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Abstract—Synthesis of reversible circuits finds application in
many promising domains but has to deal with the fact that the
underlying circuits require a unique mapping from the inputs
to the outputs. Existing solutions addressed this problem by
additionally performing a so-called embedding process prior to
synthesis or by naively mapping building blocks of conventional
logic to their corresponding reversible counterparts. This leads
to solutions that either suffer from limited scalability or yield cir-
cuits with a huge number of additionally required circuit lines. In
this work, we conduct investigations to overcome these problems.
To this end, we simply ignore the fact that an arbitrary Boolean
function to be synthesized might be non-reversible and deal with
the resulting problem of ensuring a unique input/output mapping
during the actual synthesis process. Experimental evaluations
indicate that, following this approach, could provide the basis
for an alternative synthesis scheme that allows for synthesizing
arbitrary Boolean functions in reasonable time and without the
need of a prior embedding process.

I. INTRODUCTION

Reversible circuits employ a computation paradigm in
which only bijective functions are realized, i.e. functions that
map each input pattern to a unique output pattern allowing
for computations from the inputs to the outputs, but also vice
versa. This paradigm is particularly suitable for the realization
of certain parts of quantum circuits (see e.g. [13] for an
overview on quantum circuits and e.g. [2], [14] for overviews
on the utilization of reversible circuits in this domain) and
received interest due to its promising characteristics with
respect to power consumption (motivated by the theoretical
considerations conducted by Landauer and Bennett in [8], [3]
which recently have experimentally been validated in [4]).
Besides that, reversible circuits recently found application in
the design of on-chip interconnects [25], encoders [29], or
verification [1].

However, synthesis of reversible circuits significantly differs
from established design solutions available for conventional
circuitry. Due to the required unique mapping, several issues
such as the non-existence of fan-out, the requirement that
all reversible circuits have to be composed as cascades of
reversible gates, and particularly the necessity to realize an
arbitrary (and, hence, potentially non-reversible) function in
a reversible (i.e. bijective) fashion have to be addressed.
In the past, numerous design solutions have been proposed
which approach these problems from two different angles as
summarized in Fig. 1.

The first scheme (sketched in the top of Fig. 1 and denoted
Functional Synthesis), employs a two-stage approach: First,
the (arbitrary) function to be realized is embedded into a
reversible one; afterwards, synthesis solutions dedicated to
reversible logic are applied to obtain a circuit. Both stages
solve problems of significant complexity. More precisely:
• The Embedding Process [9], [24], [20], [28] adds further

variables to the function (which leads to an exponen-
tial growth of the truth table) in order to distinguish
non-unique output patterns. To this end, it has to be
known how often the function to be realized maps to the
same unique output pattern – requiring a consideration
of all 2n possible mappings in the worst case [9]1. Fur-

1In fact, it has been shown that this embedding process is coNP-hard [20].
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f : Bn → Bm reversible circuit

Fig. 1: Reversible circuit synthesis

thermore, the available degree of freedom for assigning
additional variables cannot be exploited during synthe-
sis, since the embedding process yields a fix reversible
function.

• The Actual Synthesis realizes the embedded function
and, by this, all resulting 2k input/output mappings in
terms of a reversible circuit. To this end, various ap-
proaches ranging from exact solutions [6] to heuristic
solutions e.g. based on truth-tables [16], [11], posi-
tive polarity Reed-Muller expansion [7], or Reed-Muller
spectra [10] have been proposed. The exact ones are
only capable of realizing functions with at most six
primary inputs, while the heuristic solutions are capable
of realizing functions with up to approx. 30 primary
inputs. In order to improve this limited scalability, alter-
native synthesis approaches have recently been proposed
that explicitly exploit efficient data-structures such as
decision diagrams [19], [18]. But since all these solutions
require an embedded function, they have to cope with
the possibly huge overhead introduced by the embedding
process.

The second scheme (sketched in the bottom of Fig. 1 and
denoted Structural Synthesis), aims for directly synthesizing
arbitrary Boolean functions. To this end, the function to
be synthesized is represented using conventional descriptions
such as Binary Decision Diagrams (BDDs, [22]), Exclusive
Sum of Products (ESoP, [5]), or even gate netlists [27]. After-
wards, each building block such as a BDD node, a product/ex-
clusive sum, or a primitive gate is mapped to a functionally
equivalent cascade of reversible gates. Since all these building
blocks are non-reversible, the equivalent cascade of reversible
gates usually requires an additional circuit line (similar to
the additional variables in the embedding process). Since, for
larger functions, numerous such building blocks are mapped,
this yields a number of additionally required lines which is
magnitudes larger than the actual minimum (as e.g. evaluated
in [24]).



In this work, we conduct investigations to overcome the
drawbacks of both schemes. To this end, we simply apply
a reversible circuit synthesis algorithm to the function to be
synthesized without prior embedding. All problems which
occur due to the existence of non-unique output patterns are
then handled during the process whenever necessary. This
way, problems by non-unique output patterns in particular and
non-reversible functions in general are not covered prior to
synthesis (as in functional synthesis) or simply ignored (as
in structural synthesis), but handled when they matter most:
during the synthesis itself.

Experimental evaluations show the promises of this ap-
proach. In fact, ignoring embedding and handling the resulting
problems during the actual synthesis allows for synthesiz-
ing reversible circuits for arbitrary Boolean functions whose
number of additionally required circuit lines substantially less
than in circuits obtained by structural synthesis. Compared
to functional synthesis, the proposed solution is capable of
realizing reversible circuits for arbitrary Boolean functions
with much more than 30 variables and with significantly lower
costs.

The remainder of this work is structured as follows: Sec-
tion II briefly reviews the applied notation for reversible and
non-reversible functions as well as reversible circuits. The
main ideas and concepts of the solution proposed in this work
are described and illustrated in Section III. Afterwards, details
of the resulting implementation are provided in Section IV.
Finally, the obtained experimental results are summarized in
Section V and the paper is concluded in Section VI.

II. BACKGROUND

To keep this paper self-contained, this section briefly recaps
the applied notation for reversible and non-reversible functions
as well as the definition of reversible circuits.

A. Reversible and Non-Reversible Functions
A Boolean function f : Bn → Bn is called reversible if the

mapping from inputs to outputs forms a bijection. Because of
this one-to-one mapping, one can determine the input pattern
for a given output pattern and vice versa. As this eventually
describes a permutation of the input patterns, we can represent
each reversible function as a permutation matrix.

Definition 1. Let f : Bn → Bn be a reversible function.
A permutation matrix M representing f is a matrix of di-
mension 2n × 2n in which each column (row) of the matrix
represents one possible input pattern (output pattern) of f .
The elements mi,j , 0 ≤ i, j < 2n of the matrix M are defined
by

mi,j =

{
1 if f(j) = i,
0 otherwise.

Example 1. Consider the reversible function provided in
terms of a truth table as shown in Table Ib. The functionally
equivalent permutation matrix is provided in Fig. 3a.

In this work, we aim for realizing arbitrary (i.e. also
non-reversible) functions. To this end, a function matrix rep-
resentation is applied.

Definition 2. Let f : Bn → Bm be a non-reversible function.
A function matrix M representing f is a matrix of dimension
2k×2k with k = max(n,m) in which each column (row) of the
matrix represents one possible input pattern (output pattern)
of f . The elements mi,j , 0 ≤ i, j < 2k of the matrix M are
defined by

mi,j =

{
1 if f(j) = i,
0 otherwise.

Example 2. Consider the truth table of a half adder (i.e. a
non-reversible function) shown in Table Ia. The functionally
equivalent function matrix is provided in Fig. 5a.

Note that each row and each column of a permutation
matrix (representing a reversible function), contains exactly
one 1-entry (caused by the one-to-one mapping). In contrast,
non-reversible functions might map several input patterns to
the same output pattern. Hence, the corresponding function
matrix might contain rows with multiple 1-entries.

B. Reversible Circuits

Reversible circuits differ from non-reversible ones, since
direct feedback and fan-out are not allowed. Typically, they
are formed by a cascade of reversible gates. In this paper, we
focus on Toffoli gates, a universal type of reversible gates.

Definition 3. Let X = {x1, . . . , xn} be a set of circuit
lines. Then, a reversible circuit is a cascade of reversible
gates g1, g2, . . . , gk. A Toffoli gate gi = TOF (Ci, ti) is a
tuple composed of a set Ci ⊂ {xi | xi ∈ X} ∪ {xi | xi ∈ X}
of positive and negative control lines as well as a single target
line ti ∈ X with {ti, ti} ∩ Ci = ∅. The value of target line ti
is inverted iff all positive (negative) control lines are assigned
one (zero). No other values are affected by the gate.

In the following, Toffoli gates are considered which are
supposed to explicitly invert the value of circuit lines for a
given input assignment only. To this end, we introduce the
term of a selector set.

Definition 4. Let α = α1 . . . αn be an input assignment to
the lines x1, . . . , xn of a reversible circuit. Then, the set of
control lines C(α) = {xi | αi = 1} ∪ {xi | αi = 0} is the
selector set of α.

The costs of reversible gates are measured in terms of
quantum costs [2], [12] that depend on the number of control
lines, e.g. a Toffoli gate with zero or one control line has
quantum cost of 1 and a Toffoli gate with two control lines
has quantum cost of 5. In this work, we are applying the metric
as introduced in [12].

Example 3. Fig. 2a shows a reversible circuit composed of 5
Toffoli gates which maps the input pattern 010 to the output
pattern 101. This circuit has quantum cost of 9. For a given
input assignment α = 011, the selector set is C = x1, x2, x3
i.e. a gate g = ({x1, x2, x3}, xt) would invert the target line xt
iff the input α is applied.

III. PROPOSED APPROACH

In this section, we investigate an approach which aims for
overcoming the drawbacks discussed in the Section I. The
general idea is simple: Instead of conducting embedding prior
to synthesis, we propose to simply apply the reversible logic
synthesis approaches (i.e. functional solutions summarized in
the top of Fig. 1 which are suited for reversible functions only)
directly to the non-reversible function to be synthesized and to
deal with the problems caused by the non-reversibility during
synthesis.

In order to properly describe this idea, we first briefly review
the main concepts of two representative synthesis approaches.
Afterwards, we discuss the problems which occur if these
methods are applied to a non-reversible function (rather than
a reversible one) and introduce the proposed solution to
overcome those.



TABLE I: Embedding of the half adder function
(a) Non-Reversible

a b c s
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

(b) Reversible
κ a b γ c s
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 1 0 1
0 1 1 0 1 0
1 0 0 1 1 0
1 0 1 1 1 1
1 1 0 0 1 1
1 1 1 1 0 0

TABLE II: Transformation-based synthesis

line input output 1st 2nd 3rd 4th 5th

(i) xyz xyz xyz xyz xyz xyz xyz
0 000 000 000 000 000 000 000
1 001 001 001 001 001 001 001
2 010 101 100 110 010 010 010
3 011 010 010 010 110 111 011
4 100 110 111 101 101 100 100
5 101 111 110 100 100 101 101
6 110 011 011 011 111 110 110
7 111 100 101 111 011 011 111

A. Representative Synthesis Approaches
We consider transformation-based synthesis as originally

introduced in [11] and QMDD-based synthesis as introduced
in [19] as representatives for reversible circuit synthesis ap-
proaches. The main idea of these approaches is to determine
a sequence of reversible gates g1g2 . . . gk that transform the
function to be synthesized F to the identity function I . Since
F−1 ◦ F = I , reversing the order of the gate sequence to
gk . . . g2g1 realizes F . The function of a half adder (shown in
Table Ia) serves as running example. As this obviously is a
non-reversible function (the input patterns 01 and 10 map to
the same output pattern 01), this function has to be embedded
into a reversible one first (e.g. into the one shown in Table Ib;
the desired function is highlighted in bold)2. This requires the
addition of an ancillary variable which yields a constant input
κ (constant zero) and a garbage output γ. If κ assumes constant
zero, the desired half-adder function is employed while, in
general, reversibility is ensured. After this embedding, both
considered synthesis approaches become applicable.

Transformation-based synthesis relies on a truth table de-
scription of the function to be synthesized. The lines of the
truth table are traversed and gates are applied until the output
matches the input (i.e. until the identity of both is achieved).
Gates are chosen such that already considered lines are not
altered. Furthermore, gates are added starting at the output side
of the circuit (this is, because output values are transformed
until the identity is achieved). An example illustrates the idea:

Example 4. Table II illustrates the respective steps conducted
by the transformation-based synthesis. The first column de-
notes the truth table lines, while the second and third column
provides the function to be synthesized (from Table Ib). For
brevity, the inputs κ, a, and b as well as the outputs γ, c, and s
are denoted by x, y, and z respectively. The remaining columns
provide the transformed output values for the respective steps.

The algorithm starts at truth table line 0. Since for this line
the input is equal to the output (both are assigned to 000), no
gate has to be applied. The same applies to truth table line 1.
In contrast, to match the output with the input in truth table
line 2, the values for z, y and x must be inverted. To this end,
three gates TOF ({x} , z), TOF ({x} , y), and TOF ({y} , x)
are added as depicted in Fig. 2a – yielding the transformed
output patterns as shown in columns 1st, 2nd, and 3rd of
Table II, respectively (changed bits are highlighted in bold).
Because each gate has a positive control line x or y, this does
not affect the previously considered truth table line.

2Recall that already this embedding process is coNP-hard, task [20].
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Fig. 2: Circuits obtained by reversible logic synthesis

In line 3, gates TOF ({x} , z) as well as TOF ({y, z} , x)
are needed to match the values of x and z (4th and 5th

step). For the latter, two control lines are needed to keep the
already traversed truth table lines unaltered. Afterwards, all
input/output-mappings represent the identity and, hence, the
synthesis process has been completed. The resulting circuit,
composed of five gates, is shown in Fig. 2a.

QMDD-based synthesis relies on a matrix representation of
the function to be synthesized. Also here, the main idea is
to apply gates in order to transform the given function into
the identity. From a matrix perspective, the function to be
synthesized can thereby be split into four submatrices – one
for each quadrant of the original matrix. Then, the identity
matrix requires the second and third quadrant to be composed
of 0-entries only. This can be achieved by applying Toffoli
gates which accordingly swap the respective matrix columns.
Recursively applying this scheme to all other submatrices
eventually yields the identity matrix and, hence, the desired
circuit. Again, an example illustrates the idea.

Example 5. Consider again the embedded function of a
half adder as represented in Table Ib. Fig. 3a provides the
corresponding permutation matrix representing the mapping
from the inputs (columns) to the outputs (rows)3. First, this
matrix shall be transformed so that the second and third
quadrant is composed of 0-entries only. To this end, columns
010 and 110 must be swapped. This can be accomplished
by adding a gate TOF ({y, z} , x) (the value of x is flipped
when y = 1 and z = 0) yielding the matrix as shown in
Fig. 3b. Afterwards, the same scheme is recursively applied to
the first and fourth quadrant leading to a swap of columns 100
and 110 as well as 101 and 111. Both swaps are accomplished
by a single gate: TOF ({x} , y); cf. Fig. 3c. Another recursive
application of the scheme leads to a swap of columns 010 and
011 as well as 100 and 101 (accomplished by TOF ({x, y} , z)
as well as TOF ({x, y} , z); cf. Fig. 3d). Since the identity
matrix has been derived by these swaps, the circuit shown in
Fig. 2b realizes the given function.

Note that working on a permutation matrix (which
is of exponential size with respect to the number of
inputs/outputs) obviously is not efficient. Hence, the concept
illustrated above has been implemented on top of so-called
Quantum Multiple-valued Decision Diagrams (QMDDs, [15]),
which provide an efficient representation for matrices.

B. Applying Non-Reversible Functions
Both synthesis approaches reviewed above can only be

applied to reversible functions and thus require a previous
embedding process. In this work, we aim for investigating
what happens if we ignore the embedding step and directly
apply the reversible logic synthesis approach to the non-
reversible function. Obviously, this was never intended and
leads to serious problems during the synthesis process. We deal
with these problems by modifying the function and restore the
changes afterwards.

3Again, the inputs κ, a, and b as well as the outputs γ, c, and s are denoted
by x, y, and z, respectively.
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Fig. 3: QMDD-based synthesis

More precisely, whenever a non-unique input/output map-
ping of f causes problems, we simply flip some of the m
output bits in order to resolve the problem. As this alters the
function to be synthesized (f ) to f ′, all modifications have
to be “buffered” and, after the original synthesis approach
terminates, restored. To this end, for each output at position i
(1 ≤ i ≤ m), we introduce a new buffer line bxi

which stores
all input assignments for which the corresponding output bit
has been flipped.

Definition 5. Let f : Bn → Bm be an arbitrary function
to be synthesized and let f ′ : Bn → Bm be the function
which results when conducting a modification as described
above. Then, buffer lines bxi

are created for 1 ≤ i ≤ m and
initially set to 0. Moreover, for all input assignments α for
which an input/output mapping has been modified (i.e. for all
input assignments α with f(α) 6= f ′(α) at bit position i), a
gate TOF (C(α), xi) is added setting the buffer line bxi

to 14.

After the actual synthesis process, these buffer lines can be
used to reverse the made modifications. For example, if in
a function with three inputs/outputs xyz the mapping from
input 010 has been changed from output 101 to output 100,
then this modification is stored in a buffer line bz (which was
originally initialized to 0 but, in the considered case with the
input assignment xyz = 010, set to 1 using the Toffoli gate
TOF ({x, y, z}, bz)). After the synthesis has been completed,
a gate TOF ({bz}, z}) is applied, which flips the output z back
to its intended value.

In the remainder of this section, we illustrate the appli-
cation of this concept to the previously reviewed synthesis
approaches. We start with the transformation-based approach:

Example 6. Consider again the non-reversible function as
provided in Table Ia. Applying transformation-based synthesis
to this function without embedding leads to the steps as
summarized in Fig. 4a. More precisely, nothing has to be done
for truth table line 0 and 1 as the inputs are already equal to
the outputs. In contrast, the output pattern in line 2 requires
to invert both, x and y. But since line 1 and line 2 have
the same output pattern (caused by the non-reversibility), any
change applied to line 2 will also affect line 1. The original
synthesis approach does not work anymore.

In order to resolve this issue, we modify the function such
that the input pattern 10 maps to 11 rather than 01 – leading to
the modified output as shown in the fourth column of Table 4a.
To store this modification, buffer line bx (initialized with 0) and
the gate TOF ({x, y} , bx) are added to the circuit as shown in
Fig. 4b. Afterwards, synthesis can continue as usual: The value
for y has to be inverted which can be accomplished by a gate
TOF ({x} , y) (1st step in Fig. 4a and Fig. 4b). This already
yields an input/output-mapping representing the identity and,

4Recall that C(α) denotes the selector set of α as introduced in Def. 4.
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Fig. 5: QMDD-based synthesis of an arbitrary function

hence, completes the synthesis. Finally, the modification has
to be restored, i.e. x has to be inverted for input 10. As this
respective case has previously been stored on buffer line bx,
this can easily be accomplished by a gate TOF ({bx} , x), as
shown in Fig. 4b.

The same scheme can be applied to QMDD-based synthesis:

Example 7. Consider again the non-reversible function rep-
resented as function matrix as shown in Fig. 5a. Again, the
goal is to perform transformations so that the second and third
quadrant is composed of 0-entries only. However, this is not
possible by swapping columns anymore. In order to resolve
that issue, we modify the function. From a matrix perspective,
this means vertically moving 1-entries from one row (here the
row for output pattern 01) to another row which does not
have a 1-entry yet (here the row for output pattern 11). This
is basically the same as discussed before in Example 6 and,
hence, requires a buffer line bx (initialized with 0) and the gate
TOF ({x, y} , bx)) – yielding the matrix as shown in Fig. 5b.
Afterwards, synthesis can continue as usual: While the first
quadrant already represents an equal input/output-mapping,
the forth quadrant requires to swap column 10 and 11. This
can be accomplished by adding a gate TOF ({x} , y) and
completes synthesis. Finally, the modification is restored using
the buffer line bx. This eventually results in the circuit shown
in Fig. 4b.

Overall, we have shown that a realization of arbitrary
Boolean functions f : Bn → Bm can be obtained using
reversible circuit synthesis approaches. Although additional
circuit lines have to be added dynamically during synthesis for
this purpose, their number is bounded by m, since in worst
case all of the m output bits have to be flipped. Therefore, at
most m buffer lines (one for each output bit) are required.



IV. RESULTING IMPLEMENTATION

The main concept introduced above can, in principle, be
applied to all synthesis approaches for reversible circuits. But
since QMDD-based synthesis already proved to be scalable (in
contrast to transformation-based synthesis), we provide details
on how to employ the proposed concepts for this scheme.

In a first step, the function to be synthesized is represented
in terms of a function matrix (cf. Definition 2). Similar to
permutation matrices, QMDDs can be applied to efficiently
represent the corresponding structures even for large functions.
Afterwards, synthesis is performed by swapping columns of
the function matrix as illustrated in Section III-B until prob-
lems caused by the non-reversibility occur. Then, the function
is modified by vertically moving 1-entries in the function
matrix to a row which, thus far, is composed of 0-entries only.
Of course, these modifications are buffered in respective buffer
lines. Afterwards, synthesis and modification steps continue
until an identity matrix results. Finally, the modifications are
reverted using the buffer lines again.

More formally, synthesis of an arbitrary Boolean function
given in terms of a function matrix

M =
[
M00 M01
M10 M11

]
is conducted as follows:
S1. [Swap columns] Move 1-entries from M01 to M00 by

swapping columns of M until either M01 is a zero
matrix or each column of M00 contains a 1-entry. Since
each column of M contains exactly one 1-entry, this
automatically moves 1-entries from M10 to M11 as well.
Swapping columns α and β (which differ in bit position
i only, i.e. have a Hamming distance of 1) is conducted
by applying gate TOF (C(α)\{xi, xi}, xi).

S2. [Vertical movement] If there are any 1-entries in M01
(or M10) left, then simply move them to M11 (or M00)
by flipping the corresponding bit at position i of
the output. This modifies the function and has to be
buffered. Therefore, moving the 1-entry of column (in-
put) α from row (output) y to y′ (by flipping the bit
at position i) requires the buffer line bxi

and a gate
TOF (C(α), bxi

).
S3. [Recursive application] After step 2, M01 and M10 are

zero matrices and each column of M00 and M11 contains
exactly one 1-entry, i.e. they are function matrices. Apply
Algorithm S recursively to M00 and M11 to eventually
obtain the identity matrix.

Restoring the original function is performed as
post-synthesis step which is required to ensure a correct
mapping from inputs to outputs, and is conducted by adding
one Toffoli gate TOF ({bxi} , xi) for each buffer line bxi .

V. EXPERIMENTAL EVALUATION

In this section, we present the results obtained by the
approach described above and compare the measured per-
formance to synthesis schemes considered thus far. To this
end, the proposed method has been implemented in C++ on
top of RevKit [17] – additionally using the BDD package
CUDD [21] and the QMDD package made available in [15].
For comparison, we considered BDD-based synthesis [22],
QMDD-based synthesis [19], and Ancilla-free synthesis [18].
Furthermore, we compared the number of additionally required
circuit lines generated by the proposed approach to the actual
minimum (provided in [28]).The numbers for QMDD-based
and Ancilla-free synthesis methods have been taken from the
corresponding papers. In contrast, results for the BDD-based
synthesis have been newly constructed using the publicly
available implementation from RevKit [17]. The corresponding

benchmarks have been taken from RevLib [23]. All our exper-
iments have been conducted on a 3.20 GHz Intel i5 processor
with 8 GB of main memory running on Linux 4.2.
A. Additionally Required Circuit Lines

As discussed in Section I, the number of additionally
required circuit lines is an important criterion in evaluating the
performance of synthesis approaches for reversible circuits.
While obtaining a circuit requiring a minimal number of
additional circuit lines obviously is preferred, determining a
corresponding embedding for this purpose is a coNP-hard
and, hence, computationally expensive [20]. Accordingly, most
proposed solutions that guarantee minimality are rather lim-
ited. The currently best known results in this regard have
recently been published in [28]. Furthermore, an upper bound
of n+m lines is known [24]. In a first series of experiments,
we compare the number of additionally needed circuit lines
required by the approach proposed in this work to these
numbers.

The columns denoted Lines in Table III provide the re-
spective numbers, i.e. the minimal value as well as the value
obtained by the upper bound (which is n + m). Note that
knowing the minimal number of required circuit line does not
necessarily imply that also an embedding has been determined
yet. The number of circuit lines additionally required when
applying the synthesis approach proposed in this work is
provided in column Prop..

The results clearly show the efficiency of the proposed
solution with respect to this metric. Although a minimal
number of lines cannot be guaranteed (but are bounded by
n+m; see Section III), not more than the minimum is required
in the majority of the cases (in fact, this holds for 18 out of 31
cases). In many of the other cases just one more line than the
minimum is required.
B. Comparison to Existing Synthesis Schemes

In a second series of evaluations, we compared the proposed
synthesis approach to existing synthesis schemes. As reviewed
in Section I and Fig. 1, two schemes got established in
the past: Functional solutions (represented by QMDD-based
synthesis [19] and Ancilla-free synthesis [18]), which rely on
reversible functions only and structural solutions which rely
on conventional functions or circuit descriptions and simply
map them to reversible circuits (represented by BDD-based
synthesis [22]). While the former relies on embedding and,
hence, is not scalable, the latter yields circuits with a substan-
tial number of additionally required circuit lines.

For all these synthesis approaches as well as for the pro-
posed approach, the total number of required circuit lines
(denoted by l), the resulting quantum costs (denoted by QC),
as well as the run-time needed in order to generate the circuit
(denoted by t in CPU seconds) are provided in Table III.

The results clearly show the benefits of the proposed ap-
proach: It is scalable and faster by several orders of magnitude
(in contrast to the functional solutions) and, at the same time,
keeps the number of circuit lines moderate (in contrast to
the structural solution). With respect to the quantum costs
average improvements of 96.4% and 82.7% compared to
the QMDD-based and Ancilla-free approaches are reported,
respectively. Indeed, the BDD-based solution performs signif-
icantly better with respect to quantum costs, which can be
explained by the enormous amount of additional circuit lines
that allows for these costs reduction (also observed before
in [26]) but eventually yields impractical circuits. Note that the
amount of additional circuit lines is more critical, since each
line has to be represented physically whereas the quantum cost
is an abstract measure to quantify the complexity of the circuit.

Overall, these experimental evaluations confirm that the
proposed approach is a promising alternative to previously
considered synthesis schemes.



TABLE III: Experimental results
Functional synthesis Structural Synthesis

Lines QMDD-based [19] Ancilla-free [18] BDD-based [22] Proposed Approach
Name PI PO Min. n + m Prop. l QC t QC t l QC t l QC t
C7552 5 16 20 21 21 20 309 008 133.89 180 894 8.53 35 202 0 21 19 310 0.19
bw 5 28 32 33 32 32 TO 3 766 784 2076.51 87 943 0 32 70 512 0.5
sym6 6 1 7 7 7 7 41 552 0.02 8 911 0.11 14 93 0.01 7 2 081 0.08
con1 7 2 8 9 9 8 139 118 0.09 22 988 0.23 16 96 0 9 1 466 0.08
5xp1 7 10 10 17 17 10 724 052 1.07 134 267 3.99 30 254 0.01 17 38 149 0.35
urf2 8 8 8 16 8 8 165 697 0.14 24 066 0.19 209 3 187 0.02 8 88 005 0.13
adr4 8 5 9 13 9 9 290 997 0.26 64 309 0.78 16 74 0.01 9 7 422 0.27
rd84 8 4 11 12 11 11 2 445 223 10.95 401 660 20.6 34 304 0.01 11 34 948 0.08
dc2 8 7 13 15 14 13 5 612 922 74.78 1 395 422 224.06 48 431 0 14 7 157 0.09
misex1 8 7 14 15 15 14 10 115 630 274.82 2 733 073 1046.12 35 288 0.01 15 3 520 0.09
hwb9 9 9 9 18 9 9 629 433 0.91 73 465 0.79 170 2 275 0 9 308 345 0.19
urf1 9 9 9 18 9 9 533 680 0.71 74 858 0.66 374 6 080 0.01 9 243 680 0.18
urf5 9 9 9 18 9 9 185 752 0.13 32 676 0.16 216 2 796 0.01 9 83 765 0.13
sym9 9 1 10 10 10 10 1 276 583 2.94 174 678 3.19 27 206 0.01 10 28 641 0.09
clip 9 5 11 14 14 11 3 036 313 16.88 434 952 18.06 66 704 0 14 95 585 0.13
dk27 9 9 15 18 18 15 35 018 963 3773.21 11 254 565 8598.83 27 140 0 18 5 570 0.12
urf3 10 10 10 20 10 10 1 347 318 3.76 162 225 2.15 668 11 357 0.01 10 544 220 0.33
sym10 10 1 11 11 11 11 3 780 469 23.05 461 538 12.01 32 253 0.02 11 47 761 0.09
urf4 11 11 11 22 11 11 4 508 910 40.74 491 645 12.1 1513 28 523 0.05 11 2 052 585 0.96
Cycle10 2 12 12 12 24 12 12 6 286 0.07 4 200 0.05 39 202 0.03 12 4 966 0.2
co14 14 1 15 15 15 15 38 678 808 2677.82 10 028 634 730.96 27 159 0 15 27 101 0.09
urf6 15 15 15 30 15 15 14 432 936 336.52 1 215 312 3.96 2896 34 361 0.47 15 3 470 000 1.51
exp5p 8 63 68 71 70 ∼ ∼ ∼ ∼ ∼ 206 1 843 0.01 70 1 371 657 4.84
pdc 16 40 55 56 56 ∼ ∼ ∼ ∼ ∼ 619 6 500 0.07 56 5 548 032 11.84
spla 16 46 61 62 62 ∼ ∼ ∼ ∼ ∼ 489 5 925 0.05 62 7 176 407 11.19
cps 24 109 132 133 132 ∼ ∼ ∼ ∼ ∼ 923 8 487 0.02 132 10 762 208 37.71
frg1 28 3 30 31 31 ∼ ∼ ∼ ∼ ∼ 95 747 0.00 31 196 832 0.51
apex2 39 3 42 42 42 ∼ ∼ ∼ ∼ ∼ 498 5 922 0.12 42 4 007 343 8.25
seq 41 35 75 76 76 ∼ ∼ ∼ ∼ ∼ 1617 19 362 0.39 76 66 031 172 432.89
e64 65 65 129 130 129 ∼ ∼ ∼ ∼ ∼ 195 907 0.02 129 40 859 371 82.81
ex4p 128 28 146 156 156 ∼ ∼ ∼ ∼ ∼ 491 3 620 0.01 156 59 708 967 475.45

VI. CONCLUSIONS

In this work, we investigated how to overcome the problems
of previously proposed solutions for the synthesis of reversible
circuits. To this end, we skipped the embedding process
(usually a necessity for synthesis of reversible circuits aiming
for a small number of additionally required circuit lines)
and, instead, dealt with the problem of ensuring a unique
input/output mapping during the actual synthesis. Experimen-
tal evaluations showed the promises of this alternative direc-
tion. In fact, ignoring embedding and handling the resulting
problems during the actual synthesis provides the basis for
an alternative synthesis scheme that allows for synthesizing
arbitrary Boolean functions in reasonable time and without
the need of a prior embedding process. Future work includes
hardening the findings of this work towards a fully-fledged
implementation of this new scheme and further evaluations
towards a better understanding of the benefits of this approach.
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