
Extensions to the
Reversible Hardware Description Language SyReC

Zaid Alwardi∗† Robert Wille‡§ Rolf Drechsler∗§

∗Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
†Collage of Engineering, Al-Mustansiriya University, Baghdad, Iraq

‡Institute for Integrated Circuits, Johannes Kepler University Linz, A-4040 Linz, Austria
§Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany

{alwardi,drechsle}@informatik.uni-bremen.de robert.wille@jku.at

Abstract—Hardware Description Languages (HDL) are pro-
posed to facilitate the design of complex circuits and to allow
for scalable synthesis. While rather established for conventional
circuits, HDLs for the design and synthesis of reversible circuits
are at the beginning. SyReC is a representative of such an HDL
which already has successfully be applied to realize complex
functionality in reversible logic. Nevertheless, the grammar and,
by this, the functional scope of this language is rather limited. In
this work, we propose extensions to the SyReC HDL which will
enhance the usability of the language. For each extension, we
additionally provide corresponding synthesis schemes. Overall,
this yields a new (extended) SyReC HDL, which will simplify the
design and realization of corresponding circuits.

I. INTRODUCTION

The reversible computing paradigm is receiving increasing
attention (in particular for so-called emerging technologies)
and provides the basis for several applications including but
not limited to quantum computation [1], [2], certain aspects
of low-power design [3], the design of adiabatic circuits [4],
interconnect design [5], [6], and encoding and decoding
devices [7]. Reversible circuits can only realize bijective
operations, i.e. functions that map each possible input vector to
a unique output vector. Then, computations can be conducted
in either direction.

The design of reversible circuits and systems significantly
differs from the conventional design flow. This is seen in all
abstraction levels down to the applied building blocks and gate
libraries. Already a simple standard operation like the logical
AND illustrates the differences to the reversible computing
paradigm: Although it is possible to uniquely compute the
inputs of an AND gate whose output is 1 (then both inputs
must have been 1 as well), it is not possible to determine the
input values if the AND outputs 0.

As a consequence, new methods for the design and synthesis
of reversible circuits have been introduced. Thus far, the
majority of them focused on the realization of reversible
circuits derived from functional descriptions provided in terms
of truth tables [8], [9], two-level descriptions [10], [11],
decision diagrams [12], [13], or similar (Boolean) function
representations. Obviously, these approaches are limited by
their restricted scalability and are not competitive to the state-
of-the-art design flows available for conventional circuits and
systems.

In order to address this problem, hierarchical approaches
have been introduced which decompose a given function
to be synthesized into a set of smaller sub-functions and,
hence, apply a divide-and-conquer scheme. Approaches based
on Hardware Description Languages (HDL) have been pro-

posed [14], [15]. These solution indeed allow for the synthesis
of large functionality.

SyReC is a reversible HDL, which has been introduced
to facilitate the description of reversible circuits by means
of simple high level codes [14]. A corresponding synthesis
scheme showed the ability to describe and synthesize complex
functionality, such as a reversible CPU [16]. SyReC, as a tool
for reversible circuit synthesis, witnessed some enhancements,
which focused mainly on optimizing SyReC-based synthe-
sis [17], [14], [18] or the SyReC programming style [19]. On
the other hand, the language itself still maintains the same
grammar since its first release.

In this work, we propose syntactical extensions to the
SyReC language to simplify the programming with this HDL.
To this end, grammatical rules of the language are modified to
be simpler, new operators are defined, and new statements are
added to the grammar. In order to keep the synthesizability
of the HDL, we additionally provide corresponding synthesis
schemes for each proposed extension. These extensions facil-
itate SyReC-based design of reversible circuits.

The remainder of this work is structured as follows: The
next section provides an overview on the reversible computing
paradigm. In Sec. III, the reversible HDL SyReC is briefly
reviewed to explain the main features of the language. After-
wards, the proposed extensions are introduced and illustrated
by means of examples which compare the original program-
ming style with the newly proposed one. Besides that, how to
synthesize the new descriptions is described. Finally, the work
is concluded in Sec. V.

II. PRELIMINARIES

To keep the paper self-contained, this section introduces
necessary definitions of reversible logic and circuits.

A. Reversible Functions

A propositional or Boolean function f : IBn → IBn over
the variables X = {x1, . . . , xn} is called reversible if it is
bijective. Clearly, many Boolean functions of practical interest
are not reversible (e.g. the conjunction of two propositional
variables with a truth table represented by the bit-string 0001).
In order to realize such functionality as reversible circuit,
the corresponding functions are embedded [20], [21]. This is
achieved by adding so-called garbage outputs which are used
to distinguish equal output patterns, thus making the function
injective. As a last step in the embedding constant inputs are
added to equalize the number of input variables and output
variables of the function, thus making it bijective.

a = 1 a′ = 0

b = 1 b′ = 1

c = 1 c′ = 10

1

1

0

1

0

0

1

0

Fig. 1. Reversible circuit

B. Reversible Circuits
Reversible functions can be realized by reversible circuits in

which each variable of the function is represented by a circuit
line. To maintain the bijectivity property of the reversible
function, fan-out and feedback are not directly allowed in
reversible circuits. As a consequence, reversible circuits can
be built as a cascade of reversible gates G = g1 . . . gd. There
exist different gate libraries that are being used to build
reversible circuits. However, in the scope of this work we
restrict ourselves to the most commonly used ones containing
the Toffoli gate [22] and the Fredkin gate [23]. For this purpose
each gate gi in the circuit is denoted by t(C, T) with
• a gate type t ∈ {T,F},
• control lines C ⊂ X , and
• target lines T ⊆ X \ C.
Each gate gi realizes a reversible function fi : IBn → IBn.

If t = T, i.e. the gate is a Toffoli gate, we have T = {xt}
and fi maps

(x1, . . . , xn) 7→ (x1, . . . , xt−1, xt ⊕
∧
c∈C

c, xt+1, . . . , xn),

i.e. the value on line xt is inverted if and only if all
control values are assigned 1. A Toffoli gate is called a
NOT gate if |C| = 0. For a Fredkin gate, i.e. t = F, we
have T = {xs, xt} and fi maps

(x1, . . . , xn) 7→
(x1, . . . , xs−1, x

′
s, xs+1, . . . , xt−1, x

′
t, xt+1, . . . , xn),

with x′s = c̄′xs ⊕ c′xt, x′t = c̄′xt ⊕ c′xs, and c′ =
∧

c∈C c,
i.e. the values of the target lines are interchanged (swapped) if
and only if all control values are assigned 1. A Fredkin gate is
also referred to as SWAP gate if |C| = 0. The function realized
by the circuit is the composition of the functions realized by
the gates, i.e. f = f1 ◦ f2 ◦ · · · ◦ fd.

In addition to the constant inputs and garbage outputs that
are added to a function in the process of embedding, for
circuits we are also considering so-called ancilla lines. Ancilla
lines hold a constant input assigned some Boolean value v and
are used in such a way that their output is always v. Moreover,
when considering circuits that realize a complex functionality
some lines may be semantically grouped as a signal, e.g. if
the circuit realizes the addition of two 32-bit values.

Example 1. Fig. 1 shows a reversible circuit with three lines
and four gates. The first, second, and fourth gates are Toffoli
gates with a different number of control lines. The target line
is denoted by ⊕ whereas the control lines are denoted as solid
black dots. The third gate is a Fredkin gate which target lines
are denoted by ×.

III. THE REVERSIBLE HDL SYREC

A major motivation of research in the domain of reversible
circuit synthesis is the striving for better scalability in order

1 module simple_alu(in op(2), in a, in b, out c)
2 if (op = 0) then
3 c ˆ= (a + b)
4 else
5 if (op = 1) then
6 c ˆ= (a - b)
7 else
8 if (op = 2) then
9 c ˆ= (a * b)

10 else
11 c ˆ= (a / b)
12 fi (op = 2)
13 fi (op = 1)
14 fi (op = 0)

Fig. 2. SyReC description of a simple ALU

to enable the efficient design of complex functionality. Conse-
quently, HDLs became a focus of ongoing research. One of the
first versions of an HDL for reversible circuits named SyReC
has been introduced in [14]. SyReC is based on the reversible
software language Janus [24], which has been enriched by
further concepts (e.g. declaring circuit signals of different bit-
widths), new operations (e.g. bit-access and shifts), and some
restrictions (e.g. the prohibition of dynamic loops). In the
following, we briefly review the main concepts of this HDL
by means of Fig. 2 which depicts a SyReC specification of
a simple arithmetic logic unit (for a more detailed treatment,
we refer to [14]).

As can be seen in Fig. 2, a SyReC description includes
the declaration of modules and signals of the circuit to be
specified (Line 1). Signals represent non-negative integers as
their sole data type. Furthermore, a variety of statements and
expressions are available to specify the functionality of the
circuit and, in order to ensure reversibility, these statements
must satisfy certain criteria. For example, in each conditional
statement, the if-expression has to be terminated by a cor-
responding fi-expression (see e.g. Line 8 and 12). Further-
more, statements and expressions are distinguished between
reversible assignment operations (denoted by ⊕=) and not
necessarily reversible binary operations (denoted by �).

Reversible assignment operations assign values to a signal
on the left-hand side. Therefore, the respective signal must not
appear in the expression on the right-hand side. Furthermore,
only a restricted set of assignment operations exists, namely
increase (+=), decrease (-=), and bit-wise XOR (ˆ=). These
operations preserve the reversibility (i.e. it is possible to
compute these operations in both directions).

In contrast, binary operations, e.g. arithmetic, bit-wise,
logical, or relational operations, may not be reversible. Thus,
they can only be used in right-hand expressions which pre-
serve the values of the respective inputs. In doing so, all
computations remain reversible since the input values can be
applied to reverse any operation. For example, to specify the
multiplication (a ∗ b) in Fig. 2 Line 9, a new free signal c in
combination with a reversible assignment operation is applied.

The entire grammar of SyReC as originally proposed in [14]
is provided at the end of this paper in Fig. 11.

IV. EXTENSIONS TO THE SYREC GRAMMAR

This section introduces the extensions to the SyReC gram-
mar. For each extension, a comparison to the original pro-
gramming style is provided. Besides that, we also respectively
discuss the corresponding synthesis scheme, which allows to
still automatically realize the resulting new HDL descriptions.

1 module sub_circuit(inout a(1), inout b(1), out f(1))
2 wire w(1)
3 f ˆ= (a & b)
4 w ˆ= (a | b)
5 w <=> b
6

7 module main(inout x(1), inout y(1))
8 wire g(1)
9 call sub_circuit(x,y,g)

10 x <=> g
3.a. SyReC code

x (x & y)

y (x | y)

0
g f −

0
w −

0 −

0 −

×

×
×

×

3.b. Resulting circuit

Fig. 3. SyReC description with sub-module

A. Import of Alternative Circuit Descriptions
SyReC descriptions are modular, e.g. the main module is

composed of statements and other modules. When SyReC
parses the code, it generates a tree-structure for the main
module, which contains sub-modules as sub-trees. The next
phase is to convert this tree-structure into a reversible circuit
object. This process is a done in a bottom-up fashion, where
sub-modules and statements are synthesized first and then
interconnected together to generate the main circuit definition.

Example 2. Consider Fig. 3.a which shows a SyReC program
composed of two modules main and sub_circuit. The first
is the top level module that calls the later in Line 9 using a
call-statement. Applying the synthesis method, this yields the
circuit as shown the bottom of Fig. 3.b .

However, thus far, this modularity has only been used to
import circuit descriptions provided in the SyReC language
itself. But often, building blocks are available (and could
be used) which are provided e.g. in gate level descriptions.
These descriptions could not been used in the current version
of SyReC. This frequently prevents the realization of more
compact circuits, because often cheaper building blocks cannot
be described in SyReC, but e.g. only in terms of gate level
descriptions.

In order to avoid this problem, we propose an extension
to support the import of alternative circuit descriptions (as an
example of an alternative descriptions, circuits described in
the .real-format as introduced in [25] are considered). To
this end, we extend the grammar from Fig. 11 by allowing for
an <import-list> as defined in Fig. 12 (Lines 26-27, 33).

Example 3. Fig. 4.a shows a circuit description which is
functionally equivalent to the description considered before in
Fig. 3.a. However, instead of relying on a SyReC description
for sub_circuit, the corresponding buiding block is now
provided in terms of a gate level description (provided in
the .real-format) as shown in Fig. 4.b and imported using
the newly added statement (Line 1). Overall, this yield a
significantly smaller circuit as shown in Fig. 4.c.

1 import sub_circuit from circuit_file.real
2

3 module main(inout x(1), inout y(1))
4 wire g(1)
5 call sub_circuit(x,y,g)
6 x <=> g

4.a. SyReC code

1 # ----- circuit_file.real ------
2 # This file has been generated using
3 # RevKit 1.3-snapshot (www.revkit.org)
4 .version 2.0
5 .numvars 3
6 .variables x0 x1 x2
7 .inputs a b const_0
8 .outputs a b f
9 .constants --0

10 .garbage --1
11 .begin
12 t3 x0 x1 x2
13 t3 x0 x2 x1
14 t2 x0 x1
15 .end

4.b. Gate level description of the sub-circuit

x (x & y)

y (x | y)

0 −g f ×

×

4.c. Resulting circuit

Fig. 4. SyReC description with gate level sub-module

This extension does not change the call statement in the
main code and also does not add any additional complexity to
the synthesis scheme. In fact, it simplifies the synthesis process
as some parts of the circuit are already synthesized and only
have to be accordingly interconnected. However, because the
functions of imported circuits are not explicitly described in
the code, their behaviors must be verified before importing
them.

B. Bit-wise Rotation
Reversible HDLs are supposed to facilitate the description

of reversible circuits and, by this, allow for a more efficient
design. To this end, it should provide as much as possible
building blocks. While the current version of SyReC already
provides several of the corresponding description means, it
misses bit-wise rotation operations. This is a problem, since
bit-wise rotation is obviously a reversible operation and,
additionally, receives special significance in cyclic-coding ap-
plications and cryptography [26].

Using the original grammar of SyReC, programmers need
to write a sophisticated code to perform rotation opetation bit-
by-bit in SyReC. To this end, they can re-use the related shift
operators << and >>, which, however, are not reversible and,
hence, require additional circuit lines. This is not only counter-
intuitive (and, hence, against the aim of facilitating the design
process) but also yields significantly larger circuits.

Example 4. Fig. 5.a shows a SyReC code to update the 8-bit
signal y using the ˆ= operator with the value of the signal x
rotated 3-bits to the left. This code shows that the operation is
defined bit-by-bit. Obviously, the resulting code is rather un-
intuitive. Moreover, the resulting circuit (shown in Fig. 5.b)
is rather large due to the need to embedd this shift operation
with an additional signal x.

1 module test(inout x(8), inout y(8))
2 y.7:3 ˆ= x.4:0
3 y.2:0 ˆ= x.7:5

5.a. SyReC code

x.0 x.0

x.1 x.1

x.2 x.2

x.3 x.3

x.4 x.4

x.5 x.5

x.6 x.6

x.7 x.7

y.0 y.0

y.1 y.1

y.2 y.2

y.3 y.3

y.4 y.4

y.5 y.5

y.6 y.6

y.7 y.7

5.b. Resulting circuit

Fig. 5. Original SyReC description realizing a signal rotation

To overcome this problem, we propose to extend the SyReC
grammar with the corresponding rotation operation <| and
|> (for rotate-left and rotate-right, respectively). These new
operators are added to the extended SyReC grammar as shown
in Fig. 12 (Line 28, 31, 32). Since a rotation operation only
swaps bits by a respectively given number, both newly added
operations can be synthesized by a set of swap statements.

Example 5. Using the extended grammar, the rotation opera-
tion from Fig. 5.a can be described in a significantly more
efficient fashion as shown in Fig. 5.a. Moreover, also the
resulting circuit (shown in Fig. 5.b) is more compact, because
the reversible rotation operation is now directly realized at the
8-bit signal y using a cascade of SWAP gates.

C. Optional fi-conditions
In order to guarantee reversibility of the descriptions of

reversible HDLs, a reversible control flow has to be imple-
mented [14]. Consequently, conditional statements do not only
require an if-condition (in order to decide which of the then-
or the else-block is to be executed next), but also a so-called fi-
condition (for the same reason, if the computation is conducted
in reverse direction). This was first introduced in the reversible
software language Janus [24], where the fi-condition is called
an assertion. SyReC, which is based on Janus, inherited this
assertion. Moreover, HDL descriptions do occur from which it
is not possible to realize a reversible control flow at all. Hence,
designers of reversible circuits and systems are not only faced
with the problem of properly describing a reversible control
flow, but also the uncertainty whether such a control flow is
even possible.

1 module test(inout x(8), inout y(8))
2 y.7:3 <=> y.4:0
3 y.2:1 <=> y.1:0

6.a. SyReC code

y.0 y.0

y.1 y.1

y.2 y.2

y.3 y.3

y.4 y.4

y.5 y.5

y.6 y.6

y.7 y.7×

×

×

×

×

×

×

×

×

×

×
××
×

6.b. Resulting circuit

Fig. 6. Improved SyReC description realizing a signal rotation

Example 6. Fig. 2 shows a SyReC description with sev-
eral fi-conditions that are identical to the corresponding if-
conditions. In this specific example, the value of op (which is
used in the if-condition) is not updated within the conditional
statement and, hence, this case represents an example of a
completely reversible if-statement which can be computed in
both directions. In contrast, Fig. 7 shows a SyReC description
where the value of the operands x, y (which are used in
the if-condition) are updated within the conditional statement.
Accordingly, a respectively adjusted fi-condition is required.
Moreover, it is not obvious anymore whether the entire SyReC
description is still fully reversible.

Generating a fi-condition and/or checking for full reversibil-
ity is not always an intuitive task. Accordingly, automatic
solutions have recently been proposed in [27] for this purpose.

Example 7. Consider the conditional statement in Fig. 7. It
works for most of the possible assignments of x, y in both
directions. However, a problem occurs if e.g. x = 4 and y =
1 are considered. In forward direction, this would not satisfy
the if-condition and, hence, would trigger the execution of
the else-block (leading to x = 4 and y = 3). This assignment
however would satisfy the fi-condition, i.e. if executed in
reverse direction, the then-block would reversibly be executed
(leading to x = 3 and y = 3). In other words, the two input
states (x, y) = (4, 1) and (x, y) = (3, 3) both map to the output
state (4, 3) – a clear violation of the reversible computing
paradigm.

1 module partial_fi(inout x(32), inout y(32))
2 if (x = y) then
3 x += 1
4 else
5 y += 2
6 fi ((x - 1) = y)

Fig. 7. Partially reversible program

Now, this partially-reversible description can be checked
using the method proposed in [27]. However, then it still
remains the question how to fix the problem, i.e. how to
transfer this description into a reversible one. In fact, it is
not always possible or desirable to generate a fully-reversible
condition. But relying on the original grammar of SyReC, this
is mandatory.

0 0Gif

x x′

y y′

⊕=

Gthen ⊕=

Gelse

w = 0 −

Fig. 8. Realization of a partially reversible program

1 module partial_fi(inout x(32), inout y(32))
2 wire w(1)
3 if (x = y) then
4 x += 1
5 ˜= w
6 else
7 y += 2
8 fi w

Fig. 9. Improved SyReC description

As an alternative, we propose to accept this partial re-
versibility and, instead, apply additional circuit lines (similarly
to the embedding process [20], [21] where additional circuits
lines are employed to realize non-reversible functions). More
precisely, an additional one-bit wire signal is applied which
has a default initial value of 0 and gets set to 1 if and only if
the if-condition is satisfied. Then, this signal is used to trigger
either the respective realization of the then-block or the else
block as shown in Fig. 8. This solution guarantees a correct
computation at the extra-cost of a single bit only (which can
be re-computed to its initial value).

However, in order to make this solution consistent to the
definition of SyReC (where partially reversible descriptions are
not allowed), we have to modify the grammar again. In fact,
we simply have to make the fi-statement optional as shown
in Fig. 12 (Line 29). Whenever the fi-condition is provided,
a synthesizer simply realizes the corresponding expression.
Whenever the condition is omitted, a synthesizer uses the
algorithms proposed in [27] to generate a suitable fi-condition.
If this is possible (i.e. the conditional statement is completely-
reversible), the resulting fi-condition is realized. Otherwise,
a single bit wire is automatically declared and applied as
described above.

Example 8. Consider again the conditional statement shown
in Fig. 7. As this is a partially reversible description (as
determined using the approach from [27]), this code can
automatically be transformed to a functionally equivalent
description shown in Fig. 9 (with the fi-condition replaced
by an additional wire w).

D. Reversible Case-statement
Considering the same approach in dealing with

fi-conditions, other control statements can be proposed.
In fact, a reversible case-statement is now possible to be
realized. A case-statement is a special form of nested
if-statement structure, where all if-conditions have the same
form (choice_expression = <number>). Instead
of repeating the choice expression with each if-condition,
it is provided once at the beginning of the case statement.
This will tangibly enhance the readability of the code and
simplify the structure. It is a very intuitive task to map
those case-statements into equivalent nested-if structures and,
hence, also does not constitute a serious obstacle for the
synthesie process. Overall, this motivates extensions to the
SyReC grammar as shown in Fig. 12 (Line 28, 30).

1 module simple_alu(in op(2), in a, in b, out c)
2 with op select
3 case 0: c ˆ= (a + b)
4 case 1: c ˆ= (a - b)
5 case 2: c ˆ= (a * b)
6 case default: c ˆ= (a / b)
7 endcase

Fig. 10. SyReC description with case-statement

Example 9. Fig. 2 and Fig. 10 show two functionally equiv-
alent SyReC representation, where the former is written using
the original SyReC grammar (i.e. as a cascade of conditional
statements) and the latter is written using the proposed case
statement.

V. CONCLUSIONS

In this work, we considered the design of reversible circuits
based on the hardware description language SyReC. Although
SyReC-based design and synthesis has been considered from
various aspects in the past years, the language itself still
maintains the same gammas since its first release in 2010. As
shown in this work, this causes several shortcomings which
makes it hard to describe the desired behavior and often even
yields more expensive circuits. To address these problems, we
introduced extensions to the language and proposed a revised
grammar (shown in Fig. 12) which further facilitates the design
of complex reversible circuits. Examples and discussions illus-
trated the benefit of the extensions. In future work, we will
focus on supporting further description means such as PLA
and truth tables, BDDs, or even codes written in conventional
HDLs. Another concern is to support further data types for
numbers and signals.

REFERENCES

[1] M. Nielsen and I. Chuang, Quantum Computation and Quantum Infor-
mation. Cambridge Univ. Press, 2000.

[2] A. Barenco, C. H. Bennett, R. Cleve, D. DiVinchenzo, N. Margolus,
P. Shor, T. Sleator, J. Smolin, and H. Weinfurter, “Elementary gates
for quantum computation,” The American Physical Society, vol. 52,
pp. 3457–3467, 1995.

[3] A. Berut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider,
and E. Lutz, “Experimental verification of Landauer’s principle linking
information and thermodynamics,” Nature, vol. 483, pp. 187–189, 2012.

[4] A. De Vos, Reversible Computing: Fundamentals, Quantum Computing
and Applications. Weinheim: Wiley-VCH, 2010.

[5] R. Wille, R. Drechsler, C. Osewold, and A. G. Ortiz, “Automatic design
of low-power encoders using reversible circuit synthesis,” in Design,
Automation and Test in Europe, pp. 1036–1041, 2012.

[6] R. Wille, O. Keszocze, S. Hillmich, M. Walter, and A. G. Ortiz, “Syn-
thesis of approximate coders for on-chip interconnects using reversible
logic,” in Design, Automation and Test in Europe, pp. 1140–1143, 2016.

[7] A. Zulehner and R. Wille, “Taking one-to-one mappings for granted:
Advanced logic design of encoder circuits,” in Design, Automation and
Test in Europe, 2017.

[8] D. M. Miller, D. Maslov, and G. W. Dueck, “A transformation based
algorithm for reversible logic synthesis,” in Design Automation Conf.

[9] M. Soeken, R. Wille, C. Hilken, N. Przigoda, and R. Drechsler, “Syn-
thesis of reversible circuits with minimal lines for large functions,” in
ASP Design Automation Conf., pp. 85–92, 2012.

[10] K. Fazel, M. Thornton, and J. Rice, “ESOP-based Toffoli gate cascade
generation,” in Pacific Rim Conference on Communications, Computers
and Signal Processing, pp. 206–209, 2007.

[11] Y. Sanaee and G. W. Dueck, “ESOP-based Toffoli network generation
with transformations,” in Int’l Symp. on Multi-Valued Logic, pp. 276–
281, 2010.

[12] R. Wille and R. Drechsler, “BDD-based synthesis of reversible logic for
large functions,” in Design Automation Conf., pp. 270–275, 2009.

[13] C.-C. Lin and N. K. Jha, “RMDDS: Reed-Muller decision diagram
synthesis of reversible logic circuits,” J. Emerg. Technol. Comput. Syst.,
vol. 10, no. 2, p. 14, 2014.

Program and Modules
 〈program*〉 ::= 〈module〉 {〈module〉}
 〈module〉 ::= ‘module’ 〈identifier〉 ‘(’ [〈parameter-list〉] ‘)’ {〈signal-list〉} 〈statement-list〉
 〈parameter-list〉 ::= 〈parameter〉 {‘,’ 〈parameter〉}
 〈parameter〉 ::= (‘in’ | ‘out’ | ‘inout’) 〈signal-declaration〉
 〈signal-list〉 ::= (‘wire’ | ‘state’) 〈signal-declaration〉 {‘,’ 〈signal-declaration〉}
 〈signal-declaration〉 ::= 〈identifier〉 {‘[’〈int〉‘]’} [‘(’〈int〉‘)’]

Statements
 〈statement-list〉 ::= 〈statement〉 {‘;’ 〈statement〉}
 〈statement*〉 ::= 〈call-statement〉 | 〈for-statement〉 | 〈if-statement〉 | 〈unary-statement〉 | 〈assign-statement〉 | 〈swap-statement〉 | 〈skip-statement〉
 〈call-statement〉 ::= (‘call’ | ‘uncall’) 〈identifier〉 ‘(’ (〈identifier〉 {‘,’ 〈identifier〉}) ‘)’

 〈for-statement〉 ::= ‘for’ [[‘$’ 〈identifier〉 ‘=’] 〈number〉 ‘to’] 〈number〉 [‘step’ [‘-’] 〈number〉] 〈statement-list〉 ‘rof’
 〈if-statement*〉 ::= ‘if’ 〈expression〉 ‘then’ 〈statement-list〉 ‘else’ 〈statement-list〉 ‘fi’ 〈expression〉
 〈assign-statement〉 ::= 〈signal〉 (‘ˆ’ | ‘+’ | ‘-’) ‘=’ 〈expression〉
 〈unary-statement〉 ::= (‘˜’ | ‘++’ | ‘--’) ‘=’ 〈signal〉
 〈swap-statement〉 ::= 〈signal〉 ‘<=>’ 〈signal〉
 〈skip-statement〉 ::= ‘skip’
 〈signal〉 ::= 〈identifier〉 {‘[’ 〈expression〉 ‘]’} [‘.’ 〈number〉 [‘:’ 〈number〉]]

Expressions
 〈expression〉 ::= 〈number〉 | 〈signal〉 | 〈binary-expression〉 | 〈unary-expression〉 | 〈shift-expression〉
 〈binary-expression〉 ::= ‘(’ 〈expression〉 (‘+’ | ‘-’ | ‘ˆ’ | ‘*’ | ‘/’ | ‘%’ | ‘*>’ | ‘&&’ | ‘||’ | ‘&’ | ‘|’ | ‘<’ | ‘>’ | ‘=’ | ‘!=’ | ‘<=’ | ‘>=’)

〈expression〉 ‘)’
 〈unary-expression〉 ::= (‘!’ | ‘˜’) 〈expression〉
 〈shift-expression*〉 ::= ‘(’ 〈expression〉 (‘<<’ | ‘>>’) 〈number〉 ‘)’

Identifier and Constants
 〈letter〉 ::= (‘A’ | . . . | ‘Z’ | ‘a’ | . . . | ‘z’)
 〈digit〉 ::= (‘0’ | . . . | ‘9’)
 〈identifier〉 ::= (‘ ’ | 〈letter〉) {(‘ ’ | 〈letter〉 | 〈digit〉)}
 〈int〉 ::= 〈digit〉 {〈digit〉}
 〈number〉 ::= 〈int〉 | ‘#’ 〈identifier〉 | ‘$’ 〈identifier〉 | (‘(’ 〈number〉 (‘+’ | ‘-’ | ‘*’ | ‘/’) 〈number〉 ‘)’)

Fig. 11. Grammar of the hardware description language SyReC. Rules in Line 1 and 8 (highlighted by *) are extended in the new grammar

Program and Modules
 〈program〉 ::= [〈import-list〉] 〈module〉 {〈module〉}
 〈import-list〉 ::= ‘import’ 〈identifier〉 ‘from’ 〈file〉 {‘,’ 〈identifier〉 ‘from’ 〈file〉 }

Statements
 〈statement〉 ::= 〈call-statement〉 | 〈for-statement〉 | 〈if-statement〉 | 〈unary-statement〉 | 〈assign-statement〉 | 〈swap-statement〉 | 〈skip-statement〉 |

〈case-statement〉| 〈rotate-statement〉
 〈if-statement〉 ::= ‘if’ 〈expression〉 ‘then’ 〈statement-list〉 ‘else’ 〈statement-list〉 ‘fi’ [〈expression〉]
 〈case-statement〉 ::= ‘with’ 〈identifier〉 ‘select’ { ‘case’ 〈number〉 ‘:’ 〈statement-list〉} [‘case’ ‘default’ ‘:’ 〈statement-list〉] ‘endcase’
 〈rotate-statement〉 ::= 〈signal〉 (‘<|’ | ‘|>’) ‘=’ 〈number〉

Expressions
 〈shift-expression〉 ::= ‘(’ 〈expression〉 (‘<<’ | ‘>>’| ‘<|’ | ‘|>’) 〈number〉 ‘)’

Identifier and Constants
 〈file〉 ::= 〈identifier〉 [‘.real’]

Fig. 12. Extension to the grammar of the hardware description language SyReC

[14] R. Wille, E. Schönborn, M. Soeken, and R. Drechsler, “SyReC: A
hardware description language for the specification and synthesis of
reversible circuits,” INTEGRATION, the VLSI Jour., vol. 53, pp. 39–53,
2016.

[15] M. K. Thomsen, “A functional language for describing reversible logic,”
in Forum on Specification and Design Languages, pp. 135–142, 2012.

[16] R. Wille, M. Soeken, D. Große, E. Schönborn, and R. Drechsler,
“Designing a RISC CPU in reversible logic,” in Int’l Symp. on Multi-
Valued Logic, pp. 170–175, 2011.

[17] R. Wille, M. Soeken, E. Schönborn, and R. Drechsler, “Circuit line
minimization in the HDL-based synthesis of reversible logic,” in IEEE
Annual Symposium on VLSI, pp. 213–218, 2012.

[18] Z. AlWardi, R. Wille, and R. Drechsler, “Towards line-aware realiza-
tions of expressions for HDL-based synthesis of reversible circuits,” in
Reversible Computation, pp. 233–247, 2015.

[19] Z. Alwardi, R. Wille, and R. Drechsler, “Re-writing HDL descriptions
for line-aware synthesis of reversible circuits,” in Int’l Symp. on Multi-
Valued Logic, pp. 31–36, 2016.

[20] D. Maslov and G. W. Dueck, “Reversible cascades with minimal
garbage,” IEEE Trans. on CAD, vol. 23, no. 11, pp. 1497–1509, 2004.

[21] R. Wille, O. Keszöcze, and R. Drechsler, “Determining the minimal
number of lines for large reversible circuits,” in Design, Automation

and Test in Europe, 2011.
[22] T. Toffoli, “Reversible computing,” in Automata, Languages and Pro-

gramming (W. de Bakker and J. van Leeuwen, eds.), p. 632, Springer,
1980. Technical Memo MIT/LCS/TM-151, MIT Lab. for Comput. Sci.

[23] E. F. Fredkin and T. Toffoli, “Conservative logic,” International Journal
of Theoretical Physics, vol. 21, no. 3/4, pp. 219–253, 1982.

[24] T. Yokoyama and R. Glück, “A reversible programming language and its
invertible self-interpreter,” in Symp. on Partial evaluation and semantics-
based program manipulation, pp. 144–153, 2007.

[25] R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drechsler, “RevLib:
an online resource for reversible functions and reversible circuits,”
pp. 220–225, 2008. RevLib is available at http://www.revlib.org.

[26] K. Datta, V. Shrivastav, I. Sengupta, and H. Rahaman, “Reversible
logic implementation of AES algorithm,” in International Conference
on Design Technology of Integrated Systems in Nanoscale Era, pp. 140–
144, 2013.

[27] R. Wille, O. Keszöcze, L. Othmer, M. K. Thomsen, and R. Drechsler,
“Generating and checking control logic in the hdl-based design of
reversible circuits,” in Reversible Computation, pp. 160–166, 2016.

