
Exploiting Reversible Logic Design
for Implementing Adiabatic Circuits

Andreas Rauchenecker, Timm Ostermann, Robert Wille
Institute for Integrated Circuits

Johannes Kepler University, Austria
Email: andreas.rauchenecker@jku.at, timm.ostermann@jku.at, robert.wille@jku.at

Abstract—Today, energy saving is a major design target,
since the number of mobile- or power-independent devices is
increasing. These devices should operate as long as possible
with one battery charge. Especially for designs where speed
is of secondary importance, adiabatic circuits are a promising
alternative. These kind of circuits are rather slow but extremely
energy efficient. However, the full potential of adiabatic circuits
can only be fully exploited if computations are conducted in a
reversible fashion. This is not the case for conventional circuits
which are usually composed of non-reversible gates such as
AND, OR, etc. At the same time, design methods for so-called
reversible circuits received significant interest – mainly motivated
by emerging technologies such as quantum computation or
encoder design. In this work, we exploit the accomplishments of
these complementary areas and, realize fully reversible adiabatic
circuits. Experimental evaluations show that this yields circuits
which have a substantially smaller power consumption than
conventional circuit technologies.

Keywords—reversible logic, adiabatic circuits, Toffoli gate,
synthesis

I. INTRODUCTION

In the modern world, computation devices are found every-
where. Most visible might be desktop and laptop computers,
but the vast majority of computation devices is actually
embedded in everything from children’s toys to smartphones.
In particular for the latter applications, power consumption
becomes a major issue as it is directly related to usability
and convenience in power-limited contexts. For example,
battery-powered devices often need to be charged (e.g. smart-
phones almost daily) or require a change of batteries (e.g. hear-
ing aids every week).

If conventional CMOS technologies reach their limits in
further decreasing the power consumption, adiabatic circuits
provide a promising alternative. Although these circuits are
rather slow and require significantly more area than con-
ventional circuits, they allow for executing computations in
a power-efficient fashion. Hence, particularly for systems
which (1) rely on a battery or other low-power connections,
(2) are designed for a specialized application rather than for
general computation, and (3) operate with little-to-no external
input for long periods of time, adiabatic circuits provide an
ideal trade-off. These findings led to many realizations of
adiabatic circuits such as Efficient Charge Recovery Logic
(ECRL, [1], [2]) or Split-level Charge Recovery Logic (SCRL,
[3], [4]). However, the full potential of adiabatic circuits
cannot be exploited by these solutions since they still consider
the realization of conventional functions composed of gates
such as AND, OR, etc. This is a significant drawback since

energy recovery in adiabatic circuits relies, besides others, on
reverting (i.e. uncomputing) the functionality of single gates.
In fact, reversible computations allow to explicitly control a
so-called discharge path and, by this, to re-use energy which
has been loaded to capacitors. Unfortunately, only very few
works exists which explicitly investigated the realization of
purely reversible functions in the domain of adiabatic circuits
(probably due to the fact that most circuits available thus far
are inherently non-reversible). Among those are the works
proposed in [5], [6], which however realized the reversible
circuits again using conventional design methods (loosing the
the benefit for adiabatic circuits). In [7], reversible functions
have been realized in a quasi-adiabatic logic style – but again,
without explicitly controlling the discharge path in order to
save energy. Only the concept of Reversible Energy Recovery
Logic (RERL, [8]) makes explicit use of this characteristic
and employs a reversible gate in order to fully exploit the
adiabatic computation and save energy. The main problem
with this solution is, however, that very limited functionality
has been realized with this concept thus far. Until today, no
synthesis and technology mapping flow is available which lifts
adiabatic circuits fully exploiting their potential to a level that
allow for the realization of complex functionality. In this work,
we propose such a methodology for circuits designed with
methods for reversible circuits [9], [10], [11], [12], [13], [14],
[15]. A technology scheme is proposed which realizes the
logical circuits obtained by these solutions into corresponding
transistor netlists – while at the same time satisfying all
“rules” to be considered in order to fully exploit the benefits
of adiabatic computation. Based on these contributions, a
synthesis flow results which, for the first time, allows for the
realization of fully reversible adiabatic circuits. Experimental
evaluations show that the resulting circuits indeed outperform
conventional solutions with respect to energy consumption.

The remainder of this paper is structured as follows: Sec-
tion II reviews the basics on both (complementary) research
areas, reversible circuit design and adiabatic circuits. This
provides the motivation of our work (outlined in Section III)
and leads to our main contribution: the implementation of
fully reversible adiabatic circuits. Technical details on the
corresponding implementation are afterwards covered in Sec-
tion IV, while the resulting synthesis flow is described in
Section V. The performance of the obtained reversible adia-
batic circuits is finally evaluated and compared to conventional
realizations summarized in Section VI. Section VII concludes
the paper.



x1 = 3
x2 = 1

x1 = 3 x1 = 2 x1 = 1
x2 = 1 x2 = 2 x2 = 3

f1 = x1 + x2 = 4 f1 = x1 + x2 = 4

?

(a) Non-reversible logic

x1 = f−11 = 1
2 (f1 + f2) = 3

x2 = f−12 = 1
2 (f1 − f2) = 1

f1 = x1 + x2 = 4
f2 = x1 − x2 = 2

(b) Reversible logic

Fig. 1. Computation paradigms

II. BACKGROUND

This work deals with the exploitation of reversible circuits
for implementing adiabatic circuits. Hence, we first review the
corresponding background on both issues in this section.

A. Reversible Logic

In the past, researchers and engineers narrowed the inves-
tigation of computation machines down to a preponderantly
non-reversible logic paradigm. A simple standard operation
like the logical AND already illustrates that: Although, it is
possible to obtain the input values of an AND gate if the output
is set to 1 (then, both inputs must be set to 1 as well), it is not
possible to determine the input values if the AND outputs 0.

In contrast, reversible computation is an alternative com-
putation paradigm which only allows for bijective operations,
i.e. reversible n-input n-output functions that map each possi-
ble input vector to a unique output vector. The underlying idea
of reversible computation is exemplary illustrated in Fig. 1a
by means of a simple addition. Performing solely the addition
leads to an information loss and makes it impossible to undo
the calculation without knowing the original inputs. Instead,
if the addition is realized as shown in Fig. 1b computations
can be performed in a reversible fashion, i.e. from the inputs
to the outputs and vice versa.

Albeit not so well established yet, this computation
paradigm is of significant interest for many emerging tech-
nologies such as quantum computation [16] as well as new
ways for low-power computation [17], and additionally found
interest e.g. in the design of encoders [18], on-chip intercon-
nects [19], [20], or verification [21]. Consequently, a broad
variety of different design solutions have been proposed for
reversible logic – including e.g. exact methods that guarantee
minimality with respect to the number of gates (e.g. [9],
[10]) and heuristic approaches (e.g. [11], [12], [13], [14],
[15]) as well as dedicated hardware description languages [22]
which allow for the design of complex functionality. All these
methods rely thereby on a circuit model which inherently is
reversible.

More precisely, a reversible circuit realizes reversible func-
tions, i.e. logic functions f : Bm → Bm′ over inputs
X = {x0, . . . , xm−1}, where
• the number of inputs is equal to the number of outputs

(i.e. m = m′) and
• each input pattern maps to a unique output pattern.

Since non-reversible gates such as AND, OR, etc. do not
satisfy these characteristics (neither do they work on the

a

b

c

d

1
1
1
1

1
1
0
1

1
1
0
1

1
1
0
0

g1 g2 g3

Fig. 2. Reversible circuit

same number of inputs/outputs nor do they realize a unique
input/output mapping), reversible circuits are composed of
reversible gates only.

The most frequently occurring reversible gate is
the so-called Toffoli gate T (C, t) which is composed
of a set of control lines C = {xi0 , xi1 , . . . , xik−1

}
with C ⊂ X and a single target line xj ∈ X
with xj 6∈ C. This gate maps (x0, x1, . . . , xj , . . . , xm−1) to
(x0, x1, . . . , (xi0xi1 . . . xik−1

)⊕ xj , . . . , xm−1), i.e. the target
line is inverted if all control lines are set to 1; otherwise the
value of the target line is passed through unchanged.

Fig. 2 shows a reversible circuit composed of m = 4 circuit
lines and d = 3 Toffoli gates. Control lines are indicated
by black circles, while a target line is indicated by ⊕. The
gates are given by g1 = T ({a, d}, c), g2 = T ({b, c}, a), and
g3 = T (∅, d). This circuit maps e.g. the input pattern 1111 to
the output pattern 1100 (as shown in Fig. 2). Inherently, every
computation can be performed in both directions (i.e. com-
putations towards the outputs and towards the inputs can be
performed).

Reversible circuits as introduced above are universal,
i.e. each desired function can be realized as a cascade of
Toffoli gates (in order to realize non-reversible functionality,
a so-called embedding step has to additionally be performed;
see e.g. [23]). Motivated by several (emerging) technologies,
also corresponding design methods are already available for
this purpose (as already mentioned above; see e.g. [9], [10],
[11], [12], [13], [14], [15]).

B. Adiabatic Circuits

In conventional CMOS technologies, the respectively de-
sired result of a logic function (e.g. a gate) is realized by
establishing a connection either to a supply voltage (Vdd) or
to the ground. This is illustrated by means of Fig. 3a. More
precisely, if an output of a gate is supposed to evaluate to 1,
the load CL of the gate1 gets charged to the Vdd level (in
Fig. 3a, realized by a block F and illustrated by the top arrow).
Otherwise (if an output of a gate is supposed to evaluate to 0),
the load CL gets discharged to the ground (in Fig. 3a, realized
by a block F and illustrated by the bottom arrow). Obviously,
the latter case yields a significant loss of energy.

Adiabatic circuits have been introduced as an alternative to
avoid this energy loss by avoiding discharges to the ground
whenever possible. Here, the static power supply (as shown
in Fig. 3a) is replaced by a pulsing power supply which
frequently charges and discharges the loads CL and C ′L as

1The load of a gate (here represented by CL usually consists of the input
capacitance of the following gate and the wire capacitance.



(a) CMOS-based Circuit (b) Adiabatic Circuit

Fig. 3. CMOS-based vs. Adiabatic Circuit

shown in Fig. 3b. To this end, adiabatic circuits are typically
realized in a dual-rail fashion, thus there are two capacitances
in the figure. By this, the respectively provided energy can
be recovered during the low phase of the power supply. More
precisely, if the block F evaluates to 1, then the load CL

gets charged if the power supply additionally rises to the 1-
level. Otherwise (the block F evaluates to 0), load CL is not
charged. Since F is still valid when the power supply drops
back to the ground level, the load CL gets discharged through
the same path as it has been charged. The same analogously
happens for block F . This way, the charge is recovered back
to the power supply (in contrast to conventional CMOS-based
circuits, where the energy used for charging the load is lost).

However, charging the load as described above can be seen
as charging a capacitance through a resistor. This causes an
energy dissipation E whose amount can be determined by

E =
RC

T
∗ CV 2, (1)

where R, C, T , and V denotes the resistance, the capacity, the
time needed for charging, and the voltage, respectively. But in
contrast to conventional CMOS-based circuits, this energy loss
can be controlled: In fact, the energy E is decreased when the
time T is increased. Hence, instead of directly providing the
full supply voltage (as in conventional gates), adiabatic circuits
increase the time T by slowly ramping up the supply voltage.
Although this yields a slower circuit, this constitutes a suitable
trade-off for many energy-dependent applications.

Moreover, the time T can further be increased by ensuring
that transistors in the charging/discharging path are only turned
on if there is no potential difference between their drain and
source contacts. Aside of that, dissipation increases when a
transistor is turned off while current is flowing through it.
Since the current is not cut off immediately, but over a certain
period of time during which the transistor is in an intermediate
state where the voltage drop over drain and source is increased,
a higher power consumption results. Overall, this leads to two
rules that allow for energy efficient adiabatic circuits:

1) Never turn on a transistor if there is a voltage difference
between drain and source.

2) Never turn off a transistor if there is a current through
it.

Because of the pulsing power supply, this requires a dedi-
cated timing. In its simplest form, the process described above
can be distinguished into three phases: a charging phase, an
evaluation phase, and a discharging phase. In order to effi-
ciently realize these phases, a pipelining structure composed

of multiple gates as shown in Fig. 4. can be employed. Here,
the result of a gate is handed over to the next stage during
an evaluation phase. The power supply of the following stage
should not ramp up until its inputs are stable, i.e. until the
charging of the first stage is completed and the evaluation
phase started for that gate. Therefore, the rising ramp of the
power supply needs to be shifted by one phase. A disadvantage
is that the stages get charged in ascending order and need
to be discharged in descending order – resulting in highly
impractical circuits. The solution is to use explicit discharge
paths rather than charging and discharging through the same
path [24]. While this increases the area overhead, it provides
the basis for energy efficient circuit realizations.

Fig. 4. Pipeline structure

III. MOTIVATION AND GENERAL IDEA

While adiabatic circuits as reviewed above indeed provide a
promising alternative to conventional CMOS-based solutions,
a problem occurs when controlling the discharge path: If a
gate evaluates to a logic 0, the load is never connected to the
power supply and, thus, gets not charged. Accordingly, there
is no need to discharge this load (moreover, the load is even
not allowed to get discharged), because when the load is at
potential 0 and the discharge path should be established, a
potential difference between drain and source exists (since the
power supply is still at Vdd level). This constitutes a violation
of the first rule reviewed in Section II.B. In order to handle
this problem, the discharge path has to be controlled. To this
end, it is necessary to know whether the output is at 1 or at
0-level. This issue is illustrated using the example circuit in
Fig. 5. Both gates, B1 and B2, represent a simple adiabatic
buffer with a separate discharge path FB1 and FB2. Assuming
the input is held constant at 1, B1 gets charged with Φ1 and B2
with Φ2, i.e. a pipeline structure is established. Since Q1 (the
output of B1) acts as the input to B2, discharging of B1 must
not happen until B2 evaluated its output Q2 (that is one phase
delayed to B1). Hence the output Q2 is one phase delayed to
Q1 and would be ideal to control the discharge path FB1 –at
least from a timing point of view.

Fig. 5. Discharge control

If B2 is a more complex gate where the output Q2 not only
depends on Q1, Q2 cannot directly control the discharge path
FB1. Instead, Q1 must be reconstructed from Q2. This is only
possible if the function of B2 is reversible. Fig. 6 sketches this
situation: F is the function of B1 and G the function of B2.



The discharge path of B1 is marked with G−1 representing
the inverted function of G to reconstruct Q1 from Q2.

Fig. 6. Inverted feedback

Because of this, the full potential of adiabatic circuits can
only be exploited if functions are realized whose results can
be reverted. This holds for reversible circuits as reviewed
in Section II.A. However, no real exploitation of reversible
circuit design for the realization of adiabatic circuits has been
proposed yet. To the best of our knowledge, only [5], [6], [7],
[8] investigated this relation yet. But [5], [6] only realized
standard functions such as adder and multiplier which, on top
of that, realize the reversible circuits following the conven-
tional computation paradigm (and, hence, loosing the benefit
for adiabatic circuits). The same holds for [7], where reversible
functions have been realized in a quasi-adiabatic logic style
that, however, does not utilize the reversibility of the circuit.
Finally, the concept of Reversible Energy Recovery Logic [8]
represents the most promising exploitation of reversibility thus
far. But here only single gates or very limited functionality has
actually been realized.

In this work, we are aiming for overcoming these limitations
and propose a methodology which is capable of realizing adi-
abatic circuits enhanced by reversibility for large functionality.
To this end, the accomplishments in the design of reversible
circuit design – in particular, the synthesis methodologies [9],
[10], [11], [12], [13] – is exploited. They already provide
the means to realize complex functionality in a logic fashion.
Using that as a basis, corresponding adiabatic circuits can be
created by:
• mapping the respective Toffoli gates (used in the re-

versible circuits obtained by these design methods) into
corresponding technology cells,

• realizing the discharge path to support the resulting cells
while, at the same time, satisfying the rules of adiabatic
circuits, and

• adjusting clocking so that all phases are still conducted
accordingly.

In the next section, how to accomplish these steps is described
in detail. This leads to a synthesis flow (described in Sec-
tion V) which allows to realize complex functionality while
exploiting the full potential of adiabatic circuits.

IV. IMPLEMENTATION

A. Mapping Toffoli Gates to Technology Cells

The synthesis methods to be applied within the concept pro-
posed above determine reversible circuits which are composed
of Toffoli gates as their only gate type (see Section II-A).

Hence, a technology cell for this gate type is required. Fig. 7
shows a corresponding proposal.

The PMOS transistors T1 to T6 realize the logic function,
whereas T7 separates the input from the output after the
charging phase (so that the input can change to the next value).
T1 to T7 represent the charging path used to energize the gate.
Since the path is only used to charge and is only conducting
if the output should evaluate to 1, it is sufficient to use PMOS
transistors since the “strong 0” of the NMOS is not needed.
Other adiabatic circuits (even the ones proposed in [8]) used
full transmission gates thus far. The NMOS transistors T8 to T9

represent the discharging path that is controlled by the output
of the following gate (T8). Note that this discharge path is not
part of the cell but is a cell by itself (highlighted by a dashed
rectangle in Fig. 7 and discussed later in Section IV.B). T9 is
used to separate the output from the supply voltage (like T7).
Since the load should be discharged down to the ground level,
NMOS transistors have been used for the discharge path.
Due to switching activity and leakage effects, the output gets
slightly charged even if it should result to 0. Unfortunately,
this charge is not unloaded during the discharge phase, since
the discharge path is only conducting if the output is 1.
The charge accumulates over multiple 0-periods leading to
glitches and a wrong interpretation of this output. A first
idea to avoid this is to use a rail clamp transistor to ground.
Unfortunately, the charge is then lost which increases the
power consumption. Hence, instead of dissipating the charge to
ground, we removed the connection to the ground and added
the rail clamp transistor T10 to the inverted pulsing supply
voltage (in our case, Φ is inverted to Φ). By this, the unwanted
charge can be drained from the output and is fed back to
Φ. This results in an increased power consumption for this
one cell alone since the charge is not fed back to the actual
supply Φ. For the remaining circuit with multiple stages, the
power consumption is reduced due to the fact that there will
also be a cell driven by Φ where the charge is fed back to Φ.

In Addition to the described circuit, the cell has a com-
plementary circuit so that the cell evaluates both, Q and not
Q. This is important since the inverted signals are needed for
controlling the following stages. Furthermore, note that the
described cell realizes a Toffoli gate with two control lines.
Toffoli gates with more (or less) control lines can however be
designed in a similar fashion.

B. Realizing the Discharge Path

Next, the discharge path for a cell F has to be realized.
As discussed before by means of Fig. 6, this is conducted
by realizing the inverted function G−1 of a cell G which
follows F . Using the Toffoli cell as proposed in the previous
sub-section, this can be realized (since Toffoli gates are self-
inverse, cells for both, G and G−1, are identical). In order to
additionally satisfy the rule “Never turn on a transistor if there
is a voltage difference between drain and source”, the resulting
realization is adjusted so that the output is to be discharged
only if there is a charge to unload. Note that the realization of
this discharge path using G−1 is not considered to be a part
of cell F , but an own cell by itself (highlighted by a rectangle



Fig. 7. Toffoli gate schematic

in Fig. 7). This allows to independently realize F and G−1

and to combine them when the actual synthesis is applied.

C. Adjusting the Clock
The above introduced cell operates in six phases and,

therefore, six different clocks are required – each clock with a
phase shifted 60 degrees compared to the previous clock. This
yields a clocking scheme as sketched in Fig. 8.

These clocks are not only used as supply voltage but also
as control signals in order to turn on and turn off the charge
and discharge paths. In the following, the different phases of
operations are explained by means of the circuit from Fig.
7 and the clocking scheme from Fig. 8. Let Φ be Φ1 and
its inverted counterpart Φ4, then the inputs should change in
phase with Φ6 (one phases before Φ1 rises to Vdd). T7 should
turn on two phases before Φ1 rises, i.e. in phase with Φ5. At
timestep t0, the charge path is activated – in phase with Φ5.
Since T7 is a PMOS transistor, we need the inverted control
signal Φ2. The input signals will be coming from one stage
before and, therefore, are arriving with clock Φ6 at timestep t1.
At timestep t2, Φ1 charges the circuit and, at timestep t3, the
evaluation phase starts and the charge path deactivates since
T7 turns off. The fed back output signal from the following
stage arrives at timestep t3 (in phase with Φ2). The discharge
path is still separated from the output. Only at timestep t4,
T9 gets activated with Φ3 so that the discharge path is now
established. At timestep t5, Φ1 drops back to the 0-level and
discharges the circuit. This eventually leads to the following
mapping for one cell:
• Φ1: pulsed power supply
• Φ2: Cch

• Φ3: Cfb

• Φ4: inverted pulsed power supply
• Φ5: is not used
• Φ6: Cfb

V. RESULTING SYNTHESIS FLOW

Using the solutions proposed above, an automated synthesis
flow can be compiled which realizes the desired functionality
as an adiabatic circuit which, due to the exploited reversibility,
fully unleashes its potential. This section briefly describes the
resulting flow and its step.

Fig. 8. Clocking

First, the desired functionality is realized in terms of a
reversible logic circuit using existing synthesis methods such
as [9], [10], [11], [12], [13]. This yields e.g. a gate netlist as
shown in Fig. 9 realizing a full adder.

a g

b g

c c

1 d

Fig. 9. Logic representation of full adder

Each gate in this circuit can be seen as a stage in the
adiabatic pipeline. Because the feedback path of each cell
depends on the following cell, the proposed synthesis flow
iterates the netlist in reverse order from right to left. The next
step is to insert output flipflops to every lane. This is necessary
to buffer the output and to be able to control the feedback path
of the last stage. The added flipflops are triggered by Φ1.

Fig. 10 shows the resulting schematic for the full adder
from Fig. 9. On the right hand-side marked with “step 1”, the
flipflops can be seen. Next, the previous entry of the netlist
gets mapped; in this case, the Toffoli gate T ({b}, c), whose
corresponding cell is is highlighted with “step 2” in Fig. 10.
Since the algorithm knows the following cell for this lane is
a flipflop, a feedback cell with one input is added (“step 3”).
Since the Toffoli cell only consists of the operation on the
second input, the first input needs a buffer to be added (“step
4”). And also for this buffer, the corresponding feedback cell
is added (“step 5”). These elements are one stage before the
flipflops and, thus, are supplied with Φ6.

In a similar fashion, all remaining gates of the circuit from
Fig. 9 are realized. Note that, in the case a lane is not used
in a stage, no buffer is inserted. Buffer insertion follows not
until the lane is required later by another gate. This is e.g. the
case for the first lane in Fig. 10 as the buffers a1 and a2 need
to be inserted for stage Φ5 and Φ6 so that the output signal
reaches the flipflop at the same phase as the other lanes do.
For inserting these buffers two strategies are possible: On the
one hand, buffers can be inserted for every stage in which
the lane is not needed from the input of the design up to
the output. Resulting in a full pipeline structure, this allows a
throughput of signals with the same frequency as the pulsing
power supplies Φ. This leads to a higher overhead due to



Fig. 10. Netlist of a full adder

the necessary buffers and, thus, a bigger design with higher
power consumption. Alternatively, it is possible to only insert a
number of buffers so that the actual stage gets the desired Φ (as
depicted in Fig. 11). This results in less overhead, i.e. smaller
area and less power consumption. On the downside, the input
of the design needs to be stable during the entire signal flow
through all stages – resulting in a throughput of s

6 ·p, where s
denotes the number of stages and p the period of Φ. However,
this is only relevant for more complex designs with a big
logic depth. While for the full adder example, no difference
between the two variants exists. The experiments summarized
in the next section assumed the second variant due to our goal
of minimum power consumption.

Fig. 11. Buffer insertion

VI. EXPERIMENTAL EVALUATION

In order to evaluate the proposed solution, we implemented
resulting synthesis flow including all steps in Pyhton. The
correspondingly required Toffoli cells have been implemented
using 180nm technology2.

Since the simulation of complex designs with thousands of
gates on the transistor level is rather inefficient, we decided
to use an approach similar to digital design: The performance
of each gate has been simulated solely and, afterwards, the
resulting numbers are correspondingly multiplied with their
occurrences in the design. But since the behavior of one gate
depends on the surrounding gates, its load, and its drivers, one
single simulation of a gate is not sufficient. In order to address
this, all possible combinations of Toffoli cells, feedback paths,
ascending cell preceding cell, etc. as well as all possible input
combinations have been simulated using Cadence Spectre

2Note that the results obtained by this technology will remain valid with
decreasing feature sizes as well [24].

Simulator and accordingly incorporated in a power library
file. After these simulations, a Python script has been used
to iterate over the verilog netlist. For each cell in the netlist,
the corresponding entry in the power library file is determined
by analyzing its surroundings. From that, the respectively
required energy consumption is determined. The resulting
numbers with respect to power consumption (in [mW]), delay
(in [ns]), and transistor count are provided in Table I. As
benchmarks, we considered reversible circuits taken from
RevLib [25] which have been realized using the reversible
circuit design methods mentioned e.g. in Section II.A. In order
to compare the obtained results to conventional solutions, the
same functionality has additionally been realized using the
Synopsys Design Compiler and a standard CMOS technology.
Corresponding numbers are provided in Table I as well.

As can be seen from the table, the proposed design flow is
superior in power consumption except for very small designs.
This can be explained by the fact that it is not possible to
regain all energy, since some energy is not fed back to the
actual Φ but to the inverted one (as also discussed above). If
the number of stages is small (below 6) and/or not a multiple of
6, the realization of a discharge path cannot be guaranteed. If
the designs get larger, this effect becomes negligible. Besides
that, it can clearly be seen that the delay and the transistor
count significantly increases. This, however, is the expected
trade-off for adiabatic circuits in general (as discussed in
Section I and Section II) and of the proposed solution fully
exploiting reversible logic as well as the full pipeline structure
(as discussed in Section III and Section IV). This trade-
off eventually results in the significant improvements in the
power consumption – an eventual “killer-argument” for power-
dependent devices. At this point it should again be men-
tioned that, with filling all stages with buffers, the drawback
concerning timing can be countered. The design becomes a
pipeline strcture with a certain delay but with considerable
fast throughput. The throughput can happen at the frequency
of the power clocks.

VII. CONCLUSIONS

In this work, we combined the accomplishments of two
different research areas: the design of reversible logic as well
as the design of adiabatic circuits. This was motivated by
the fact that each adiabatic circuit can only fully exploit
its potential, if the respectively realized gates are reversible.
Although this has been known for a while, existing approaches
to utilized this were not applicable to complex functionality.
We proposed an adiabatic implementation of reversible Toffoli
gates and, based on that, a new synthesis flow which tackles
this problem. For the first time, complex functionality has been
realized in a fully reversible and adiabatic fashion. Experi-
ments demonstrated that this lead to circuits with significantly
less power consumption than circuits realized with state-of-
the-art conventional methods.

ACKNOWLEDGMENT

This work has partially been supported by the European
Union through the COST Action IC1405.



TABLE I
EXPERIMENTAL RESULTS

Name Power Delay Tr count

Rev Std Rev Std Rev Std

4gt11 82 0.0060 0.0017 26.00 0.12 736 5
4gt11 83 0.0120 0.0017 18.00 0.12 448 5
4gt11 84 0.0197 0.0017 8.00 0.12 202 5
add16 174 0.1656 0.2861 20.00 4.65 5964 386
add16 175 0.1257 0.2861 6.00 4.65 1464 386
add32 183 0.3784 0.5792 20.00 9.17 11584 770
add32 185 0.2500 0.5792 6.00 9.17 2904 770
add64 184 0.7610 1.1654 20.00 18.20 23276 1538
add64 186 0.4985 1.1654 6.00 18.20 5784 1538
add8 172 0.0807 0.1407 20.00 2.42 2928 194
fredkin 6 0.0234 0.0234 8.00 0.92 158 37
gray6 47 0.0103 0.0196 12.00 0.16 366 44
gray6 48 0.0103 0.0196 12.00 0.16 366 44
ham3 102 0.0106 0.0175 12.00 0.53 238 27
ham3 103 0.0144 0.0175 8.00 0.53 142 27
ham7 106 0.0089 0.1236 38.00 2.59 1854 165
hwb4 52 0.0182 0.0757 22.00 2.02 630 104
miller 11 0.0194 0.0166 12.00 0.65 258 33
mod5d1 0.0189 0.0244 12.00 0.42 368 43
peres 9 0.0099 0.0117 6.00 0.27 94 23
rd32 272 0.0283 0.0140 12.00 0.41 386 24
rd53 138 0.0101 0.0444 16.00 0.99 824 57
rd73 140 0.0281 0.0863 24.00 1.23 1328 92
rd84 142 0.0128 0.1294 28.00 1.59 2188 128
sym9 146 0.0253 0.1327 30.00 2.04 1736 138
sym9 192 0.0253 0.1327 30.00 2.04 1736 138
toffoli 2 0.0038 0.0101 4.00 0.27 46 19
tof db 4 0.0169 0.0175 6.00 0.51 126 34
urf1 149 2.5129 163.9984 17016.00 2220.43 1102728 101949

REFERENCES

[1] Y. Moon and D.-K. Jeong, “Efficient charge recovery logic,” in Sym-
posium on VLSI Circuits, Digest of Technical Papers, June 1995, pp.
129–130.

[2] M. L. Keote and P. T. Karule, “Design and implementation of energy
efficient adiabatic ECRL and basic gates,” in International Conference
on Soft Computing Techniques and Implementations, Oct 2015, pp. 87–
91.

[3] S. Younis and T. Knight, “Asymptotically zero energy computing using
split-level charge recovery logic,” Technical Report AITR-1500, MIT AI
Laboratory, 1994.

[4] S. D. Kumar and S. K. N. Mahammad, “A novel adiabatic SRAM cell
implementation using split level charge recovery logic,” in International
Symposium on VLSI Design and Test, June 2015, pp. 1–2.

[5] K. Babulu, M. Kamaraju, P. Bujjibabu, and K. Pradeep, “Design
and implementation of H/W efficient multiplier: Reversible logic gate
approach,” in International Conference on Communications and Signal
Processing, April 2015, pp. 1660–1664.

[6] H. Thapliyal and A. P. Vinod, “Transistor realization of reversible TSG
gate and reversible adder architectures,” in Asia Pacific Conference on
Circuits and Systems, Dec 2006, pp. 418–421.

[7] G. Kumar and T. N. Sasamal, “Design and analysis of Toffoli gate
using adiabatic technique,” in International Conference on Computing,
Communication Automation, May 2015, pp. 1344–1348.

[8] Y. Ye and K. Roy, “Energy recovery circuits using reversible and
partially reversible logic,” Transactions on Circuits and Systems I:
Fundamental Theory and Applications, vol. 43, no. 9, pp. 769–778, Sep
1996.

[9] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P. Hayes, “Synthesis
of reversible logic circuits,” IEEE Trans. on CAD, vol. 22, no. 6, pp.
710–722, 2003.

[10] D. Große, R. Wille, G. W. Dueck, and R. Drechsler, “Exact multiple
control Toffoli network synthesis with SAT techniques,” IEEE Trans.
on CAD, vol. 28, no. 5, pp. 703–715, 2009.

[11] D. M. Miller, D. Maslov, and G. W. Dueck, “A transformation based
algorithm for reversible logic synthesis,” in Design Automation Conf.,
2003, pp. 318–323.

[12] P. Gupta, A. Agrawal, and N. K. Jha, “An algorithm for synthesis of
reversible logic circuits,” IEEE Trans. on CAD, vol. 25, no. 11, pp.
2317–2330, 2006.

[13] R. Wille and R. Drechsler, “BDD-based synthesis of reversible logic for
large functions,” in Design Automation Conf., 2009, pp. 270–275.

[14] A. Zulehner and R. Wille, “Improving synthesis of reversible circuits:
Exploiting redundancies in paths and nodes of QMDDs,” in Conf. on
Reversible Computation, 2017.

[15] R. Drechsler and R. Wille, “From truth tables to programming lan-
guages: Progress in the design of reversible circuits,” in International
Symp. on Multi-Valued Logic, 2011, pp. 78–85.

[16] M. Nielsen and I. Chuang, Quantum Computation and Quantum Infor-
mation. Cambridge Univ. Press, 2000.

[17] A. Berut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider,
and E. Lutz, “Experimental verification of Landauer’s principle linking
information and thermodynamics,” Nature, vol. 483, pp. 187–189, 2012.

[18] A. Zulehner and R. Wille, “Taking one-to-one mappings for granted:
Advanced logic design of encoder circuits,” in Design, Automation and
Test in Europe, 2017, pp. 818–823.

[19] R. Wille, R. Drechsler, C. Osewold, and A. Garcia-Ortiz, “Automatic
design of low-power encoders using reversible circuit synthesis,” in
Design, Automation and Test in Europe, 2012, pp. 1036–1041.

[20] R. Wille, O. Keszocze, S. Hillmich, M. Walter, and A. G. Ortiz, “Syn-
thesis of approximate coders for on-chip interconnects using reversible
logic,” in Design, Automation and Test in Europe, 2016, pp. 1140–1143.

[21] L. G. Amarù, P. Gaillardon, R. Wille, and G. D. Micheli, “Exploiting
inherent characteristics of reversible circuits for faster combinational
equivalence checking,” in Design, Automation and Test in Europe, 2016,
pp. 175–180.

[22] R. Wille, E. Schönborn, M. Soeken, and R. Drechsler, “SyReC: A
hardware description language for the specification and synthesis of
reversible circuits,” Integration, vol. 53, pp. 39–53, 2016.

[23] A. Zulehner and R. Wille, “Make it reversible: Efficient embedding of
non-reversible functions,” in Design, Automation and Test in Europe,
2017, pp. 458–463.

[24] A. P. Chandrakasan and R. W. Brodersen, Low Power Digital CMOS
Design. Kluwer Academic Publishers, 1995.

[25] R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drechsler, “RevLib:
an online resource for reversible functions and reversible circuits,” in
International Symp. on Multi-Valued Logic, 2008, pp. 220–225, RevLib
is available at http://www.revlib.org.


