∅) and, additionally, ensures that the same cell in the ground truth map
is occupied or empty (i.e. it is actually part of the environment).

This allows us to define
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Table 1: The used confusion matrix.∑w−1
x=0

∑h−1
y=0 mDxy ({o}) mDxy ({e})

mGTxy ({o}) T P FN
mGTxy ({e}) FP T N

• the percentage of correctly derived cells, i.e.

CorD :=

∑w−1
x=0

∑h−1
y=0 uncrtxy ∧ {mDxy ({o}) ∧ mGTxy ({o}) ∨ mDxy ({e}) ∧ mGTxy ({e})}∑w−1

x=0
∑h−1

y=0 uncrtxy
, (19)

• the percentage of wrongly derived cells, i.e.

WroD :=

∑w−1
x=0

∑h−1
y=0 uncrtxy ∧ {mDxy ({o}) ∧ mGTxy ({e}) ∨ mDxy ({e}) ∧ mGTxy ({o})}∑w−1

x=0
∑h−1

y=0 uncrtxy
, (20)

• and the percentage of not derived cells, i.e.

NotD := 1 − (CorD + WroD). (21)

Using these quality criteria, it is possible to define the ratio between correctly and wrongly
derived cells (i.e. the accuracy) as

ACC :=
CorD

CorD + WroD
. (22)

The accuracy is the most important quality criterion for evaluating the proposed methodology as
it states how accurately the used rules derive information on the mass of cells. For example, an
accuracy of 100% denotes that the assignments of all derived cells are equal to the assignments
specified in the ground truth map (and, hence, are equal to the reality).

Moreover, we define a confusion matrix to further evaluate the performance. We use this
confusion matrix to evaluate if the proposed methodology confuses occupied and empty cell
assignments. The confusion matrix is defined as shown in Table 1, where the actual class is
represented by the ground truth map GT and the predicted class is represented by the derived
map D. Furthermore, “positive” is associated with occupied and “negative” with empty.

For example, true-positive (T P) specifies the percentage of uncertain cells, which are de-
rived as occupied and are occupied in the reality as well (specified by the ground truth map).
False-negative (FN) specifies the percentage of uncertain cells, which are derived as empty but
are occupied in reality. True-negative (T N) and false-positive (FP) are defined analogously.

Based on the values of the confusion matrix, we additionally provide

• the true positive rate (i.e. T PR := T P
T P+FN ) and

• the true negative rate (i.e. T NR := T N
FP+T N ).

Baseline. We implemented a filter in order to compare the obtained results with a baseline. This
filter tries to reduce uncertainties by summing up the occurrences of the different categorical
mass functions in the neighborhood of an uncertain cell. Then, the maximal occurred value is
assigned as the new value to the considered cell. It therefore uses all eight adjacent neighbor
cells to reduce the uncertainty of a cell.
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(a) 5% (b) 15% (c) 25%

Figure 4: Input maps with different levels of uncertainties.

6.2. Basic Structures

First, we evaluated the quality of the derived maps using hand-crafted benchmarks of basic
room structures such as doors, corners, and diagonal walls which have a size of 15 × 15. These
hand-crafted maps initially do not contain uncertainty (i.e. all cells are either occupied or empty).
Therefore, we randomly insert uncertain cells and uncertain areas (consisting of multiple adjacent
cells) by replacing fixed assigned cells. This allows us to evaluate the proposed methodology
with different amounts of uncertain cells. In order to simulate real measurements, grid cells next
to walls are more likely to have mass assigned ∅ than other grid cells because, in these areas,
real measurements are more likely to conflict each other due to sensor noise. Therefore, the
percentage of grid cells with mass on ∅ is higher than the percentage of grid cells with mass on
Θ. Furthermore, in order to minimize the statistical error of the randomly modified maps, we
conducted all experiments ten times and report the average values.

For each benchmark, we provide three different settings of uncertainties. In particular, the
amount of unknown and conflicting cells either is approx. 5%, 15%, or 25% of the total number
of cells. To illustrate the different levels of uncertainties, Figure 4 shows three sample input
maps. In these maps (and also all following maps), black cells denote mass on o, white cells
denote mass on e, red cells denote mass on ∅, and gray cells denote mass on Θ.

Table 2 shows the obtained results. In all configurations, the accuracy for the proposed
methodology as well as for the baseline is higher than 85%, which means that most of the derived
cells match the value of the ground truth map. Overall, we can summarize that the proposed
methodology and the baseline produce results of similar quality for the basic room structures.

6.3. Application to Real-World Maps

Finally, we evaluated the proposed methodology on two real-world maps. These two maps
are generated by Evidential FastSLAM [11] from data collected by wheel-driven robots, which
were equipped with laser scanners (180◦ field of view, 1◦ angular resolution) and were navigated
through indoor environments. Since the mass functions in the evidential maps estimated by
Evidential FastSLAM are not categorical, we convert them to categorical ones using Eq. (8)
before we use the maps as input for the proposed methodology.

As mentioned in Section 6.1, a generalized wall-rule, which is configurable with respect to
the required length of walls, is applied for this evaluation. In this setting, we tested different
configurations of the wall length and different weights for the rules. Table 3 and Table 4 shows
the results obtained using different configurations. In the following, the obtained results are
discussed in detail.
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Table 2: Results obtained for the basic structures.

Benchmark Input map Meth. Derived rates Confusion matrix Performance
o e Θ ∅ CorD WroD NotD ACC T P FP T N FN T PR T NR [sec] [MB]

17% 76% 1% 5% BL 84% 11% 6% 89% 26% 2% 63% 9% 74% 96% 0.001 46
BK 84% 4% 12% 95% 27% 0% 67% 6% 81% 100% 0.018 119

16% 72% 2% 11% BL 77% 7% 16% 91% 16% 1% 75% 8% 66% 99% 0.001 47
BK 87% 5% 9% 95% 18% 0% 77% 5% 78% 100% 0.031 160

13% 63% 7% 17% BL 69% 5% 26% 93% 12% 3% 81% 4% 74% 97% 0.001 46
BK 87% 2% 11% 97% 17% 0% 80% 3% 86% 100% 0.056 224

15% 80% 1% 5% BL 78% 14% 9% 85% 23% 3% 60% 14% 63% 95% 0.001 46
BK 67% 9% 24% 88% 6% 0% 80% 14% 31% 100% 0.017 122

14% 71% 4% 10% BL 77% 5% 18% 94% 9% 1% 84% 6% 62% 98% 0.001 46
BK 78% 4% 17% 95% 4% 0% 90% 6% 38% 100% 0.028 161

13% 64% 7% 16% BL 76% 4% 20% 95% 12% 2% 83% 3% 80% 98% 0.001 46
BK 79% 5% 17% 95% 3% 0% 92% 5% 33% 100% 0.045 218

23% 71% 0% 5% BL 81% 12% 8% 87% 30% 3% 58% 10% 76% 96% 0.001 46
BK 82% 5% 13% 94% 28% 0% 66% 5% 84% 100% 0.019 125

21% 64% 2% 13% BL 77% 10% 13% 88% 18% 4% 69% 9% 66% 95% 0.001 45
BK 79% 10% 11% 89% 19% 2% 69% 11% 65% 98% 0.030 155

19% 59% 5% 16% BL 61% 5% 34% 92% 11% 4% 81% 5% 71% 96% 0.001 46
BK 80% 6% 14% 93% 20% 2% 72% 6% 78% 98% 0.069 229

17% 78% 0% 4% BL 79% 8% 12% 90% 26% 1% 66% 7% 79% 98% 0.001 45
BK 76% 9% 15% 90% 19% 1% 72% 9% 68% 99% 0.022 130

14% 70% 4% 12% BL 79% 7% 14% 92% 17% 1% 75% 8% 69% 99% 0.001 47
BK 77% 11% 12% 88% 9% 0% 78% 12% 44% 100% 0.030 155

14% 64% 6% 16% BL 79% 3% 18% 96% 14% 1% 82% 4% 79% 99% 0.001 45
BK 84% 4% 12% 96% 10% 0% 86% 4% 71% 100% 0.040 186

26% 68% 1% 5% BL 79% 9% 13% 90% 41% 4% 50% 4% 91% 92% 0.001 47
BK 79% 8% 12% 91% 37% 0% 53% 10% 79% 100% 0.020 124

23% 62% 3% 12% BL 75% 3% 22% 96% 28% 2% 68% 3% 91% 98% 0.001 47
BK 86% 5% 9% 95% 26% 0% 69% 5% 83% 100% 0.033 160

20% 57% 5% 18% BL 63% 6% 31% 91% 20% 4% 71% 5% 79% 95% 0.002 46
BK 80% 8% 12% 91% 26% 3% 65% 6% 82% 95% 0.060 222

33% 61% 1% 6% BL 79% 7% 14% 92% 60% 3% 32% 5% 93% 91% 0.001 46
BK 83% 10% 7% 89% 57% 0% 32% 11% 84% 100% 0.021 126

30% 58% 2% 10% BL 79% 5% 16% 94% 34% 5% 60% 2% 95% 93% 0.001 46
BK 91% 4% 6% 96% 37% 0% 59% 4% 91% 100% 0.031 155

26% 49% 4% 21% BL 60% 5% 35% 92% 34% 7% 58% 2% 95% 90% 0.001 46
BK 84% 6% 11% 94% 39% 2% 55% 5% 88% 97% 0.057 197

14% 81% 1% 4% BL 83% 6% 11% 94% 28% 0% 65% 7% 81% 100% 0.001 46
BK 61% 9% 31% 88% 0% 0% 87% 13% 0% 100% 0.017 121

14% 73% 4% 10% BL 84% 7% 9% 92% 13% 1% 80% 7% 66% 99% 0.001 45
BK 75% 8% 17% 90% 0% 0% 90% 10% 0% 100% 0.033 162

12% 65% 10% 14% BL 78% 3% 19% 96% 15% 0% 82% 3% 81% 100% 0.002 46
BK 72% 7% 20% 91% 0% 0% 92% 8% 0% 100% 0.042 198

28% 64% 1% 7% BL 88% 5% 7% 94% 36% 2% 59% 3% 92% 96% 0.001 46
BK 91% 4% 5% 96% 34% 0% 60% 5% 86% 100% 0.020 122

26% 60% 2% 12% BL 80% 4% 16% 95% 34% 0% 61% 4% 89% 99% 0.001 46
BK 88% 5% 7% 95% 35% 0% 59% 5% 87% 99% 0.033 151

22% 52% 5% 21% BL 66% 7% 27% 91% 27% 5% 64% 4% 86% 93% 0.001 46
BK 90% 3% 7% 96% 37% 0% 60% 3% 93% 99% 0.052 193

BL: Baseline filter BK: Proposed methodology based on background knowledge
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Table 3: Results obtained for the office map.

Benchmark Derived rates Confusion matrix Performance
CorD WroD NotD ACC T P FP T N FN T PR T NR [sec] [MB]

Baseline 38% 21% 41% 64% 29% 6% 34% 30% 49% 85% 0.03 182

C1 a 40% 9% 52% 82% 76% 17% 6% 1% 99% 27% 9 249
C2 a 47% 14% 40% 77% 71% 22% 6% 0% 99% 21% 20 527
C3 a 48% 17% 35% 74% 69% 26% 6% 0% 100% 18% 26 783
C4 a 54% 23% 23% 70% 68% 30% 2% 0% 100% 7% 16 255
C5 a 65% 32% 4% 67% 66% 33% 1% 0% 100% 3% 18 264

C1 b 33% 7% 60% 83% 66% 8% 17% 9% 88% 66% 13 252
C2 b 45% 13% 42% 77% 67% 18% 10% 5% 93% 36% 26 532
C3 b 42% 15% 43% 73% 63% 22% 10% 5% 93% 30% 42 781
C4 b 55% 22% 22% 71% 65% 27% 6% 2% 96% 19% 24 251
C5 b 67% 30% 3% 70% 65% 30% 4% 1% 99% 13% 39 262

The office map contains 5% occupied cells, 90% empty cells, 1% unknown cells, and 4% conflicting cells.

Office-map. The office-map was generated by Evidential FastSLAM based on simulation data.
This has the advantage that the ground truth map is known. The robot in the simulation environ-
ment7 has similar properties as a real one in terms of sensor noise and its dynamics. The resulting
map consists of 188× 259 grid cells with a resolution of 5 cm per cell, where 1% of them remain
unknown and 4% of them remain in conflict after applying Eq. (8). Figure 5 shows the input-map
mY , the derived-map mD for configuration C5 a, the derived-map using the base line filter, and
the ground truth-map mGT . As above, occupied cells are shown in black, empty cells are shown
in white, conflicting cells are shown in red, and unknown cells are shown in gray. These figures
clearly show that the proposed methodology is capable to correctly reduce the uncertainty. The
“wall”-rule reduces uncertain cells along walls by correctly detecting them and by assigning the
mass of these cells occupied. Accordingly, the “empty grid”-rule correctly detects uncertain grid
cells surrounded by areas with mass assigned empty and in turn assigns the mass of these grid
cells to empty.

All results for the office-map are summarized in Table 3, which presents results for differently
weighted rules. In the configurations with suffix “ a”, we assigned the generalized “wall”-rule a
higher weight than the “empty subgrid”-rule. On the other hand, in the configurations with suffix
“ b”, we assigned the “empty subgrid”-rule a higher weight than the “wall”-rule. In addition,
we configured the generalized “wall”-rule differently and list the results in rows C1 to C5. More
precisely, we tested five different configurations in which we varied the number of occupied cells
needed in order to categorize a row or column as wall to be between 2% and 12% of the grid
width.

We can observe that the weights have an impact. Especially, the percentage of false-negative
cells (column FN) is impacted by the different weights, i.e. FN is much lower for the configura-
tions with suffix “ a”. This is an important criterion for path planning of an actual robot, because
every false-negative cell is falsely classified to be empty. As a result, the planned path would be
suboptimal, since once the robot detects that the cell is occupied, it has to re-plan and make a
detour to avoid a collision. Hence, the evaluations show that the configurations with suffix “ a”
are especially suited for path planning as FN is always less than 1%. With respect to the different
configurations of the “wall”-rule, we observe that the shorter the wall length, the lower the per-
centage of not derived cells (column NotD), because more walls are detected by the rule. For this

7We used GridmapNavSim from the Mobile Robot Programming Toolkit (see http://www.mrpt.org).
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(a) Input (b) Proposed methodology

(c) Baseline filter (d) Ground truth

Figure 5: Input map, map derived with the proposed methodology, map derived with the baseline filter, and ground truth
map for the Office-map.

office-map, a shorter wall length gives high numbers of correctly derived cells (column CorD),
but also increases the misclassified cells (column WroD).

Overall, the numerical summary in Table 3 confirms that the proposed methodology achieves
a high accuracy (between 67% and 83% depending on the configuration) and that a huge amount
of uncertain cells is correctly derived (between 33% and 67% in column CorD). Furthermore,
the results show that the proposed methodology outperforms the baseline filter in almost all
configurations and quality criteria. It is capable of correctly deriving up to 67% of the uncertain
cells, while the baseline filter correctly derives 38%. This confirms the effectiveness of the
applied rules and the proposed methodology.

Intel-map. The intel-map was generated by the Evidental FastSLAM algorithm based on the
popular community dataset of the Intel Research Lab provided by Dirk Hähnel8. It was recorded
in 44:51 minutes (according to the log file) using a Pioneer 2 robot equipped with a SICK LMS
laser range finder. The resulting map is even larger than the office-map and has a size of 569 × 567
grid cells with a resolution of 5 cm per cell. This map serves as input for the proposed methodol-

8Available online at http://www2.informatik.uni-freiburg.de/~stachnis/datasets.html
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Table 4: Results obtained for the Intel-map.

Benchmark Derived rates Confusion matrix Performance
CorD WroD NotD ACC T P FP T N FN T PR T NR [sec] [MB]

Baseline 15% 3% 82% 84% 13% 12% 70% 4% 76% 85% 0.1 627

C1 33% 4% 63% 89% 4% 2% 85% 9% 33% 97% 4616 2230
C2 34% 5% 61% 88% 7% 4% 81% 8% 46% 95% 5479 2217
C3 36% 5% 59% 88% 12% 5% 76% 7% 61% 94% 7340 2292
C4 39% 8% 53% 84% 17% 10% 67% 6% 72% 87% 10623 2253
C5 37% 7% 56% 85% 13% 8% 72% 7% 65% 90% 7542 2221

The Intel-map contains 5% occupied cells, 57% empty cells, 28% unknown cells, and 10% conflicting cells.

Figure 6: The input map for the Intel-map.

ogy (shown in Figure 6) and contains 28% unknown and 10% conflicting cells. Since no ground
truth map is available for this dataset, an estimation has manually been created.

Table 4 summarizes the results for five selected configurations. In these configurations, we
also vary the settings of the generalized “wall”-rule. For example, C1 uses 4% of the grid width
in order to detected a wall, where C5 uses much shorter walls (only 1% of the grid width). We
again observer that, in general, shorter wall lengths cause less not-derived cells (column NotD)
but increase the percentage of misclassified cells (column WroD).

When considering all five configurations, the methodology is able to correctly derive cells
(between 33% and 39% depending on the configuration), although this map contains a high per-
centage of uncertainty. It is noteworthy that the rules almost do not derive any wrong assignments
(i.e. WroD is less than 8% in all configurations), which results in high accuracies (between 84%
and 89% depending on the configuration). Comparing the results to the baseline, the proposed
methodology is capable of correctly deriving more than twice as much cells than the baseline
filter in all configurations.

Moreover, all these results have been determined in acceptable run-times (i.e. between a few
seconds and up to a few hours) and with a limited amount of memory consumption (between few
megabytes and up to approx. two gigabytes). Both, the run-times and the memory consumptions
depend on the size of the input map and the number of applied rules.
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Overall, the results show the efficiency of the proposed methodology, which is especially
powerful for real-world maps. Each of the selected configurations produces different results and,
which of the configuration is the “best”, depends on the underlying application and requirements.

7. Conclusion

In this work, we considered reasoning and uncertainty reduction. It has been discussed that
the full potential of the available information is usually not exploited by existing approaches,
since utilizing all background and expert knowledge eventually results in a computationally
complex task. In order to overcome these limitations, we proposed the exploitation of formal
methods. More precisely, we formalized background and expert knowledge about a particular
environment by the means of rules, which are used to reduce the uncertainty in evidential grid
maps after the fusion process and reason about the true state of the cells. Therefore, three rules
for the use in the context of office environments have been presented.

The proposed methodology was evaluated and compared with a baseline using different sce-
narios: We first considered hand-crafted benchmarks representing basic structures that can be
found in office environments. Then, we demonstrated the applicability to practically relevant
tasks by the use of two real-world maps. In all evaluations, our methodology was able to signif-
icantly reduce the uncertainty of the input maps. Moreover, we showed not only that it can be
applied to small examples, but also that it performs best on maps of a practically relevant size
and with a realistic uncertainty distribution.

Next steps are the formalization of further rules as already discussed in the paper. Further-
more, the application to other domains may require a completely new set of rules, which has
to be provided by domain experts. For example, in the context of autonomous driving [21, 23],
the knowledge about typical structures, like roads, rows of houses, or other cars can be encoded.
Another interesting application is the reduction of uncertainty in maps derived from aerial or
satellite images [39, 40, 41], which requires contextual information about man-made structures,
agricultures, forests, rivers, seas, or mountains.

Another promising future work is to extend the proposed methodology for the use with non-
categorical mass functions. This can either be implemented by a discretization of the mass values
or by extending the current methodology to choose the weights of the rules dependent on the real
mass. Both ideas are promising directions, but require an adaption of the rules. Furthermore, in
this work, we put the focus on unknown and conflicting cells in order to reduce the uncertainty
in the map. But, our methodology can also be extended to consider the expert knowledge as a
general information source and, accordingly, correct occupied and empty cells as well. Finally,
the proposed methodology is not limited to uncertainty reduction in the context of map-like data,
but can also be applied to more general tasks that involve uncertain information.
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