
Dedicated Synthesis for MZI-based
Optical Circuits based on AND-Inverter Graphs

Arighna Deb1 Robert Wille2,3 Rolf Drechsler3,4
1School of Electronics Engineering, KIIT University, Bhubaneswar, India
2Institute for Integrated Circuits, Johannes Kepler University Linz, Austria

3Cyber Physical Systems, DFKI GmbH, Bremen, Germany
4Institute of Computer Science, University of Bremen, Germany

arighna.deb@gmail.com robert.wille@jku.at drechsler@uni-bremen.de

Abstract—Optical circuits received significant interest as a
promising alternative to existing electronic systems. Because of
this, also the synthesis of optical circuits receives increasing atten-
tion. However, initial solutions for the synthesis of optical circuits
either rely on manual design or rather straight-forward mappings
from established data-structures such as BDDs, SoPs/ESoPs,
etc. to the corresponding optical netlist. These approaches hardly
utilize the full potential of the gate libraries available in this
domain. In this paper, we propose an alternative synthesis
solution based on AND-Inverter Graphs (AIGs) which is capable
of utilizing this potential. That is, a scheme is presented which
dedicatedly maps the given function representation to the desired
circuit in a one-to-one fashion – yielding significantly smaller
circuit sizes. Experimental evaluations confirm that the proposed
solution generates optical circuits with up to 97% less number
of gates as compared to existing synthesis approaches.

I. INTRODUCTION

Advances in silicon photonics made optical circuits a
promising alternative to conventional electronic circuits and
unlocked several promising applications for the future. While
e.g. optical technology has been considered as a potential
candidate for developing ultra-high speed and low power
interconnects [1], [2], corresponding solutions still suffered
from the fact that those optical interconnects require fre-
quent transformations of signals from the electronic domain
to signals from the optical domain and vice-versa. This is
a significant drawback, which can be avoided if the system
becomes a full-fledged optical system. Motivated by these
prospects, also commercial vendors started to get interested
in optical circuits [3], [4].

These developments also raised the question how to ef-
ficiently design the corresponding optical circuits. This led
to the emergence of several optical circuits realizing im-
portant arithmetic components such as adders, multiplexers,
etc. (e.g. see [5]–[9]). Besides that, also optical circuits
realizing functions such as Chirp-Z Transform, Travelling
Salesman Problem, etc. have recently been developed and
demonstrated [4], [10].

However, in order to efficiently realize more complex
functionality, these efforts need to be supported by automatic
methods for design automation. Design automation usually
starts with a logic level abstraction and, afterwards, moves
down to the physical layout, where the desired circuit is refined
with respect to the corresponding technological constraints.
As logic synthesis and optimization is the first step in such
a design flow, the automatic synthesis of optical circuits has
received significant attention recently.

In fact, automatic synthesis of optical logic circuits for
arbitrary Boolean functions was initially developed in works
such as [11]–[14] which rely on Binary Decision Dia-
grams (BDDs, [15]) – an efficient data structure for Boolean
function representation. Later, synthesis approaches relying on
other function representations such as Sum-of-Products (SoPs),
Exclusive-Sum-of-Products (ESoPs) [16], [17], AND-Inverter
graphs (AIGs) [18], or corresponding derivatives have been
proposed [19], [20]. However, they all followed a rather
naive mapping scheme from the respectively given function

description to the resulting optical circuit and, consequently,
lead to rather large circuits (Section III-A discusses these
related work in more detail later).

In this work, we propose an alternative synthesis ap-
proach which overcomes these drawbacks. In fact, relying on
AND-Inverter graphs, a dedicated scheme for mapping AIGs
to optical circuits is proposed which exploits the potential of
the available (optical) gate library and realizes corresponding
AIG nodes by a single gate (where previouisly proposed solu-
tions usually required more than one gate). Overall, this yields
substantial reductions in the number of gates the resulting
circuits are composed of.

Experimental evaluations confirm these benefits: Compared
to a broad variety of previously proposed solutions which
constitute the state-of-the-art in the synthesis of optical circuits
(namely BDD-, SoP-, ESoP-, OIG-, as well as the naive
AIG-based synthesis), we can observe reductions of up to 97%
(more precisely, reductions of 51%, 97%, 88%, 38% and 38%
are obtained, respectively).

The remainder of this work is structured as follows: Sec-
tion II reviews the basics on optical circuits, while Section III
discusses related work and introduces the general ideas of the
dedicated synthesis scheme proposed in this work. Afterwards,
details of the resulting synthesis approach are provided in
Section IV. Section V summarizes the obtained experimental
results before Section VI concludes the paper.

II. OPTICAL CIRCUITS

Optical circuits are usually realized by means of Mach-
Zehnder Interferometer (MZI) switches which are based on
Semiconductor Optical Amplifiers (SOAs). In the logic domain,
the resulting structure is abstracted to a so-called MZI gate.
Each MZI gate has two input ports and two output ports.
The inputs can either be sourced by light (representing the
binary “1”) or darkness (representing the binary “0”). Logi-
cally, an MZI gate is defined as follows [21], [22].

Definition 1: An MZI gate realizes a Boolean function
B2 → B2 composed of two optical inputs p and q as well as
two optical outputs f and g. The absence of any input signal
leads to the logic value 0 at the output f . The presence of input
signal p and the absence of input signal q leads to the logic
value 1 at the output g. In the presence of both input signals,
the outputs f and g produce 1 and 0, respectively. Therefore,
the functions

f = p ∧ q and g = p ∧ q′

are realized. Fig. 1(a) provides the graphical representation of
an MZI gate.

In addition, splitters and combiners are used as optical logic
elements in order to realize logic functions.

Definition 2: A splitter divides an optical signal into two
signals – each with only half of the incoming signal power. In
contrast, a combiner merges two optical signals into a single



MZI
p
q

f
g

(a) MZI gate (b) Splitter (c) Combiner

Fig. 1: Optical gates

MZI

MZI
x0

x1

MZI F
1

Fig. 2: Optical circuit

one and, by this, inherently realizes the OR-function. A splitter
(combiner) may have more than two outputs (inputs). Then, in
case of a splitter, the strength of the signal is divided by the
number of outputs. Fig. 1(b) and Fig. 1(c) provide the graphical
representation of both elements.

Together these logic elements form a gate library that
allows to realize any Boolean function.

Example 1: Fig. 2 shows an optical circuit realizing a
Boolean function F = (x0 ∧ x1) ∨ (x′

0 ∧ x′
1). The circuit is

composed of three MZI gates, two splitters, and one combiner
i.e. a total of six optical gates.

III. RELATED WORK AND MOTIVATION

In this section, we review and discuss related work on
the synthesis of MZI-based optical circuits. Afterwards, we
review AND-Inverter Graphs, which are employed in this work
to overcome the drawbacks of the current state-of-the-art.
Based on both, we illustrate the main ideas and prospects of
the proposed synthesis scheme. By this, this section serves
as motivation of the synthesis solution which, afterwards, is
described in detail in the next section.

A. Synthesis of MZI-based Optical Circuits
Synthesis is the task of generating a logic circuit netlist

which realizes a given (Boolean) function to be synthe-
sized based on the respectively considered gate library.
The typical input for synthesis approaches is a Boolean
function representation such as two-level representations
(i.e. Sum of Products (SoPs) and Exclusive Sum of Prod-
ucts (ESoPs)), Binary Decision Diagrams (BDDs) [15],
AND-Inverter Graphs (AIGs) [18], etc. The corresponding
function representation is then mapped to a netlist of gates
using the gate library available in the considered technology.

To this end, a one-to-one relation between the function
representation and the considered gate library is desired and
may allow for a cheaper circuit realization. For example, in
conventional technologies, a node of a BDD corresponds to a
MUX gate, while a node of an AIG directly corresponds to a
NAND gate. Since a NAND gate is significantly cheaper than
a MUX gate (which usually is realized by several elemen-
tary gates), NAND-based circuits are usually preferred over
MUX-based circuits. This makes AIGs, a preferred function
representation for conventional technologies.

Similar observations can be made for synthesis of optical
circuits. For example:

• BDD-based Synthesis (which has been considered
in [11]–[14]) utilizes the fact that each node of a

xi

f

fxi=0 fxi=1

MZI

MZI

MZI

xi
fxi=1

fxi=0

1

f

(a) BDD-based synthesis

x′
0x

′
1x2 ∨ x1x3x

′
4

MZI

MZI

MZI MZI

x1

x2

x0

x3 x4

(b) SoP-based synthesis

x′
0x

′
1x2 ⊕ x′

2x3

MZI

MZI

MZI MZI MZI

x2

x3

x1 x0

(c) ESoP-based synthesis

∧

x0 x1

f

MZI
x0
x1

MZI
1

f

(d) AIG-based synthesis

Fig. 3: Illustration of related work

BDD is mapped to an MZI sub-circuit realizing the
respective MUX-operation (as illustrated in Fig. 3(a)).
But since no direct mapping from a BDD node to
an elementary optical gate exists, several gates are
required to realize just a single node. This obviously
leads to optical circuits of high gate costs.

• Synthesis approaches based on SoPs or ESoPs
(e.g. similar to the ones proposed in [19]) are also
quite straightforward since each product term can be
realized by a cascade of MZI gates. In case of SoP
expressions, all such cascades of MZI gates realiz-
ing product terms are combined using a combiner.
Fig. 3(b) illustrates an example of an SoP expres-
sion and the corresponding realization in terms of an
optical circuit. For realizing ESoP expressions, the
exclusive disjunction (XOR) of products is realized
as (CiC

′
j) ∨ (C ′

iCj), where, Ci and Cj represent
product terms of an ESoP. An ESoP expression and its
realization in terms of an optical circuit are illustrated
in Fig. 3(c). However, also these approaches generate
optical circuits with a very large number of gates.

• Finally, approaches proposed e.g. in [20] rely on
AIGs as well as a corresponding derivative called
OR-Inverter Graphs (OIGs). AIGs (OIGs) are func-
tion representations which employ two-input AND
(OR) nodes along with regular and complemented
edges. This allows for a one-to-one mapping from
AIGs (OIGs) to optical circuits as each AND (OR)
node is realized by an MZI gate (a combiner) and
each complement edge (i.e. inversion) is realized by
an MZI gate. Fig. 3(d) shows an AIG node and its
corresponding optical circuit realization. However, al-
though AIG/OIG-based synthesis is indeed promising
since many nodes can directly be realized by a single
MZI gate/combiner, each negation (usually a simple
operation) requires a full MZI gate.

Overall, the existing state-of-the-art tries to follow the
established synthesis schemes from conventional synthesis
and maps the given function representation to corresponding
circuit structures. But all function representations considered
thus far (namely, BDDs, SoPs, ESoPs, AIGs, or OIGs) lead



∧

∧

∧ ∧

∧

∧ ∧

F

x0 x2 x1 x3

level 1

level 2

level 3

Fig. 4: AND-Inverter graph for function F

to rather large circuit costs since they either do not allow
for a one-to-one mapping of nodes/products to elementary
gates (in case of BDDs, SoPs, and ESoPs) or realize trivial
sub-functionality such as negations/inverters by full-fledged
gates (in case of AIGs and OIGs). Motivated by this, we are
considering a dedicated synthesis of MZI-based optical circuits
whose general idea is introduced in the following. As this idea
relies on AND-Inverter Graphs (AIGs), we are reviewing the
basic concepts of AIGs before.

B. AND-Inverter Graphs

An AND-Inverter Graph (AIG) is a directed acyclic graph
denoted as G = (V,E) where V represents a set of vertices or
nodes and E indicates a set of directed edges interconnecting
the nodes. A node of any AIG either corresponds to a primary
input, a primary output (terminal), or a Boolean AND oper-
ation. Edges in AIGs can either be regular or complemented
leading to the actual functionality or the negated functionality,
respectively. More formally, an AIG is defined as follows:

Definition 3: An AND-Inverter graph (AIG) over the pri-
mary input variables X = {x1, x2, · · · , xn} and with the
primary output variables Y = {y1, y2, · · · , ym} is a directed
acyclic graph G = (V (= {VX ∪ Vg ∪ VY }), E) with the
following properties:

• Each primary input (PI) node v ∈ VX is labeled by
xi ∈ X and has no incoming edges.

• Each primary output (PO) node v ∈ VY is a terminal
labeled by yj ∈ Y and has no outgoing edges.

• Each non-terminal node v ∈ Vg represents a Boolean
conjunction (AND) of the functions represented by the
two incoming edges.

• An edge e ∈ E connecting a source node u ∈ V to a
target node v ∈ V is either a regular or a complement
edge i.e. e = {(u, (v × p))|u, v ∈ V, u 6∈ VY , v 6∈ VX}
with p denoting whether the edge is a regular edge
(p = 1) or a complement edge (p = 0).

The size of an AIG is measured in terms of the total number
of AND nodes.

Example 2: Consider the function F = (x0 ∧ x1 ∧ x2 ∧
x3)∨(x0∧x′

1∧x2∧x′
3)∨(x′

0∧x1∧x′
2∧x3)∨(x′

0∧x′
1∧x′

2∧x′
3).

Using DeMorgan’s theorem, the function can be written as
F = ((x0 ∧ x2)

′ ∧ (x′
0 ∧ x′

2)
′)′ ∨ ((x1 ∧ x3)

′ ∧ (x′
1 ∧ x′

3)
′)′.

The corresponding AIG is shown in Fig. 4, in which an edge
with a solid dot denotes a complement edge.

C. Dedicated AIG-based Synthesis

As discussed above, AIGs have been utilized before in
order to realize an optical circuit for a given function to be
synthesized. However, here a rather simple scheme has been
considered in which AND nodes and complement edges are
naively mapped to explicit MZI gates. In fact, the MZI gate as
reviewed in Section II realizes two functions at once, namely

∧

f

x0 x1

MZI

MZI

1
x0

x1
f

∧

f

x0 x1

MZI

MZI

MZI

1
x0

1
x1

f

(a) Naive approach

∧

f

x0 x1

MZI
x1
x0 f

∧

f

x0 x1

x0

x1

MZI
1

f

(b) Proposed approach

Fig. 5: Naive vs. proposed approach

f = p ∧ q and g = p ∧ q′. But the naive AIG-based method
utilizes the first output only to realize the main building block
of the AIG (the AND node) and the second output only to
realize the negation caused by complement edges (additionally
setting p = 1 and, hence, yielding g = 1 ∧ q′ = q′, i.e. the
negation of an input). As complement edges frequently occur
in AIGs, this frequently causes several MZI gates to realize a
single AIG node (one for the AND and others for the negation)
as illustrated in Fig. 5(a).

In this work, we try to avoid this overhead by exploiting
the potential of a single MZI gate. We propose a dedicated
AIG-based synthesis method which realizes both, the AND
node and possible complement edges at once. This is indeed
possible, because

• cases in which no complemented input occurs can be
realized using the first output f of an MZI gate,

• cases in which a single complemented input occurs
can be realized using the second output g of an MZI
gate as illustrated in Fig. 5(b) (here, we only have to
make sure that the complement input is connected to
the MZI-input q; eventually yielding the conjunction
of one input with the inverse of the other input), and

• cases in which both inputs are complemented can be
transformed using DeMorgan rules (here, the AND
with negative inputs can be transformed to an OR
without negative inputs; this can eventually be realized
by a combiner and a single MZI gate as illustrated in
Fig. 5(b)).

That is, following these ideas almost all AIG nodes (no matter
whether they depend on regular or complemented inputs) can
be realized by a single MZI gate only. Overall, this leads to a
more dedicated AIG-based synthesis scheme which allows for
a significant reduction in the number of gates.



IV. RESULTING SYNTHESIS SCHEME

Based on the discussions in Section III, we propose a
synthesis flow for the efficient realization of optical circuits,
which involves two major steps: (1) the generation of an AIG
and (2) the mapping of an AIG to an optical circuit. Since
an AIG can be generated using existing methods employed
in tools such as ABC [23], we primarily focus on how to
efficiently map AIGs to optical circuits composed of MZI
gates, combiners, and splitters.

Given an AIG, G = (V (= VX ∪Vg ∪VY ), E) representing
the function f to be synthesized, an optical circuit can be
derived by traversing the graph and substituting each AND
node v ∈ Vg with a corresponding sub-circuit. To this end, we
consider all the possible functional behaviours of AND nodes
which may occur in an AIG and for which a corresponding
sub-circuit is required. More precisely, the following node
configurations are considered:

1) An AND node v ∈ Vg with two regular incoming
edges fi and fj representing the function f = fi∧fj :
In this case, an MZI gate is added to the circuit in
which fi is applied to input port p and fj is applied
to input port q. The output is obtained from output
port f of the corresponding MZI. This is shown in
Fig. 6(a).

2) An AND node v ∈ Vg with either a regular incoming
edge fi and a complement incoming edge f ′

j or vice-
versa representing either function f = fi ∧ f ′

j or
f = f ′

i ∧fj : In this case, an MZI gate is added to the
circuit where fi (fj) is applied to input port p and fj
(fi) is applied to input port q. The output is obtained
from output port g which realizes the function fi∧f ′

j

(f ′
i ∧ fj). This is shown in Fig. 6(b).

3) An AND node v ∈ Vg with a complement outgoing
edge realizing primary output function f ′ (terminal
case): This case is realized by an MZI-NOT gate,
i.e. an MZI gate with a fix input and using the output
port which negates the initial value of the other input
as shown in Fig. 6(c).

4) An AND node v ∈ Vg realizing a primary output
f with both incoming edges fi and fj are comple-
mented i.e. f = f ′

i ∧ f ′
j : This is realized by a sub-

circuit composed of a combiner and an MZI-NOT
gate as shown in Fig. 6(d).

Note that the AND node with two complement incoming
edges shown in Fig. 6(d) is realized as a functionally equivalent
OR node based on DeMorgan’s theorem. That is, the function
f = f ′

i ∧f ′
j is realized as f = (fi∨fj)′ using a combiner and

an MZI-NOT gate. Treating such AND nodes as functionally
equivalent OR nodes inverts the polarities of the outgoing
edges of the corresponding nodes as depicted in Fig. 7. The
MZI-NOT gate is appended after the combiner only in case,
a primary output node is connected through a complement
edge to the AND node having two complement incoming
edges. Otherwise, only a combiner is used to realize the AND
node with two complement incoming edges as its successor
nodes can be treated as normal AND node configurations as
mentioned above.

Moreover, the node configurations shown in Figs. 6(a)
and 6(b) can be realized using a single MZI gate if two nodes
form a pair. Two AND nodes can be considered as pair if they
satisfy the following definition.

Definition 4: Two AND nodes realizing either functions
(fi ∧ fj) and (f ′

i ∧fj) or (fi∧fj) and (fi∧f ′
j) can be treated

as a pair of nodes if both nodes are connected to the same
predecessor nodes.

Fig. 8 depicts the case described in Definition 4 and the
corresponding mapping to an MZI gate. The upper part of

∧

f

fi fj

MZI
fi

fj
f = fi ∧ fj

(a) W/ two regular incoming edges

∧

f = f ′
i ∧ fj

fj fi

MZI
fj
fi f = f ′

i ∧ fj

∧

f = fi ∧ f ′
j

fi fj

MZI
fi

fj f = fi ∧ f ′
j

(b) W/ regular and complemented incoming edge

∧

f

MZI
1

f f ′

(c) Terminal case

∧

f = f ′
i ∧ f ′

j

fj fj

fi

fj

MZI
1

f = (fi ∨ fj)
′

(d) W/ both complement edges

Fig. 6: AIG nodes and corresponding optical circuit

∧

fi fj

∨

fi fj

Fig. 7: Nodes with functional equivalence

∧ ∧

fi ∧ fj f ′
i ∧ fj

fi fj

MZIfi f ′
i ∧ fj

fj fi ∧ fj

∧ ∧

fi ∧ fj fi ∧ f ′
j

fi fj

MZIfj fi ∧ f ′
j

fi fi ∧ fj

Fig. 8: Mapping pair of nodes to an MZI gate



x3

x1

x2

x0

MZI

MZI

MZI

MZI

MZI
1

F

level 1 level 2 level 3

Fig. 9: Mapping the AIG from Fig. 4 to an optical circuit

Fig. 8 shows that by applying fj to input port p and fi to input
port q of an MZI gate. The two functions (fi∧fj), (f ′

i∧fj) are
respectively obtained from the output ports f and g of the MZI
gate. This indicates, a single MZI gate is sufficient to realize a
pair of AND nodes of the form (fi ∧ fj), (f ′

i ∧ fj). Similarly,
to realize a pair of AND nodes of the form (fi∧fj), (fi∧f ′

j),
the respective inputs fi and fj are applied to input ports p
and q of the MZI gate as shown at the lower part of Fig. 8.

Overall, this yields a synthesis flow which works as fol-
lows:

1) Generate an AIG G = (V,E) representing the func-
tion F to be synthesized.

2) Traverse G in a breadth-first manner.
3) For each node, apply the corresponding sub-circuit as

shown in Fig. 6.
4) For nodes having multiple outgoing edges, add split-

ters at the output of the corresponding gate realizing
the node.

5) Connect the inputs of the sub-circuits appropriately
to the outputs of the sub-circuits depending on the
successor-predecessor relationship among the nodes
of G.

Example 3: Consider the AIG representing the function F
as depicted in Fig. 4. The mapping begins with traversing the
AIG in a breadth-first manner and applying the substitutions
shown in Figs. 6 and 8 to each node of the AIG. For level 1,
the resulting optical gates are shown on the left-hand side of
Fig. 9. In the next step, the AND nodes at level 2 are mapped
to corresponding gates shown in the middle of Fig. 9. Each
AND node at level 2 is connected to an AND node of level 1
which is realized using a combiner. This realizes the AND
nodes at level 2 as discussed before by means of Fig. 6(b).
In a similar fashion, the AND node at level 3 is handled –
leading to the gates shown on the right-hand side of Fig. 9
and, hence, the overall circuit realizing F .

Overall, the proposed scheme yields circuits with a sig-
nificantly less number of gates than the previously proposed
AIG-based method in which AND nodes and complement
edges are naively mapped to explicit MZI gates. In fact, the
proposed dedicated AIG-based scheme eventually realizes a
direct mapping of an AIG node to a single gate in almost all
cases and, by this, also outperforms the other solutions pro-
posed in the past (and reviewed in Section III-A). Experimental
results which are summarized in the next section confirm these
improvements.

V. EXPERIMENTAL RESULTS
In this section, we present the experimental results obtained

by the proposed AIG-based synthesis for optical circuits and
compared them to the state-of-the art solutions reviewed in
Section III-A. To this end, the synthesis flow described in
Section IV has been implemented in C++. First, an AIG of the
function to be synthesized is created using the tool ABC [23].

Then, the mapping method as described above is applied
which reads the generated AIG description and generates a
netlist of optical gates. The previously proposed methods
based on BDDs, SoPs, ESoPs, OIG, as well as the naive
AIG-based method have been re-implemented as described
in the corresponding related work [12], [19], [20]. As test
cases, several benchmarks from the MCNC suite have been
considered which have also been used in these related works.
All experiments have been carried out on a Linux machine
with a 2.8 GHz Intel Core i7 processor and 8 GB memory.
All circuits have been obtained in negligible run-time (i.e. not
more than one CPU minute) which is why a detailed run-time
discussion has been omitted in the following.

Table I summarizes the obtained results. The first column
provides the details of the considered benchmarks i.e. their
names as well as the number of primary inputs (PI) and
primary outputs (PO). The second column lists the total
number of gates (Gate count) for the resulting circuits obtained
by the SoP-, ESoP-, BDD-, OIG-, (existing) naive AIG-, and
(newly proposed) dedicated AIG-based synthesis approaches.
The final columns report the percentage reduction in number
of optical gates compared to the existing synthesis approaches.

Recall that the previously proposed solutions based on
BDDs, SoPs, ESoPs, as well as the naive AIG/OIG mapping
scheme lead to rather large circuits, since they either do not
allow for a one-to-one mapping of nodes/products to gates (in
case of BDDs, SoPs, and ESoPs) or realize rather trivial sub-
functionality such as inversions/inverters by fully-fledged gates
(in case of AIGs and OIGs). The dedicated AIG-based method
proposed in this work overcomes this drawback. This is also
confirmed by the obtained results: On average, the proposed
dedicated AIG-based methods generates optical circuits with
97%, 88%, 51%, 38% and 38% less number of MZI gates than
the previous SoP-based, ESoP-based, BDD-based, OIG-based
and AIG-based approaches, respectively.

VI. CONCLUSION

In this work, we presented an alternative synthesis solution
which overcomes the drawbacks of the state-of-the-art in the
synthesis of MZI-based optical circuits. Relying on AND-
Inverter graphs (AIGs), the proposed approach introduces a
dedicated scheme for mapping AIGs to optical circuits which
utilizes the expressive power of the available (optical) gate
library. In contrast to previously proposed solutions which
required more than one gate to realize a single node with
complement edges, the proposed scheme realizes an AIG node
with complement edges by a single gate only. As a result,
substantial reductions in the number of gates is achieved.
Experimental results confirmed the benefits of the proposed
approach compared to the state-of-the-art.

ACKNOWLEDGMENTS

This work has been supported by the Austrian Agency for
International Cooperation in Education and Research (OeAD)
within a project under grant no. IN 08/2017.

REFERENCES

[1] M. Mohamed, Z. Li, X. Chen, L. Shang, and A. R. Mickelson,
“Reliability-Aware Design Flow for Silicon Photonics On-Chip Inter-
connect,” IEEE Trans. on Very Large Scale Integration (VLSI) Systems,
vol. 22, no. 8, pp. 1763–1776, 2014.

[2] T. Sato, K. Takeda, A. Shinya, M. Notomi, K. Hasebe, T. Kakitsuka,
and S. Matsuo, “Photonic Crystal Lasers for Chip-to-Chip and On-Chip
Optical Interconnects,” IEEE Journal of Selected Topics in Quantum
Electronics, vol. 21, no. 6, pp. 728–737, 2015.

[3] Optalysys– revolutionary optical processing technology,
www.optalysys.com.

[4] R. Courtland, “The Ising on the Computer Chip,” IEEE Spectrum,
vol. 54, no. 1, 2017.



TABLE I: Optical circuit synthesis results

Benchmark Gate count % Reduction in gate count
Name PI/PO SoP ESoP BDD OIG naive

AIG
dedicated

AIG SoP ESoP BDD OIG naive
AIG

apex5 117/88 6071 11709 5393 1769 1663 1066 82.4% 90.9% 80.2% 39.7% 35.9%
mish 94/43 126 446 444 218 162 141 -11.9% 68.4% 68.2% 35.3% 13.0%
soar 83/94 3025 5175 3178 1609 1556 724 76.1% 86.0% 77.2% 55.0% 53.5%
x2dn 82/56 449 792 884 385 387 264 41.2% 66.7% 70.1% 31.4% 31.8%
x7dn 66/15 4479 7499 2291 831 844 489 89.1% 93.5% 78.7% 41.2% 42.1%
ti 47/72 2248 6730 3243 1825 1775 1100 51.1% 83.7% 66.1% 39.7% 38.0%
apex1 45/45 1784 7047 4910 3957 3957 2426 -36.0% 65.6% 50.6% 38.7% 38.7%
xparc 41/73 11252 45306 7555 6087 6038 3848 65.8% 91.5% 49.1% 36.8% 36.3%
seq 41/35 16438 23526 5927 3611 3581 2137 87.0% 90.9% 63.9% 40.8% 40.3%
0410184 14/14 229376 2200 304 239 238 156 99.9% 92.9% 48.7% 34.7% 34.5%
4mod5 4/1 18 24 15 18 17 12 33.3% 50.0% 20.0% 33.3% 29.4%
4mod7 4/3 52 68 54 47 48 22 57.7% 67.6% 59.3% 53.2% 54.2%
5xp1 7/10 237 361 125 218 217 123 48.1% 65.9% 1.6% 43.6% 43.3%
add6 12/7 1860 1597 239 108 111 75 96.0% 95.3% 68.6% 30.6% 32.4%
adr4 8/5 278 333 78 68 69 47 83.1% 85.9% 39.7% 30.9% 31.9%
alu 5/1 71 27 25 22 22 13 81.7% 51.9% 48.0% 40.9% 40.9%
alu1 12/8 41 101 58 69 70 49 -19.5% 51.5% 15.5% 29.0% 30.0%
alu2 10/6 1760 752 776 844 843 508 71.1% 32.4% 34.5% 39.8% 39.7%
alu3 10/8 232 524 331 153 153 97 58.2% 81.5% 70.7% 36.6% 36.6%
alu4 14/8 6869 6086 2713 2258 2264 1337 80.5% 78.0% 50.7% 40.8% 40.9%
apex2 39/3 13499 41093 1861 619 626 369 97.3% 99.1% 80.2% 40.4% 41.1%
bw 5/28 242 1408 554 296 301 203 16.1% 85.6% 63.4% 31.4% 32.6%
cordic 23/2 17188 18364 174 127 134 91 99.5% 99.5% 47.7% 28.3% 32.1%
e64 65/65 2144 2522 442 1011 928 915 57.3% 63.7% -107.0% 9.5% 1.4%
ex5p 8/63 2105 4339 724 987 988 709 66.3% 83.7% 2.1% 28.2% 28.2%
ham15 15/15 491520 601 304 400 415 249 99.9% 58.6% 18.1% 37.8% 40.0%
ham3 3/3 24 36 23 30 31 17 29.2% 52.8% 26.1% 43.3% 45.2%
hwb4 4/4 64 92 75 64 68 36 43.8% 60.9% 52.0% 43.8% 47.1%
hwb5 5/5 160 278 144 166 171 97 39.4% 65.1% 32.6% 41.6% 43.3%
hwb6 6/6 384 647 271 388 394 243 36.7% 62.4% 10.3% 37.4% 38.3%
hwb8 8/8 2048 4087 747 1742 1750 1032 49.6% 74.7% -38.2% 40.8% 41.0%
mod5d2 5/5 161 70 43 51 47 28 82.6% 60.0% 34.9% 45.1% 40.4%
One-two-three 3/3 19 49 29 24 25 16 15.8% 67.3% 44.8% 33.3% 36.0%
pdc 16/40 33056 6644 1919 1693 1660 1052 96.8% 84.2% 45.2% 37.9% 36.6%
plus127mod8192 13/13 106497 220 106 257 265 167 99.8% 24.1% -57.5% 35.0% 37.0%
plus63mod4096 12/12 49153 206 98 219 226 135 99.7% 34.5% -37.8% 38.4% 40.3%
plus63mod8192 13/13 106497 227 107 240 250 173 99.8% 23.8% -61.7% 27.9% 30.8%
rd53 5/3 120 118 82 102 105 50 58.3% 57.6% 39.0% 51.0% 52.4%
rd73 7/3 709 409 135 247 248 144 79.7% 64.8% -6.7% 41.7% 41.9%
rd84 8/4 1944 577 181 358 358 218 88.8% 62.2% -20.4% 39.1% 39.1%
spla 16/46 34984 6890 1816 1673 1631 1175 96.6% 82.9% 35.3% 29.8% 28.0%
urf1 9/9 4608 9279 3233 4293 4302 2589 43.8% 72.1% 19.9% 39.7% 39.8%
urf2 8/8 2048 3723 1802 1978 1986 1196 41.6% 67.9% 33.6% 39.5% 39.8%
urf5 9/9 4608 1851 1595 1946 1954 1175 74.5% 36.5% 26.3% 39.6% 39.9%

All results have been obtained in negligible run-time i.e. just a few CPU seconds.

[5] A. K. Cherri and A. S. Al-Zayed, “Circuit Designs of Ultra-fast All-
Optical Modified Signed-Digit Adders using Semiconductor Optical
Amplifier and Mach-Zehnder Interferometer,” Optik - International
Journal for Light and Electron Optics, vol. 121, no. 17, pp. 1577 –
1585, 2010.

[6] K. Datta, T. Chattopadhyay, and I. Sengupta, “All Optical Design of
Binary Adders using Semiconductor Optical Amplifier Assisted Mach-
Zehnder Interferometer,” Microelectronics Journal, vol. 46, no. 9, pp.
839–847, 2015.

[7] K. Datta and I. Sengupta, “All Optical Reversible Multiplexer Design
using Mach-Zehnder Interferometer,” in International Conference on
VLSI Design, 2014, pp. 539–544.

[8] Y. Aikawa, S. Shimizu, and H. Uenohara, “Demonstration of All-
Optical Divider Circuit Using SOA-MZI-Type XOR Gate and Feedback
Loop for Forward Error Detection,” Journal of Lightwave Technology,
vol. 29, no. 15, pp. 2259–2266, 2011.

[9] T. Chattopadhyay and D. K. Gayen, “All-optical 2’s complement num-
ber conversion scheme without binary addition,” IET Optoelectronics,
vol. 11, no. 1, pp. 1–7, 2017.

[10] N. Q. Ngo, “Optical Chirp Z-Transform Processor: Design and Applica-
tion,” Journal of Lightwave Technology, vol. 33, no. 11, pp. 2213–2221,
2015.

[11] C. Condrat, P. Kalla, and S. Blair, “Logic Synthesis for Integrated
Optics,” in Great lakes symposium on VLSI. ACM, 2011, pp. 13–
18.

[12] E. Schönborn, K. Datta, R. Wille, I. Sengupta, H. Rahaman, and
R. Drechsler, “BDD-Based Synthesis for All-Optical Mach-Zehnder
Interferometer Circuits,” in International Conference on VLSI Design,
2015, pp. 435–440.

[13] R. Wille, O. Keszocze, C. Hopfmuller, and R. Drechsler, “Reverse
BDD-based Synthesis for Splitter-free Optical Circuits,” in Asia and
South Pacific Design Automation Conference, 2015, pp. 172–177.

[14] A. Deb, R. Wille, O. Keszocze, S. Shirinzadeh, and R. Drechsler, “Syn-
thesis of optical circuits using binary decision diagrams,” Integration,
the VLSI Journal, vol. 59, pp. 42 – 51, 2017.

[15] R. E. Bryant, “Graph-Based Algorithms for Boolean Function Manipu-
lation,” IEEE Transactions on Computers, vol. 100, no. 8, pp. 677–691,
1986.

[16] G. D. Micheli, Synthesis and Optimization of Digital Circuits.
McGraw-Hill Higher Education, 1994.

[17] T. Sasao, Switching Theory for Logic Synthesis. Kluwer, Dordrecht,
1999.

[18] A. Kuehlmann, V. Paruthi, F. Krohm, and M. K. Ganai, “Robust Boolean
Reasoning for Equivalence Checking and Functional Property Verifi-
cation,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 21, no. 12, pp. 1377–1394, 2002.

[19] A. Deb, R. Wille, O. Keszöcze, S. Hillmich, and R. Drechsler, “Gates
vs. Splitters: Contradictory Optimization Objectives in the Synthesis of
Optical Circuits,” ACM Journal on Emerging Technologies in Comput-
ing Systems (JETC), vol. 13, no. 1, pp. 11:1–11:13, 2016.

[20] A. Deb, R. Wille, and R. Drechsler, “OR-Inverter Graphs for the
Synthesis of Optical Circuits,” in International Symposium on Multiple-
Valued Logic (ISMVL), 2017, pp. 278–283.

[21] M. P. Scaffardi, P. Ghelfi, E. Lazzeri, L. Poti, and A. Bogoni, “Pho-
tonic Processing for Digital Comparison and Full Addition based on
Semiconductor Optical Amplifiers,” IEEE Journal of Selected Topics in
Quantum Electronics, vol. 14, no. 3, pp. 826–833, 2008.

[22] Q. Wang, G. Zhu, H. Chen, J. Jaques, J. Leuthold, A. B. Piccirilli,
and N. K. Dutta, “Study of All-Optical XOR using Mach-Zehnder
Interferometer and Differential Scheme,” IEEE Journal of Selected
Topics in Quantum Electronics, vol. 40, no. 6, pp. 703–710, 2004.

[23] R. Brayton and A. Mishchenko, “ABC: An Academic Industrial-
strength Verification Tool,” in Proc. of International Conference on
Computer Aided Verification, 2010, pp. 24–40.


