
Identifying Synthesis Approaches
for IP Piracy of Reversible Circuits

Samah Mohamed Saeed, Nithin Mahendran
University of Washington

Tacoma, WA 98402
{samahs,nithin}@uw.edu

Alwin Zulehner, Robert Wille
Johannes Kepler University Linz

Linz, Austria
{alwin.zulehner, robert.wille}@jku.at

Ramesh Karri
New York University
Brooklyn, NY 11201

rkarri@nyu.edu

Abstract—Reversible circuits are vulnerable to intellectual
property and integrated circuit piracy. To show these vul-
nerabilities, a detailed understanding on how to identify the
function embedded in a reversible circuit is crucial. To obtain the
embedded function, one needs to know the synthesis approach
used to generate the reversible circuit in the first place. We
present a machine learning based scheme to identify the synthesis
approach using telltale signs in the design.

Index Terms—Reversible logic, IP piracy, QMDD, ESOP, TBS,
BDD, Security, Machine learning.

I. INTRODUCTION

Reversible circuits compute bijective functions (i.e., they
implement one-to-one mappings between the inputs and
the outputs). Applications of reversible circuits include en-
coder/decoders [1], [2], quantum computing architectures [3],
[4], and low-power designs [5]–[7]. Other areas that benefit
from reversible computing include adiabatic circuits [8], [9],
formal verification [10], and optical computing [11].

Progress in the design and (physical) realization of re-
versible circuits is underway. Concurrently, an understanding
of security threats such as intellectual property (IP) piracy and
malicious circuitry [12]–[14] is important and is the focus of
this paper. This paper sheds light on recovering the function
of a reversible circuit.

Non-reversible functions are implicitly or explicitly em-
bedded into reversible circuits by using ancillary inputs and
garbage outputs [15]. Hence, to derive the function, an attacker
first needs to know the ancillary inputs. With the knowledge
of the synthesis approach used to generate a reversible circuit,
an attacker can identify most of the functions [16]. To this
end, it is crucial to identify the synthesis approach which has
been used to create the reversible circuit in the first place. This
is covered in this work.

To this end, we first review the background on reversible
circuits and motivate our work in Section II-A and Sec-
tion II-B, respectively. Section III-A extracts the telltale signs
of reversible circuit synthesis approaches. Section III-B derives
features that can be used to identify the synthesis approach.
These features are used by machine learning algorithms to dis-
cover the synthesis approach as discussed in Section III-C and
demonstrated in the experimental evaluations in Section III-D.
Finally, the paper is concluded in Section IV.

II. REVERSIBLE CIRCUITS

A. Background
A function f : Bn → Bm is reversible, if and only if n = m

and each input combination maps to a unique output com-
bination. Computations can be conducted in both directions
using the Toffoli gate. Let X = {x1, . . . , xn} be the inputs to
a reversible function. Then, the Toffoli gate TOF (C, t) is a
set C ⊆ {xj | xj ∈ X} ∪ {xj | xj ∈ X} of positive (xj) and
negative (xj) control lines and a target line t ∈ X \ C. The
Toffoli gate inverts the value on the target line if and only
if all positive control lines are assigned 1 and all negative
control lines are assigned 0. The values on all remaining lines
pass through unaltered. The Toffoli gate is universal, i.e., all
reversible functions can be realized using them.

In order to realize an arbitrary function, an embedding step
is conducted [15], which utilizes ancillary inputs and garbage
outputs. An ancillary input is an input that is set to a fixed
value (either 0 or 1). A garbage output is a don’t care output
for all possible input conditions. A function is implemented
on a reversible circuit when ancillary inputs are assigned
dedicated constant values and only the non-garbage outputs
are considered.

Example 1. Fig. 1 shows a reversible circuit implementation
of a full adder. Black dots denote positive control lines, while
⊕ denotes a target line. The adder is implemented by assigning
a constant 0 to the ancillary input x1. The non-garbage output
y2 is the sum and y1 is the carry-out.

x4

x3

x2

x1

y4

y3

y2

y10
Ancillary

input

Garbage

outputs

Fig. 1. Reversible circuit implementation of a full adder.

B. Threat Model and Motivation
We consider an attacker in the foundry with access to the

gate-level implementation of the reversible circuit. We assume
that the attacker does not have access to a functional chip [17],
which can be applied to non-commercial applications such as
military applications. We further assume that manufacturing
test is conducted in either a separate test facility [18] or in the
foundry. In the latter case, we consider random values assigned
to the ancillary inputs during manufacturing test. Conducting

Rogue element

in the foundry

1-Bit adder

Step1: Identify the

synthesis approach

Step2: De-synthesize

the reversible circuit

0

Reversible circuit

Sum

Carry-out

Rogue element

in the foundry

1-Bit adder

Step1: Identify the

synthesis approach

Step2: De-synthesize

the reversible circuit

0

Reversible circuit

Sum

CarryC -out

ESOPTBS

QMDDBDD

...

Others

Fig. 2. The "reversing the reversible circuit" threat model (i.e., steps involved in recovering the function from a reversible circuit with no access to functional
chip.). This paper focuses on the first step of the attack.

the test prior to activating an IC, improves the security and
yields better test quality [19]. We consider two scenarios
wherein an attacker can infer ancillary inputs and garbage
outputs. If the chip is on the motherboard, an attacker can
use the peripheral circuits to distinguish between the primary
and the garbage outputs of the reversible circuits. Then, the
attacker needs to recover the ancillary inputs only. On the other
hand, if the design is sent to an untrusted foundry without
peripheral circuits, the attacker has to identify the location
of the ancillary inputs and garbage outputs in addition to the
value of the ancillary inputs. In both scenarios, identifying
the synthesis approach that generates a reversible circuit is
important to recover the function.

Example 2. Consider the circuit in Fig. 1. From an attacker’s
perspective, each input is a potential ancillary input and
each output is a potential garbage output. Without any more
information available during fabrication, the circuit appears
to realize an arbitrary 4-bit reversible function.

Even if an attacker locates the ancillary inputs and the
garbage outputs, she/he can not recover the ancillary values to
implement the function. The ancillary inputs hide the function
in a reversible circuit. However, the attacker can circumvent
this if he/she knows the synthesis approach used to generate
the circuit; the ancillary inputs and garbage outputs depend
on the embedding or the synthesis approach used to generate
a reversible circuit. In Fig. 2, the attacker can recover the
function in two steps. First, the attacker identifies the synthesis
approach. Next, he/she obtains the ancillary inputs. This paper
sheds light on the first step of the attack.

III. IDENTIFYING THE SYNTHESIS APPROACH

The unique telltale signs of reversible synthesis approaches
can be used to infer them given a reversible circuit. This is
sketched in the following sub-section considering a selection
of well-established synthesis approaches for reversible circuits.

A. Telltale Signs of Synthesis Approaches

Transformation-based synthesis (TBS, [20]) starts with a
truth table description and adds reversible gates to modify
the given function until the identity-function is obtained. The
resulting circuits have the following telltale TBS sign. A gate
gi at position i in a circuit is likely to have fewer (or as many)
control lines than the preceding gates gj (j < i), i.e., it is likely
that |Cj | ≥ |Ci| if i > j. This is because, in TBS, the rows of
the truth table are consecutively transformed to identity and,

hence, gates are added such that no truth table row above the
considered row is altered. As TBS proceeds, more rows are
fixed. Hence, more control lines are added to the gates. Since
in TBS the gates are implemented output to input, gates with
more control lines appear towards the input-side of the circuit.

Example 3. TBS generated the circuit shown in Fig. 3. The
number of control lines increases from the output to the input.

x3

x2
x1

y3

y2
y1

Fig. 3. Hamming code circuit generated by TBS.

In Quantum Multi-valued Decision Diagram (QMDD)-
based synthesis [21], the function is transformed to the identity
using reversible gates. The identity is established one variable
at a time (i.e., the mapping from one bit of the input to one bit
of the output). Circuits obtained using QMDD-based synthesis
have the following telltale QMDD sign. The circuit is divided
into n regions where n is the number of variables. In each
region, there is a variable that occurs in each gate of the
region as either a control or a target line. Furthermore, a circuit
line is never used as a target line after the variable has been
transformed to the identity.

Example 4. QMDD-based synthesis generated the circuit
shown in Fig. 4. Dashed lines show the three regions. Each
region corresponds to a variable.

x3

x2
x1

y3

y2
y1

x3 x2 x1

Fig. 4. Hamming code circuit generated by QMDD-based synthesis. White
dots denote negative control lines.

BDD-based synthesis [22] uses Binary Decision Dia-
grams (BDDs), which represent a function and its sub-
functions derived by Shannon decomposition. Circuits ob-
tained using BDD-based synthesis have the following telltale
BDD signs. Telltale BDD sign 1: The resulting reversible
circuits use pre-defined sub-circuits for each type of the BDD
node. Telltale BDD sign 2: Each line in a reversible circuit is
used as a control or a target line for a small set of reversible
gates; the interference between circuit lines is low.

Example 5. BDD-based synthesis generated the circuit shown
in Fig. 5. The circuit is obtained by applying corresponding
sub-circuits f1−>7. Circuit lines x5−>7 do not control each
other, resulting in low interference.

x3

x2

x1

y6

y5

y4

y3

y2

y1

f6 f7

y7

x4

x5

x6

x7

f1 f2 f3 f4 f5

Fig. 5. Hamming code circuit generated by BDD-based synthesis.

Exclusive Sum of Products (ESOP)-based synthesis [23]
generates a reversible circuit from an exclusive sum of
products specification. Circuits obtained by ESOP have the
following telltale ESOP sign. The lines in the circuits obtained
using ESOP synthesis can be split into two distinct subsets.
One subset is composed of (positive or negative) control lines
only, while the other subset is solely composed of target lines.

Example 6. ESOP-based synthesis generated the circuit
shown in Fig. 6. Circuit lines x4−>6 are only control lines,
while the others are target lines only.

x3

x2

x1

y4

y3

y2
y1

y5

x4
x5

y6x6

Fig. 6. Hamming code circuit generated by ESOP-based synthesis.

B. Telltale Features

We use the telltale signs of the synthesis approaches in the
circuits to derive features that aid in identifying the synthesis
approach.

1) Control Line Reduction: The telltale TBS sign motivates
a feature that checks whether the number of control lines
decrease when traversing the circuit from the inputs to the out-
puts. This feature outputs a ratio of the reversible gates, which
show a reduction in the number of control lines as follows:
Count the number of reversible gates gi where |Ci| ≥ |Ci+1|
and divide it by the total number gates. The larger the output
of this feature, the more likely the circuit was generated using
TBS.

2) Control-Only and Target-Only Lines: Control-only and
target-only lines is a feature to check whether the circuit
has the ESOP telltale sign. This feature is equal to 1 if the
circuit can be divided into control-only and target-only lines;
otherwise, the feature is equal to 0.

3) BDD Sub-Circuits-Only: This feature is 1 if a reversible
circuit has BDD sub-circuits only and 0 otherwise.

4) Cone-Structural Analysis: This analysis is motivated by
BDD telltale sign 2 and considers the logic cone (i.e., a subset
of reversible gates) driven by each pair of circuit lines. The
feature computes the number of gates reachable from each pair

of the circuit lines. The larger the number of reversible gates
driven by the pair of circuit lines, the more the circuit lines
interfere with each other. Thus, it is less likely that this circuit
has been generated using BDD-based synthesis. For each pair
of reversible circuit inputs, logic can be traced to compute the
number of reversible gates that both circuit lines converge at.
The sum of all the values collected in the analysis quantifies
interference among circuit lines. Our analysis returns a value,
referred as Convergent Ratio (CR), denoting the interference
between circuit lines in terms of the number of reversible
gates, i.e.

CR = Normalize{
∑
i,j

|gate(i) ∩ gate(j)|}, (1)

where i and j refer to different circuit lines and gate(i) refers
to the set of reversible gates driven by line i. Normalization
is effected via a division of the summation of the number of
reversible gates that each pair of circuit lines converge at by
the (number of all input pairs* total number of gates).

5) QMDD Feature: This feature determines if a reversible
circuit is generated by QMDD synthesis. The feature is
computed by checking the circuit for the telltale QMDD sign.

C. Machine Learning Scheme

We use machine learning to reveal the synthesis approach.
We use control line reduction, control-only and target-only
lines, BDD sub-circuits-only, cone-structural analysis, and
QMDD telltale features for four machine learning algorithms,
namely the decision tree [24], the random forest [25], the
support vector machine (SVM) [26], and the logistic regression
(LR) [27] models. In the training phase, we apply supervised
learning with reversible circuits from which it is known
how they have been synthesized. These circuits are traced to
compute each of our proposed feature.

D. Experimental Evaluation

We consider 443 reversible circuits generated using different
synthesis approaches. We use the decision tree, random forest,
SVM, and LR machine learning algorithms. The models are
trained using reversible circuits generated by four synthesis
approaches – ESOP, BDD, QMDD, and TBS. We use the
telltale features from Section III-B for classifying the test data.
The results of the machine learning were verified by taking the
average of 1000 runs of the 10× cross validation (10% test
data and 90% training data).

Table I shows the accuracy of our machine learning iden-
tification scheme. The first column denotes the used machine
learning algorithm, and the other columns denote the per-
centage of correctly identified reversible circuits generated
by different synthesis approaches. The results confirm that
the machine learning scheme can correctly identify the used
synthesis approach most of the time. The random forest
machine learning algorithm performs best. Circuits realized
using BDD- and QMDD-synthesis can be identified more
easily than circuits realized using TBS and ESOP-synthesis.
This is because some ESOP-based reversible circuits satisfy

TABLE I
IDENTIFYING THE SYNTHESIS APPROACH.

Machine learning BDD(%) ESOP(%) QMDD(%) TBS(%)
Random Forest 96.1 87.6 93.8 74
Desicion tree 91.6 86.3 90.6 73.5
LR 96.7 76 96.8 39.3
SVM 98.8 74.5 94.5 33.5

the QMDD telltale sign and some of the TBS-based reversible
circuits consist of BDD sub-circuits.

Besides that, we also evaluated the effect of the training
data size on the accuracy of the identification. We decreased
the percentage of training data from 80% to 75% to 67%
to 50% and ran the random forest model. The results are
summarized in Fig. 7. The reduction in the size of the training
data slightly affects the identification accuracy. This indicates
that our proposed features capture the essential telltale signs
of different synthesis approaches.

Fig. 7. Accuracy as a function of percentage of training data.

IV. DISCUSSION AND CONCLUSIONS

We analyzed how the attacker can identify the synthesis
approach that generates a reversible circuit. This is a first step
towards the identification of the function embedded into the
reversible circuit. We first extract the telltale signs of well-
established synthesis approaches and then map them to fea-
tures that are utilized in several machine learning algorithms
to determine the applied synthesis approach.

Our work provides a better understanding of IP piracy and
possible attacks on reversible circuits. However, the applica-
tion, and thus, the fabrication process of reversible circuits
may differ depending on the target technology. For example,
reversible circuits used for encoding and decoding devices and
low-power designs have CMOS fabrication processes. In con-
trast, they significantly differ for quantum computation (where
reversible circuits do not describe real hardware, but sequences
of operations). Future work will focus on approaches which
are more dedicated to a technology and/or an application.

Furthermore, post-synthesis optimization alters the circuit
structure, although it does not completely re-write the cir-
cuits. Hence, future work includes investigations on how
optimization methods affect the telltale signs, and thus, the
identification scheme.

ACKNOWLEDGEMENTS

3rd, 4th authors are supported by EU COST Action IC1405.
5th author is partly funded by NYU/NYU-AD CCS.

REFERENCES

[1] A. Zulehner and R. Wille, “Taking one-to-one mappings for granted:
Advanced logic design of encoder circuits,” in DATE, 2017.

[2] R. Wille, R. Drechsler, C. Osewold, and A. G. Ortiz, “Automatic design
of low-power encoders using reversible circuit synthesis,” in DATE,
2012, pp. 1036–1041.

[3] M. Nielsen and I. Chuang, Quantum Computation and Quantum Infor-
mation. Cambridge Univ. Press, 2000.

[4] P. W. Shor, “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer,” SIAM J. Comput., vol. 26,
no. 5, pp. 1484–1509, Oct. 1997.

[5] R. Landauer, “Irreversibility and heat generation in the computing
process,” IBM J.Res.Dev, vol. 5, no. 3, pp. 183–191, 1961.

[6] C. H. Bennett, “Logical reversibility of computation,” IBM J.Res.Dev,
vol. 17, no. 6, pp. 525–532, 1973.

[7] A. Berut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider,
and E. Lutz, “Experimental verification of Landauer’s principle linking
information and thermodynamics,” Nature, vol. 483, pp. 187–189, 2012.

[8] W. C. Athas and L. J. Svensson, “Reversible logic issues in adiabatic
cmos,” in PhysComp, 1994, pp. 111–118.

[9] A. Rauchenecker, T. Ostermann, and R. Wille, “Exploiting reversible
logic design for implementing adiabatic circuit,” in MIXDES, 2017.

[10] L. G. Amarù, P. Gaillardon, R. Wille, and G. D. Micheli, “Exploiting
inherent characteristics of reversible circuits for faster combinational
equivalence checking,” in DATE, 2016, pp. 175–180.

[11] R. Cuykendall and D. R. Andersen, “Reversible optical computing
circuits,” Opt. Lett., vol. 12, no. 7, pp. 542–544, Jul 1987.

[12] M. Pecht and S. Tiku, “Bogus: electronic manufacturing and consumers
confront a rising tide of counterfeit electronics,” IEEE Spectrum, vol. 43,
no. 5, pp. 37–46, 2006.

[13] J. A. Roy, F. Koushanfar, and I. L. Markov, “EPIC: Ending piracy of
integrated circuits,” in DATE, 2008, pp. 1069–1074.

[14] R. Karri, J. Rajendran, K. Rosenfeld, and M. Tehranipoor, “Trustworthy
hardware: Identifying and classifying hardware trojans,” Computer,
vol. 43, no. 10, pp. 39–46, Oct 2010.

[15] A. Zulehner and R. Wille, “Make it reversible: Efficient embedding of
non-reversible functions,” in DATE, 2017.

[16] S. M. Saeed, X. Cui, R. Wille, A. Zulehner, K. Wu, R. Drechsler, and
R. Karri, “Towards reverse engineering reversible logic,” CoRR, vol.
abs/1704.08397, 2017.

[17] M. E. Massad, J. Zhang, S. Garg, and M. V. Tripunitara, “Logic
locking for secure outsourced chip fabrication: A new attack and
provably secure defense mechanism,” CoRR, vol. abs/1703.10187,
2017. [Online]. Available: http://arxiv.org/abs/1703.10187

[18] B. Wire, “Research and markets: Outsourced semiconductor
assembly and test market (osat) trends,” 2014. [Online]. Avail-
able: http://www.businesswire.com/news/home/20140324005628/en/
Research-Markets-Outsourced-Semiconductor-Assembly-Test-Market

[19] M. Yasin, S. M. Saeed, J. Rajendran, and O. Sinanoglu, “Activation of
logic encrypted chips: Pre-test or post-test?” in DATE, 2016, pp. 139–
144.

[20] D. M. Miller, D. Maslov, and G. W. Dueck, “A transformation based
algorithm for reversible logic synthesis,” in DAC, 2003, pp. 318–323.

[21] M. Soeken, R. Wille, C. Hilken, N. Przigoda, and R. Drechsler, “Syn-
thesis of reversible circuits with minimal lines for large functions,” in
ASP-DAC, 2012, pp. 85–92.

[22] R. Wille and R. Drechsler, “BDD-based synthesis of reversible logic for
large functions,” in DAC, 2009, pp. 270–275.

[23] K. Fazel, M. Thornton, and J. Rice, “ESOP-based Toffoli gate cascade
generation,” in Proceedings of IEEE Pacific Rim Conference on Com-
munications, Computers and Signal Processing, 2007, pp. 206 –209.

[24] J. R. Quinlan, “Induction of decision trees,” Mach. Learn., vol. 1, no. 1,
pp. 81–106, Mar. 1986.

[25] T. K. Ho, “Random decision forests,” in ICDAR, vol. 1, 1995, pp. 278–
282 vol.1.

[26] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector
Machines: And Other Kernel-based Learning Methods. Cambridge
University Press, 2000.

[27] D. A. Freedman, Statistical Models: Theory and Practice. Cambridge
University Press, 2009.

