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Abstract. Since for certain realizations of quantum circuits only adja-
cent qubits may interact, qubits have to be frequently swapped – leading
to a significant overhead. Therefore, optimizations such as exact global
reordering have been proposed, where qubits are reordered such that the
overall number of swaps is minimal. However, to guarantee minimality
all n! possible permutations of qubits have to be considered in the worst
case – which becomes intractable for larger circuits. In this work, we
tackle the complexity of exact global reordering using an A* search al-
gorithm. The sophisticated heuristics for the search algorithm proposed
in this paper allow for solving the problem in a much more scalable fash-
ion. In fact, experimental evaluations show that the proposed approach
is capable of determining the best order of the qubits for circuits with
up to 25 qubits, whereas the recent state-of-the-art already reaches its
limits with circuits composed of 10 qubits.

1 Introduction

Quantum computations employ an emerging technology where operations are
performed on quantum bits (qubits) rather than conventional bits that can only
represent two basis states. Exploiting quantum physical effects of qubits like su-
perposition and entanglement allow to reduce the computational complexity of
certain tasks significantly compared to conventional logic (cf. [1]). Well known
examples are Shor’s algorithm (cf. [2]) for integer factorization or Grover’s al-
gorithm for database search (cf. [3]). Such quantum computations are usually
described using so-called quantum circuits, where qubits are represented as cir-
cuit lines. Operations on a subset of these qubits are described by quantum
gates.

However, for many physical realizations, quantum circuits have to employ
constraints on the interaction distance of qubits. More precisely, quantum gates
can only be applied to adjacent qubits. To fulfill this requirement, SWAP op-
erations (gates) that swap the values of two adjacent qubits are added to the
quantum circuit – leading to a significant overhead. This overhead can be re-
duced by permuting the order of the qubits (circuit lines).

A broad variety of different approaches has been presented for this pur-
pose – including solutions relying on templates [4], local and global reordering
strategies [4], dedicated data-structures [5–8], or look-ahead schemes [9]. Also
exact approaches, i.e. solutions guaranteeing the minimal number of SWAP gate



insertions, have been proposed [10, 11]. The work published in [11] provides a
comprehensive overview of the state-of-the-art. All these approaches particularly
focus on how to properly reorder the qubits in the circuit so that the respec-
tive interaction distance (and, hence, the number of required SWAP gates) is
reduced.

In this work, we focus on global reordering. Here, heuristic as well as exact
solutions have been proposed. Exact solutions are of particular interest as they
guarantee the minimal number of SWAP insertions. Guaranteeing minimality,
however, significantly increases the complexity of the considered problem. In
the worst case, all n! possible permutations of qubits have to be considered –
an exponential complexity. We tackle this exponential complexity by using the
A∗ search algorithm, i.e. a state-space search algorithm that traverses – guided
by dedicated heuristics – only parts of the exponential search space until an
optimal solution is determined. Experimental evaluations show that the proposed
approach is able to determine the optimal order of the qubits (circuit lines) for
quantum circuits composed of up to n = 25 qubits, whereas state-of-the-art
solutions for exact global reordering are currently limited to n = 10 qubits.

This paper is structured as follows. In Section 2, we review nearest neighbor
compliant quantum circuits. Based on that, we discuss the effect of globally
permuting the order of the circuit lines in Section 3. In Section 4, we propose
two approaches to determine the optimal order of the qubits using the A∗ search
algorithm and discuss their differences. Finally, the proposed approaches are
experimentally evaluated in Section 5 while Section 6 concludes the paper.

2 Nearest Neighbor Compliant Quantum Circuits

In contrast to conventional computation, quantum computation [1] operates
on qubits instead of bits. A qubit is a two-state quantum system, with basis
states |0〉 ≡

(
1
0

)
and |1〉 ≡

(
0
1

)
(representing Boolean values 0 and 1, respec-

tively). Furthermore, a qubit can be in a superposition of these basis states,
i.e. |x〉 = α |0〉+ β |1〉, where the complex amplitudes α and β satisfy
|α|2 + |β|2 = 1. Note that the state of a qubit cannot directly be observed, be-
cause measurement collapses the qubit into one of the two basis states |0〉 or |1〉.
More precisely, the qubit collapses to basis state |0〉 with probability |α|2 and to

basis state |1〉 with probability |β|2.
This simply extends to quantum systems composed of n qubits. Such a sys-

tem is in a superposition of its 2n basis states. Operations on such systems are
performed through multiplication of appropriate 2n × 2n unitary matrices.

A usual representation for quantum computations are quantum circuits. Here,
the respective qubits are denoted by solid circuit lines. Operations are repre-
sented by quantum gates. These operations may operate on a subset of the cir-
cuit lines only. Table 1 lists common 1-qubit quantum gates together with the
corresponding unitary matrices describing their operation. In order to perform
operations on more than one qubit, controlled quantum gates are applied. These
gates are composed of a target line |t〉 and a control line |c〉 and realize the
unitary operation represented by the matrix



Table 1. Quantum gates

Hadamard-Gate Pauli-Y-Gate

H 1√
2

(
1 1
1 −1

)
Y

(
0 −i
i 0

)
Pauli-X-Gate Pauli-Z-Gate

X

(
0 1
1 0

)
Z

(
1 0
0 −1

)
V-Gate S-Gate

V 1+i
2

(
1 −i
−i 1

)
S

(
1 0

0 e
iπ
2

)
W-Gate T-Gate

W 1
2

(
1 +
√
i 1−

√
i

1−
√
i 1 +

√
i

)
T

(
1 0

0 e
iπ
4

)

q0 = |0〉

q1 = |0〉

H

X

1√
2
· |00〉+ 1√

2
· |11〉

Fig. 1. Quantum circuit

M =


1 0 0 0
0 1 0 0
0 0 U0 0

 ,

where U denotes the operation applied to the target line. In the remainder of
this work, we use the following formal notation:

Definition 1. A quantum circuit is denoted by the cascade G = g1g2 . . . g|G| of
gates (in figures drawn from left to right), where |G| denotes the total number
of gates. The number of qubits and, thus, the number of circuit lines is denoted
by n. The costs of a quantum circuit (also denoted as quantum cost) are defined
by the number |G| of gates.

Example 1. Fig. 1 shows a quantum circuit composed of n = 2 circuit lines
and |G| = 2 gates. This circuit gets |00〉 as input and transforms the state
of the underlying quantum system to 1√

2
· |00〉+ 1√

2
· |11〉.

In the recent years, researchers proposed several physical realizations for
quantum circuits. This led to a better understanding of their physical limitations



and constraints, e.g. with respect to the interaction distance, decoherence time,
or scaling (see e.g. [12–14]). Besides that, so-called nearest neighbor constraints
have to be satisfied for many quantum circuit architectures. This particularly
holds for technologies based on proposals for ion traps [15–17], nitrogen-vacancy
centers in diamonds [18, 19], quantum dots emitting linear cluster states linked
by linear optics [20], laser manipulated quantum dots in a cavity [21], and super-
conducting qubits [22, 23]. Here, nearest neighbor constraints limit the interac-
tion distance between gate qubits and require that computations are performed
between adjacent, i.e. nearest neighbor, qubits only.

In order to formalize this restriction for electronic design automation, a cor-
responding metric representing the costs of a quantum circuit to become nearest
neighbor compliant has been introduced in [4]. There, the authors defined the
Nearest Neighbor Cost as follows:

Definition 2. Assume a 2-qubit quantum gate g(c, t) with a control at the line c
and a target at line t, where c and t are numerical indices holding 0 ≤ c, t < n.
Then, the Nearest Neighbor Cost (NNC) for g is calculated using the distance
between the target and the control line. More precisely,

NNC(g) = |c− t| − 1.

As a result, a single control gate g is termed nearest neighbor compliant if
NNC(g) = 0. 1-qubit gates are assumed to have NNC of 0. The resulting NNC
for a quantum circuit is defined by the sum of the NNC of its gates, i.e.

NNC(G) =
∑
g∈G

NNC(g).

A quantum circuit G is termed nearest neighbor compliant if NNC(G) = 0,
i.e. if all quantum gates are 1-qubit gates or adjacent 2-qubit gates.

Example 2. Consider the circuit G depicted in Fig. 2(a). Gates are denoted by
G = g1. . .g7 from the left to the right. As can be seen, gates g2, g4, g5, as
well as g6 are non-adjacent and have nearest neighbor costs of NNC(g2) = 2,
NNC(g4) = 1, NNC(g5) = 1, as well as NNC(g6) = 2, respectively. Hence, the
entire circuit has nearest neighbor costs of NNC(G) = 6.

A naive way to make an arbitrarily given quantum circuit nearest neighbor
compliant is to modify it by additional SWAP gates.

Definition 3. A SWAP gate is a quantum gate g(qi, qj) including two qubits qi,
qj and maps (q0, . . . , qi, qj , . . . , qn−1) to (q0, . . . , qj , qi, . . . , qn−1). That is, a SWAP
gate realizes the exchange of two quantum values (in figures drawn using two con-
nected × symbols).

These SWAP gates allow for making all control lines and target lines adjacent
and, by this, help to satisfy the nearest neighbor constraint. More precisely, a
cascade of adjacent SWAP gates can be inserted in front of each gate g with non-
adjacent circuit lines in order to shift the control line of g towards the target
line, or vice versa, until they are adjacent. Afterwards, SWAP gates are inserted
to restore the original order of circuit lines.
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Fig. 2. Establishing nearest neighbor compliance
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Fig. 3. Global Reordering (applied to the circuit from Fig. 2(a))

Example 3. Consider again the circuit depicted in Fig. 2(a). In order to make
this circuit nearest neighbor compliant, SWAP gates in front and after all these
gates are inserted as shown in Fig. 2(b).

3 Global Reordering
for Nearest Neighbor Quantum Circuits

Global reordering became a suitable solution to reduce the cost of nearest neigh-
bor compliant quantum circuits. Before adding SWAP gates to the circuit as
reviewed in the previous section, the position of the qubits (circuit lines) is
changed in order to reduce the number of required SWAP gates. An example
illustrates the idea.

Example 4. Consider again the quantum circuit depicted in Fig. 2(a) and its
nearest neighbor compliant version shown in Fig. 2(b). Permuting the order
of qubits from q0q1q2q3 to q2q0q3q1 results in the circuit depicted in Fig. 3(a)
– the nearest neighbor cost are reduced from 6 to 3. Hence, only 6 (instead
of 12) SWAP gates are required to make the circuit nearest neighbor compliant
(cf. Fig. 3(b)).

As demonstrated by the example above, the positions of the qubits have a
significant impact on the nearest neighbor cost of the resulting circuit (and, thus,



on the number of required SWAP gates). To simplify the determination of the
resulting nearest neighbor cost for a specific order of the qubits, the concept of
an adjacency matrix of a quantum circuit can be used. The entries of this matrix
indicate how often two qubits have to be adjacent, i.e. how many gates exist in
the quantum circuit that operate exactly on these qubits. More formally:

Definition 4. Consider a quantum circuit composed of n qubits. Then, the ad-
jacency matrix of this circuit is an n×n dimensional matrix M where the entries
mi,j, 0 ≤ i, j < n provide the number of gates with the target and the controlling
qubit at the ith and jth position, or vice versa (i.e. the number of gates with
g(i, j) or g(j, i)).

Since we do not distinguish between target and controlling qubit of a gate, the
adjacency matrix is symmetric with respect to the main diagonal. Furthermore,
the main diagonal of the matrix is skipped as well, because a single qubit cannot
be the target and the controlling qubit of the same gate.

Example 5. Consider again the circuit depicted in Fig. 2(a). The according ad-
jacency matrix is given in Table 2. To improve readability, we set all entries mi,j

for which j ≤ i to don’t care (denoted by –), because they contain redundant
information. For example, the entry m0,3 has value 2 because the circuit contains
exactly two gates (the second and the sixth) for which qubits q0 and q3 have to
be adjacent.

Table 2. Adjacency matrix for the circuit in Fig. 2(a)

q0 q1 q2 q3
q0 – 1 1 2
q1 – – 0 1
q2 – – – 2
q3 – – – –

The adjacency matrix M of a quantum circuit can be used to determine the
nearest neighbor cost (and, hence, the number of required SWAP gates) of a
quantum circuit. More precisely:

NNC(M) =

n∑
i=0

n∑
j=i+1

mi,j · (j − i− 1)

Example 5 (continued). The nearest neighbor cost of the circuit shown in Fig. 2(a)
is:

NNC(M) = m0,1 · 0 +m0,2 · 1 +m0,3 · 2 +m1,2 · 0 +m1,3 · 1 +m2,3 · 0 = 6.

Consequently, 12 SWAP gates are required to make the circuit nearest neighbor
compliant.



Permuting the order of the qubits does not require to update the adjacency
matrix. Instead, the resulting nearest neighbor cost when applying a permuta-
tion π to the order of the qubits is determined by

NNC(M,π) =

n∑
i=0

n∑
j=i+1

mi,j · (|π(j)− π(i)| − 1) .

Example 5 (continued). If we apply the permutation π = (1, 3, 0, 2) to the qubits
of the circuit shown in Fig. 2(a), the new resulting order is q2q0q3q1 (cf. Fig. 3(a)).
This changes the nearest neighbor cost to:

NNC(M,π) = m0,1 · 1 +m0,2 · 0 +m0,3 · 0 +m1,2 · 2 +m1,3 · 0 +m2,3 · 1 = 3.

Using the adjacency matrix of a quantum circuit allows for efficiently com-
puting the nearest neighbor cost of the circuit with a permuted order of qubits.
However, determining the best possible permutation, which requires the least
number of SWAP gates is a computationally complex task. In the worst case,
all n! possible permutations have to be considered – an exponential complexity.
Previous attempts tried to tackle this complexity by exploiting reasoning en-
gines such as satisfiability solvers (see [10, 11]). However, their applicability is
still limited to rather small quantum circuits, i.e. circuits with not more than
n = 10 qubits.

4 Global Reordering Using A∗

In this section, we propose an alternative solution for global reordering in order
to generate cost-efficient nearest neighbor compliant quantum circuits. To this
end, we employ the power of the A∗ search algorithm. In the following, we review
the basics of the A∗ algorithm and how global reordering can be translated into a
search problem first. Based on that, we discuss two strategies for how to traverse
the search space for the considered problem using A∗ search.

4.1 A∗ Algorithm

The A∗ algorithm is a state-space search algorithm. To this end, (sub-)solutions
of the considered problem are represented by state nodes. Nodes that represent a
solution are called goal nodes (multiple goal nodes may exist). The main idea is
to determine the cheapest path (i.e. the path with the lowest cost) from the root
node to a goal node. Since the search space is typically exponential, sophisticated
mechanisms are employed in order to keep considering as few paths as possible.

All state-space search algorithms are similar in the way that they start with a
root node (representing an initial partial solution) which is iteratively expanded
towards the goal node (i.e. the desired complete solution). How to choose the
node that shall be expanded next depends on the actual search algorithm. For
A∗ search, we determine the cost of each leaf-node of the search state. Then,
the node with the lowest cost is chosen to be expanded next. To this end, we



determine the cost f(x) = g(x)+h(x) of a node x. The first part (g(x)) describes
the cost of the current sub-solution (i.e. the cost of the path from the root to x).
The second part describes the remaining cost (i.e. the cost from x to a goal node),
which is estimated by a heuristic function h(x). Since the node with the lowest
cost is expanded, some parts of the search space (those that lead to expensive
solutions) are never expanded.

Example 6. Consider the tree shown in Fig. 4. This tree represents the part of
the search space that has already been explored for a certain search problem.
The nodes that are candidates to be expanded in the next iteration of the A∗

algorithm are highlighted in blue. For all these nodes, we determine the cost
f(x) = g(x) +h(x). This sum is composed by the cost of the path from the root
to the node x (i.e. the sum of the cost annotated at the respective edges) and
the estimated cost of the path from node x to a goal node (provided in red).
Consider the node labeled E. This node has cost f(E) = (40 + 60) + 200 = 300.
The other candidates labeled B, C, and F have cost f(B) = 580, f(C) = 360,
and f(F ) = 320, respectively. Since the node labeled E has the fewest expected
cost, it is expanded next.

A

B C D

E F

80 300 40

60 100

80 + 500 = 580 300 + 60 = 360

100 + 200 = 300 140 + 180 = 320

Fig. 4. A∗ search algorithm

Obviously, the heuristic cost should be as accurate as possible, to expand as
few nodes as possible. If h(x) always provides the correct minimal remaining cost,
only the nodes along the cheapest path from the root node to a goal node would
be expanded. But since the minimal costs are usually not known (otherwise, the
search problem would be trivial to solve), estimations are employed. However,
to ensure an optimal solution, h(x) has to be admissible, i.e. h(x) must not
overestimate the cost of the cheapest path from x to a goal node. This ensures
that no goal node is expanded (which terminates the search algorithm) until all
nodes that have the potential to lead to a cheaper solution are expanded.

Example 6 (continued). Consider again the node labeled E. If h(x) is admissible,
the true cost of each path from this node to a goal node is greater than or equal
to 200.



The general concept of the A∗ search algorithm as described above can easily
be applied for exact global reordering of quantum circuits. In this case, the goal
is to determine the permutation (the order) of the qubits, for which the fewest
number of SWAPs gates are required in order to make the currently considered
quantum circuit nearest neighbor compliant. Therefore, the nodes of the search
space describe a (partial) permutation of the qubits. More precisely, a node with
depth i (i.e. a node on with distance i to the root node) represents a partial
permutation of i qubits. For simplicity, we label the nodes with the resulting
order of the qubits instead of the partial permutation and neglect those qubits
for which the permutation is not yet defined.

Example 7. Consider a quantum circuit composed of n = 4 qubits q0, q1, q2,
and q3 as well as a partial permutation π = (0,♦,♦, 1). This partial permutation
maps qubit q0 to the first position and qubit q3 to the second position. The
mapping for the other qubits is not defined and, hence, denoted by ♦ (also called
hole). The resulting order of the qubits is then q0q3♦♦. For simpler graphical
visualization, we label the node that represents π with q0q3 – neglecting the
qubits for which the position is not yet fixed.

A function g(x) is needed to determine the cost of the path from the root
to node x. Note that an edge in the tree describes a qubit that is added to the
partial permutation. Consequently, the cost of the path from the root to node x
can also be determined by the partial permutation that is represented by x. To
this end, we determine the resulting nearest neighbor cost of the circuit. Since
the permutation is only partially defined, we consider only those gates for which
the position of the target and the controlling qubit is already fixed (i.e. these
qubits have to occur in the partial permutation).

Example 8. Consider a node labeled q1q3q0. The cost g(x) of this node is deter-
mined by the nearest neighbor cost of all gates g(c, t), for which c, t ∈ {0, 1, 3}.
As discussed above, this cost can be determined from the adjacency matrix by
g(x) = m0,1 · 1 +m0,3 · 0 +m1,3 · 0.

Besides the representation of the (sub-) solutions and a cost function g(x), we
need two more things for exact global reordering for nearest neighbor quantum
circuits using A∗:

– An expansion strategy for the nodes, i.e. a strategy how another qubit shall
be added to the partial permutation and

– an admissible heuristic function h(x) to estimate the resulting cost from
node x to a goal node that suits to the expansion strategy.

In the following sections, we propose two such expansion strategies and dis-
cuss their according heuristic function h(x).

4.2 Straightforward Strategy

In this section, we discuss a straightforward expansion strategy for the nodes
encountered during the A∗ algorithm and a corresponding admissible heuristic
h(x). To this end, we consider a quantum circuit composed of n qubits.



Consider a tree node with depth i. This node represents a partial permutation
composed of i qubits. Hence, the position of i qubits is already fixed. To generate
a permutation of i + 1 bits, we simply add one of the remaining qubits to the
right of the already placed ones. Since n− i such qubits exist, the expansion of
the node yields n− i successors. An example illustrates the idea.

Example 9. Consider a quantum circuit composed of n = 4 qubits q0, q1, q2,
and q3, and assume that the node highlighted blue in Fig. 5 has to be expanded
next. This node represents a partial permutation q1. Since there are three qubits
that are not contained in the partial permutation (q0, q2, and q3), three successor
nodes are generated. These nodes represent the partial permutations q1q0, q1q2,
and q1q3, respectively. The resulting nodes are illustrated in Fig. 5.

q1

q1q0 q1q2 q1q3

Fig. 5. Straightforward expansion strategy

Based on this expansion strategy, we have to estimate the cost h(x) of the
path from node x to a goal node. Recall that a goal node represents a permutation
of the qubits. Consequently, we estimate how much the nearest neighbor cost
increase when appending the remaining qubits to the current order. To ensure
admissibility of this heuristic, we consider each qubit individually. Appending
a qubit qj to the right of the current order changes the nearest neighbor cost
by ∆qj . This increase is determined by the nearest neighbor cost of all gates
for which qj is the controlling or the target qubit. Furthermore, the other qubit
involved in the gate has to be part of the current order. All these values ∆qj

are then summed up to approximate the overall increase of the nearest neighbor
cost h(x). Obviously this leads to an under-approximation of the real cost, since
not all remaining qubits can be appended at the same location and the nearest
neighbor costs between the remaining qubits are not considered.

Example 9 (continued). Consider the node labeled q1q0 in Fig. 5. Appending
qubit q2 to the right of the current order would increase the resulting cost by
∆q2 = m1,2 · 1 + m0,2 · 0. Analogously, appending qubit q3 to the right would
increase the resulting cost by ∆q3 = m1,3 · 1 +m0,3 · 0. Consequently, the overall
cost increase is estimated by the sum h(x) = ∆q2 +∆q3 = m1,2 +m1,3.



4.3 Elaborated Strategy

While the solution introduced above employs a rather straightforward scheme, we
additionally propose a more sophisticated approach for expansion and estimation
– described in this section. Here, we allow qubits to be inserted not only to
the right of the already placed ones, but at all possible positions within the
partial permutation. To this end, we restrict that, within an expansion, only one
qubit is considered (while in the straightforward scheme introduced above all
remaining qubits are considered; albeit with a fixed position). More precisely,
out of the remaining qubits we choose the one which occurs most often as target
or controlling qubit (accelerating the search by focusing on qubits with many
interactions within the circuit). An example illustrates the idea.

Example 10. Consider a quantum circuit composed of n = 4 qubits q0, q1, q2,
and q3, and assume that the node highlighted blue in Fig. 6 has to be expanded
next. This node represents a partial permutation q1q0. Assume that qubit q2 is
considered next as this is the one of the remaining qubits which interacts most
often in the considered circuit, i.e. occurs most often as target or controlling
qubit. Since there are three possibilities where to insert qubit q2, three successor
nodes are generated. These nodes represent the partial permutations q2q1q0,
q1q2q0, and q1q0q2, respectively. The resulting nodes are illustrated in Fig. 6.

q2q1q0 q1q2q0 q1q0q2

q1q0

Fig. 6. Elaborated expansion strategy

Since we have a different expansion strategy, another heuristic to approxi-
mate the remaining cost is required. In contrast to above, the position at which
the remaining qubits are inserted is not fixed anymore. Therefore, we have to
determine ∆k

qj for each position k at which a qubit qj can be inserted. Then,

∆qj is the minimum of all these values (since the heuristic has to be admissible).
Finally, to estimate the overall cost increase when all remaining qubits qj are
inserted, we sum up all these values ∆qj to obtain h(x).

Example 10 (continued). Consider again the node highlighted in blue in Fig. 6.
The heuristic cost h(x) of this node is determined as follows. For all remaining
qubits (i.e. q2 and q3) we estimate the cost increase when adding the respective
qubit to the permutation. Each remaining qubit can be inserted at three po-
sitions. Inserting the qubit q2 at position zero (at the left of q1) increases the



nearest neighbor cost by ∆0
q2 = m0,2 ·1. Analogously, inserting the qubit at posi-

tions one and two yields ∆1
q2 = m0,1 ·1 and ∆2

q2 = m1,2 ·1, respectively. Then, the

minimum ∆q2 = min
(
∆0

q2 , ∆
1
q2 , ∆

2
q2

)
= min (m0,2,m0,1,m1,2) of the three possi-

bilities is determined. Analogously, ∆q3 = min (m0,3,m0,1,m1,3) is determined.
Finally, the sum of the minima is determined, i.e. h(x) = ∆q2 +∆q3 .

4.4 Discussion

In this section, we compare the two expansion strategies proposed above. To this
end, we analyze how many successor nodes are generated when expanding a node
with depth i. For the straightforward strategy, such a node has n− i successors,
because each of the n− i remaining literals can be appended to the right of the
current order. In contrast, a node with depth i generates i+ 1 successors when
expanded using the elaborated strategy, because the qubit that is inserted is
fixed and there are i+ 1 possibilities where this qubit might be inserted.

Consider the case that the estimated cost of a node with depth i is larger than
the minimum that can be achieved. This means that this node (and, therefore,
also its child nodes) will never be expanded. In case we use the straightforward
expansion strategy, we therefore prune (n−i) ·(n−i−1) · . . . ·1 = (n−i)! possible
solutions of the search tree. In contrast, if we apply the elaborated expansion
strategy, we prune (i+ 1) · (i+ 2) · . . . · n = n!/i! solutions. Consequently, elim-
inating a node with depth i prunes significantly more possible solutions if the
elaborated expansion strategy is used. However, the heuristics to estimate the
resulting cost is computationally more expensive for the elaborated expansion
strategy. Since we have to determine the best position for each of the remaining
qubits, O(n3) lookups in the adjacency matrix are required. In contrast, using
the straightforward expansion strategy requires O(n2) such lookups.

q0q1q2

q0 q1 q2

q0q1 q0q2 q1q0 q1q2 q2q0 q2q1

0 0 0

3 4 6 4 6 3

3

1st

2nd 3rd 4th

5th

6th

Fig. 7. Search tree of the straightforward expansion strategy



q0

q0q1 q1q0

q2q0q1 q0q2q1 q0q1q2

0

3

6 4 3

1st

2nd

3rd

4th

Fig. 8. Search tree of the elaborated expansion strategy

Example 11. Consider a quantum circuit with three circuit lines (denoted by q0,
q1, and q2), where the corresponding adjacency matrix has the entries m0,1 = 4,
m0,2 = 3, and m1,2 = 6. Fig. 7 and Fig. 8 show the resulting trees generated by
the A∗ search algorithm using the naive expansion strategy and the elaborated
expansion strategy, respectively. The black numbers attached to the nodes rep-
resent the corresponding cost f(x). The red numbers indicate the iteration in
which the nodes were expanded. Furthermore, the expanded goal node (i.e. the
one that yields an optimal solution) is highlighted in blue. The node highlighted
red in Fig. 8 can immediately be rejected by the search algorithm, because it is
symmetric to the other node on this level. For the straightforward strategy, a
total of six nodes had to be expanded until the optimal solution was determined.
In contrast, using the elaborated strategy allows to determine the same solution
by expanding only four nodes.

5 Experimental Evaluation

We experimentally evaluated the proposed approach and compared the obtained
results to the current state-of-the-art. To this end, we implemented the A∗ al-
gorithm as well as the proposed expansion strategies described in the previous
section in Java. The quantum circuits used as benchmarks were composed from
the ones available in RevLib [24] and those previously used in [11]. The exper-
iments for the proposed approaches were conducted on a Java virtual machine
with 6 GB of memory running on a 1.7 GHz Intel i5 processor. The runtimes for
the current state-of-the-art were taken from the corresponding paper (cf. [11]).
However, since these experiments were conducted on a similar processor, the
runtimes are comparable.

Table 3 summarizes the obtained results. In the first three columns, we list
the name of the benchmark, the number of qubits n, as well as the minimal
number of SWAP gates required to make the quantum circuit nearest neighbor



compliant. The fourth column lists the runtime of the current state-of-the-art
approach [11]. The remaining columns list the runtime t, the number of created
nodes, and the number of expanded nodes for the straightforward approach
(proposed in Section 4.2) as well as for the elaborated approach (proposed in
Section 4.3).

Table 3. Experimental Evaluation

s-o-t-a [11] Straightforward (Sect. 4.2) Elaborated (Sect. 4.3)
Benchmark n SWAPs t t created expanded t created expanded
decod24-v3 46 4 4 0.10 0.00 23 9 0.00 10 4
hwb4 52 4 18 0.10 0.00 33 14 0.00 10 4
rd32-v0 67 4 4 1.10 0.00 23 9 0.00 10 4
4gt11 84 5 2 0.10 0.00 43 13 0.00 15 5
4gt13-v1 93 5 8 0.10 0.00 54 17 0.00 15 5
4mod5-v1 23 5 30 0.10 0.00 118 43 0.00 15 5
aj-e11 165 5 52 0.10 0.00 89 31 0.00 15 5
hwb5 55 5 120 0.10 0.00 112 40 0.00 19 6
QFT5 5 20 0.10 0.00 206 87 0.00 23 7
hwb6 58 6 290 0.10 0.01 743 271 0.00 79 18
mod8-10 177 6 156 0.10 0.01 419 128 0.00 44 11
ham7 104 7 140 1.90 0.01 1 407 391 0.02 151 30
rd53 135 7 136 1.80 0.01 1 539 412 0.00 41 10
QFT8 8 112 20.00 0.32 69 281 28 962 0.05 2 966 439
urf2 152 8 71 280 22.00 0.04 19 170 5 604 0.00 845 136
QFT9 9 168 236.50 3.30 623 530 260 651 0.30 23 127 2 959
urf1 149 9 179 832 241.30 0.21 84 588 21 384 0.05 5 896 786
urf5 158 9 176 284 247.00 0.44 137 694 38 582 0.03 3 648 522
QFT10 10 240 2936.80 45.73 6 235 301 2 606 502 1.13 204 568 23 119
rd73 140 10 150 1579.40 0.08 49 171 9 064 0.02 3 834 535
Shor3 10 4 802 1846.20 0.19 103 385 21 548 0.00 1 496 215
sym9 148 10 10 984 2415.12 0.34 138 043 28 921 0.00 474 77
sys6-v0 144 10 114 1586.40 0.07 40 315 7 340 0.02 1 990 290
urf3 155 10 453 368 3023.60 1.55 445 123 102 912 0.03 7 526 975
cycle10 2 110 12 4 104 TO 25.34 5 649 298 1 045 869 0.30 34 018 4 011
Shor4 12 13 588 TO 7.84 3 095 113 618 714 0.13 12 496 1 493
plus63mod4096 163 13 113 104 TO 481.68 39 226 031 6 834 319 0.44 36 283 4 246
0410184 169 14 48 TO 0.02 15 935 1 598 0.00 613 88
plus127mod8192 162 14 279 520 TO TO – – 2.03 162 532 17 469
plus63mod8192 164 14 149 708 TO TO – – 1.75 138 771 15 455
Shor5 14 34 680 TO TO – – 1.77 172 154 16 703
ham15 108 15 1 340 TO TO – – 1.11 78 458 7 910
rd84 142 15 284 TO 552.84 47 396 532 6 167 835 1.09 75 770 8 577
urf6 160 15 241 208 TO TO – – 92.89 5 593 552 517 840
cnt3-5 180 16 340 TO 937.23 156 966 895 18 710 815 8.23 496 214 50 119
Shor6 16 76 318 TO TO – – 47.39 3 310 774 263 822
add8 172 25 90 TO 499.31 48 043 975 3 007 062 60.13 990 050 70 269

A comparison to the current state-of-the-art shows that the proposed ap-
proaches allow for determining the optimal order of the qubits in a runtime
which is magnitudes faster that the current state-of-the-art. For example, one of
the largest benchmark (urf3 155 ) requires more than 3000 CPU seconds using
the state-of-the-art, while the approaches proposed here can solve this instance



in few seconds (straightforward approach) or even a fraction of a second (elabo-
rated approach) only. Moreover, also the scalability is significantly better: While,
thus far, minimal results for global reordering were available for quantum cir-
cuits composed of at most n = 10 qubits, the solutions proposed in this work
are capable of generating results for circuits with up to 25 qubits.

Besides that, the results also confirm the discussion from Section 4.4 on the
differences between the two A∗ schemes. The straightforward approach runs into
a time out of half an hour for some circuits with 14, 15, or 16 qubits. In contrast,
the more elaborated expansion strategy can also determine a solution for these
benchmarks in less than 100 seconds. A further analysis explains this: Using
the elaborated strategy, fewer nodes are generated and also significantly fewer
of them are further expanded. This is because eliminating a node close to the
root node of the tree prunes a larger part of the search space. Even though this
requires a computationally more complex heuristic function to estimate the cost
of a node, it eventually pays off and yields significant speedups compared to the
straightforward strategy.

6 Conclusions

In this work we have considered the problem of exact global reordering to min-
imize the number of SWAP gates required to make a quantum circuit nearest
neighbor compliant. Using the A∗ algorithm to determine the optimal permuta-
tion of the order of the qubits allows for significant improvements compared to
the state-of-the-art. While current approaches are able to determine a solution
for circuits with up to 10 qubits, the approach proposed in this paper is able to
determine an exact solution for circuits composed of up to 25 qubits.
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