
Efficient Construction of QMDDs for
Irreversible, Reversible, and Quantum Functions

Philipp Niemann1, Alwin Zulehner2, Robert Wille1,2, and Rolf Drechsler1,3

1 Cyber-Physical Systems, DFKI GmbH, Bremen, Germany
2 Institute for Integrated Circuits, Johannes Kepler University, Linz, Austria
3 Department of Computer Science, University of Bremen, Bremen, Germany
Philipp.Niemann@dfki.de, {alwin.zulehner, robert.wille}@jku.at,

drechsle@informatik.uni-bremen.de

Abstract. In reversible as well as quantum computation, unitary matri-
ces (so-called transformation matrices) are employed to comprehensively
describe the respectively considered functionality. Due to the exponential
growth of these matrices, dedicated and efficient means for their repre-
sentation and manipulation are essential in order to deal with this com-
plexity and handle reversible/quantum systems of considerable size. To
this end, Quantum Multiple-Valued Decision Diagrams (QMDDs) have
shown to provide a compact representation of those matrices and have
proven their effectiveness in many areas of reversible and quantum logic
design such as embedding, synthesis, or equivalence checking. However,
the desired functionality is usually not provided in terms of QMDDs,
but relies on alternative representations such as Boolean Algebra, circuit
netlists, or quantum algorithms. In order to apply QMDD-based design
approaches, the corresponding QMDD has to be constructed first—a
gap in many of these approaches. In this paper, we show how QMDD
representations can efficiently be obtained for Boolean functions, both
reversible and irreversible ones, as well as general quantum functionality.

1 Introduction

Reversible and quantum computation are alternative computational paradigms
that have received significant attention in the past decades. In contrast to conven-
tional computation, reversible computations are information loss-less such that
the inputs of a computation can always be recovered from the outputs. The ab-
sence of information loss helps (at least theoretically) to avoid energy dissipation
during computations and is used for certain aspects in low-power design.1 More-
over, superconducting quantum interference devices [14], nanoelectromechanical
systems [6, 5], adiabatic circuits [1], and many further technologies utilize this
computation paradigm. Reversibility of the respective operations is also an inher-
ent characteristic of quantum computation [9]. The considered quantum systems
are composed of qubits which, analogously to conventional bits, can represent
a (Boolean) 0 or 1, but also superpositions of the two. This allows for solving
many practically relevant problems (e.g. factorization [15] or database search [4])

1 Initial experiments verifying the underlying link between information loss and ther-
modynamics have been reported in [2].

exponentially faster than in classical computation. In both, reversible as well as
quantum computation, unitary matrices (so-called transformation matrices) are
employed to comprehensively describe the respectively considered functionality.
Quantum Multiple-Valued Decision Diagrams (QMDDs, [13]) provide a compact,
graphical representation of these matrices and allow for applying matrix opera-
tions like addition and multiplication directly on the data-structure. To this end,
QMDDs have shown their effectiveness with respect to various critical tasks of
reversible and quantum logic design. For example:

– Embedding: Due to the inherent reversibility of quantum and reversible logic,
irreversible objective functions have to be embedded into reversible ones. For
this purpose, a certain number of additional inputs (ancillary inputs) and
outputs (garbage outputs) needs to be added and corresponding functionality
is to be assigned in order to obtain reversibility. While it has been shown to
be coNP-hard to determine an appropriate/minimal number of additional
in- and outputs [17], the probably even larger problem is how to assign the
additional mappings. QMDDs have been shown to be very efficient in this
regard [20].

– Synthesis: Once a reversible function description is available, the synthesis
problem of quantum and reversible logic is to determine an equivalent circuit
representation in terms of a quantum or reversible gate library (e.g. Toffoli
gates, the NCV library, or the Clifford+T library). QMDDs have successfully
been employed for synthesis purposes in the past – particularly in order to
realize larger reversible and quantum functionality with a minimum number
of circuit lines and qubits, respectively (see e.g. [16, 11]).

– Equivalence Checking: Frequently, designers are facing different functional
descriptions, e.g. before and after a technology-mapping, employing different
gate libraries, unoptimized and optimized versions, etc. In these cases, it is
often helpful to prove whether different descriptions indeed realize the same
functionality. Since QMDDs are canonic, they are very suited to conduct
corresponding equivalence checks (see e.g. [12]).

However, in most cases the desired functionality is originally not provided in
terms of QMDDs, but using alternative representations such as Boolean Alge-
bra, circuit netlists, or quantum algorithms. In order to apply the corresponding
approaches, the QMDD representing the considered functionality has to be con-
structed first. So far, it has not been considered in the literature yet how to do
that efficiently.

In fact, for the Boolean domain, there is a large body of research on the
construction of various description means for Boolean functions, e.g. Boolean
algebra, circuit descriptions, or graphical representations. However, the result-
ing representations are far from the function matrix description that is required
to build the corresponding QMDD. In fact, most compact representations (al-
gebraic or graphical) require an evaluation/traversal for each primary output
in order to determine a particular input-output-mapping, i.e. a single entry of
the function matrix. In the quantum domain, the desired functionality is usually
given in terms of quantum algorithms or quantum circuits which are composed
of modules or gates that realize a computational step (e.g. modular exponentia-
tion) or quantum operations (e.g. rotations, controlled operations), respectively.
The overall transformation matrix is computed by multiplying the matrices of
the individual modules/gates, but those need to be constructed somehow first.

0
0

0
1

1
0

1
1

00 0 0 1 0

01 0 0 0

10 i 0 0 0

11 0 1 0 0

−i

x2x1

(a) Matrix

x1

x2

1

0

i
0

00 −i

(b) QMDD

Fig. 1. Matrix and QMDD representation of a 2-qubit quantum operation.

In this paper, we close these gaps and present detailed approaches for an
efficient construction of QMDDs for Boolean as well as general quantum func-
tionality. The paper is organized as follows: In Section 2, we provide a brief review
of QMDDs. Afterwards, in Section 3 and 4, we present detailed approaches for
an efficient construction of QMDDs for Boolean and quantum functionality, re-
spectively. The results of a feasibility study to confirm the applicability of the
proposed methodologies are provided in Section 5 before the paper is concluded
in Section 6.

2 Quantum Multiple-Valued Decision Diagrams

In the following, we briefly introduce basic concepts and ideas of Quantum
Multiple-Valued Decision Diagrams (QMDDs). For a more thorough introduc-
tion, we refer to [13]. QMDDs have been introduced as a data-structure for the
efficient representation and manipulation of unitary, complex-valued matrices
that are frequently considered in reversible and quantum computation.

Example 1. Figure 1a shows a transformation matrix of a 2-qubit quantum oper-
ation. Columns and rows (representing the inputs and outputs of the operation,
respectively) are indexed by the same set of variables {x1, x2}.

The main idea of QMDDs is a recursive partitioning of the (square) transfor-
mation matrices and the use of edge weights to represent various complex-valued
matrix entries. More precisely, a matrix of dimension 2n× 2n is partitioned into
four sub-matrices of dimension 2n−1 × 2n−1 as follows:

M =

[
M00 M01

M10 M11

]
This partitioning is relative to the most significant row and column variable.

Example 2. Consider again the matrix shown in Fig. 1a. This matrix is parti-
tioned with respect to variable x1. The sub-matrices are identified by subscripts
giving the row (output) and column (input) value for that variable identifying
the position of the sub-matrix within the matrix. Using this partition, a matrix
can be represented as a graph with vertices as shown in Fig. 2a. The vertex is
labeled by the variable associated with the partition and has directional edges
pointing to vertices corresponding to the sub-matrices. More precisely, the first,
second, third, and fourth outgoing edge of the vertex (from left to right) points
to a vertex representing M00, M01, M10, and M11, respectively.

xi

M00 M01 M10 M11

(a) Relation to matrix partitioning

xi xi

−1 −i i

0

−i
0 0 0

i

(b) Normalization of weights

Fig. 2. QMDD vertices

The partitioning process can recursively be applied to each of the sub-matrices
and to each of the subsequent levels of sub-matrices until one reaches the terminal
case where each sub-matrix is a single value. The result is that the initial matrix
is represented by a directed, acyclic graph (DAG)—the QMDD. By traversing
the tree, one can access the successively partitioned sub-matrices of the original
matrix down to the individual elements.

Example 3. Figure 1b shows the QMDD for the transformation matrix from
Fig. 1a. Here, the single root vertex (labeled x1) represents the whole matrix and
has four outgoing edges to vertices representing the top-left, top-right, bottom-
left, and bottom-right sub-matrix (from left to right). This decomposition is
repeated at each partitioning level until the terminal vertex (representing a single
matrix entry) is reached. To obtain the value of a particular matrix entry, one
has to follow the corresponding path from the root vertex at the top to the
terminal vertex while multiplying all edge weights on this path. For example,
the matrix entry −i from the top-right sub-matrix of Fig. 1a (highlighted bold)
can be determined as the product of the weights on the highlighted path of the
QMDD in Fig. 1b. For simplicity, we omit edge weights equal to 1 and indicate
edges with a weight of 0 by stubs.

The performed decompositions unveil redundancies in the description for
which representations can be shared—eventually yielding a rather compact rep-
resentation of the matrix. More precisely, the edge weights in a QMDD are
normalized in order to extract common multipliers and represent sub-matrices
that only differ by a scalar factor by a shared vertex.

Example 4. The top-right and bottom-left sub-matrices of the matrix in Fig. 1a
(highlighted in gray) differ by a scalar factor only (namely, i) and, thus, can be
represented by a single, shared QMDD vertex as shown in Fig. 1b. In order to ob-
tain shared vertices when constructing the QMDD, the following normalization
scheme is performed: for each non-terminal vertex the weights of all outgoing
edges are divided by the weight of the first non-zero edge. In other words, a
vertex is normalized if, and only if, the first non-zero edge has weight 1. The
extracted factor is then propagated to all incoming edges as shown in Fig. 2b.

Fortunately, the simple normalization scheme from Example 4 is sufficient
to obtain the maximum shared vertex compression. No improvement is possi-
ble with more sophisticated normalization schemes [10]. However, by applying
different variable orders, the QMDD size can often be reduced significantly. If,
in contrast, a particular variable order is fixed, QMDDs are indeed canonical
representations. This means that for a given matrix the corresponding QMDD
representation is unique (for a fixed normalization scheme). Moreover, efficient

algorithms have been presented for applying operations like matrix addition or
multiplication directly on the QMDD data-structure.

Overall, QMDDs allow for applying matrix-based approaches in reversible
and quantum logic design directly on this compact data-structure and, thus,
make them applicable to systems of considerable size. However, the desired
functionality needs to be on hand in terms of its QMDD representation first.
As QMDDs are usually not the original description means, in the following we
present a methodology for deriving QMDD representations from commonly used
function representations for Boolean as well as quantum functionality.

3 Constructing QMDDs for Boolean Functionality

In this section, we describe how to obtain a QMDD representation for multi-output
Boolean functions—both, irreversible and reversible ones.

3.1 General Idea and Methodology

A multi-output Boolean function f : Bn → Bm is commonly given in terms of de-
scriptions of its primary outputs f1, . . . , fm (also termed component functions).
These single-output Boolean functions Bn → B are commonly described in terms
of Boolean Algebra, i.e. as Sums of Products (SOP), Products of Sums (POS),
or the like. In the following, we focus on SOP representations, but any other
description means can be treated similarly.

Matrices, however, as required for the construction of corresponding QMDDs,
are usually not employed to describe these functions—with one exception: re-
versible Boolean functions can be interpreted as permutations of the set Bn and
are frequently represented as permutation matrices. In these 2n × 2n matrices
Pf = [pi,j]2n×2n , each column (row) denotes a possible input (output) pattern.
Moreover, pi,j = 1 if, and only if, f maps the input pattern corresponding to
column j to the output pattern corresponding to row i. Otherwise pi,j = 0.

In order to have a baseline for the QMDD construction, these matrices can be
generalized in a straightforward fashion to functions with different numbers of in-
puts and outputs. In fact, the function matrix of a Boolean function f : Bn → Bm

needs to have the dimension 2m × 2n in order to allow for the same correspon-
dence of input (output) patterns and columns (rows).

Example 5. A half adder can be described by the multi-output Boolean func-
tion f : B2 → B2 with component functions f1(x1, x2) = x1 ∧ x2 (carry) and
f2(x1, x2) = x1 ⊕ x2 = x1x2 ∨ x1x2 (sum). The corresponding truth-table and
function matrix representations are shown in Figs. 3a and 3b, respectively. Each
line of the truth-table is represented by a single 1 entry in the function matrix.
For instance, the third line stating that (1, 0) is mapped to (0, 1) is represented
by the 1 in the third column (10), second row (01).

In order to bridge the gap between the initial representation (which is essen-
tially a more compact representation of the truth-table of f) and the targeted
QMDD representation (which is essentially a more compact representation of
the function matrix of f), the main idea is to employ the so-called characteris-
tic function χf of f . This is a Boolean function Bn × Bm → B with n inputs
labeled x = x1, . . . , xn and m inputs labeled y = y1, . . . , ym, where χf (x, y) = 1

x1 x2 f1 f2
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

(a) Truth-table

0
0

0
1

1
0

1
1

00 1 0 0 0

01 0 1 1 0

10 0 0 0 1

11 0 0 0 0

x1x2

f1/y1
f2/y2

Inputs

O
u
tp

u
ts

(b) Function matrix

x1 x2 y1 y2 χf

0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 1
...

...
...

...
...

1 1 1 1 0

(c) Char. function

Fig. 3. Representations of a half adder.

if, and only if, f(x) = y. In other words, χf evaluates to true if, and only if, the
backmost m inputs represent the correct output pattern that is generated when
applying f to the input pattern specified by the first n inputs. Thus, the entries
of the function matrix can be interpreted as the outcomes of χf .

Example 6. The characteristic function of the half adder from Example 5 is
shown in Fig. 3c in terms of its truth-table. Each line corresponds to one entry
of the function matrix. More precisely, writing all columns of the function matrix
on top of each other would yield the χf column of the truth-table.

As it is infeasible to construct and store the whole function matrix at once due
to its exponential complexity, we rather employ compact, graphical representa-
tions of Boolean functions (especially of the characteristic functions) from which
the desired QMDD representation can then be derived directly without explicitly
considering the function matrix. To this end, we make use of Binary Decision
Diagrams (BDDs, [3]). These are similar to QMDDs, but each non-terminal ver-
tex has only two instead of four outgoing edges (termed high and low edge)
and represents a (single-output) Boolean function rather than a matrix. More
precisely, the function fv of a vertex v labeled by xi is recursively defined as

fv =
(
xi ∧ fhigh(v)

)
∨
(
xi ∧ flow(v)

)
,

where fhigh(v) and flow(v) denote the functions represented by the high and low
child, respectively. This equation has a strong analogy to the Shannon decom-
position of f (wrt. a primary input xi) which is given as

f = (xi ∧ fxi=1) ∨
(
xi ∧ fxi=0

)
.

Here, fxi=1 and fxi=0 are the so-called co-factors of f which are obtained by set-
ting the primary input xi to 1 and 0, respectively. The analogy between the two
equations, on the one hand, justifies the claim that the BDD vertices represent
the Shannon decomposition of f with respect to its primary inputs and, on the
other hand, yields a blueprint for how to construct the BDD representation of
a given function. Alternatively, as logical operations like AND, OR, etc. can be
conducted directly and efficiently on BDDs, the BDD representation of an SOP
can also be constructed by first building the BDDs for the individual products

x1

x2 x2

0 1

⇒

x1

x2 x2

y2 y2

0 1

⇒

x1

x2

0 1

⇒

x1

y1 y1

x2 x2

0 1

⇒
x1

y1 y1

x2 x2 x2

y2 y2 y2 y2

1

0

0 0

0 0 0 0

⇒

x1

x2 x2 x2

1

0

00 0 0 0 0 0 0

BDD of fi BDD of hi BDD of χf QMDD of f

Fig. 4. Construction of the QMDD for the half adder.

and then using the BDD equivalent of the logical OR operation to “sum up” the
products.2

Example 7. The BDDs for the component functions of the half adder reviewed
in Examples 5 and 6 are shown on the left-hand side of Fig. 4.

Overall, there is a well-developed methodology for constructing the BDD
representation of the component functions of f . These BDDs have then to be
composed in a second step to obtain the BDD of the characteristic function χf .
Since the outcomes of χf essentially describe the entries of the desired function
matrix, the resulting BDD can eventually be transformed to a QMDD. In the
following, these steps are described in more detail.

3.2 Generating the BDD of the Characteristic Function

In order to derive the BDD representing the characteristic function χf of a
multi-output function f : Bn → Bm, we first introduce new variables yi for the
primary outputs of f (referred to as output variables in the following). While the
original (input) variables are used to encode the column index of the function
matrix, the output variables encode rows. Then, we construct the characteristic
function for each output. More precisely, we construct the helper functions hi
given by

hi(x1, . . . , xn, yi) = fi(x1, . . . , xn)�yi,
where � denotes the XNOR-operation. This logical operation—and, thus, the
entire function hi—evaluates to true if, and only if, both operands are equal,

2 Actually, there is a large body of research on how to derive BDD representations
from various other, algebraic or netlist-based, representations of Boolean functions.

i.e. fi(x1, . . . , xn) = yi. Consequently, the hi-function can be interpreted as
characteristic functions of the primary outputs of f .

Afterwards, the BDD of χf can be constructed by AND-ing the BDDs rep-
resenting the hi-functions as the following calculation shows:

h1 ∧ h2 ∧ . . . ∧ hm = 1

⇔∀i ∈ {1, . . . , n} : hi = 1

⇔∀i ∈ {1, . . . , n}, (x1, . . . , xn, y1, . . . , ym) ∈ Bn+m : fi(x1, . . . , xn) = yi
⇔f(x1, . . . , xn) = (y1, . . . , ym)

⇔χf (x1, . . . , xn, y1, . . . , ym) = 1

Remark 1. If n > m, i.e. if f has more primary inputs than outputs, we pad
the function with zeros in order to obtain a Boolean function with the same
number of inputs and outputs, such that the resulting function matrix is square.
More precisely, we add n−m additional constant outputs/component functions
fj ≡ 0. While these can, in principle, be added at any position, we add them in
front of the original outputs/component functions. If, in contrast, m > n, we add
m − n additional inputs that have no impact on the functionality of f . Again,
these inputs can, in principle, be added at any position, but we add them in
front of the original inputs. Overall, this ensures that the original functionality
is represented by the sub-matrix of dimension 2m × 2n in the top-left corner of
the square function matrix. Moreover, this allows us to assume in the following
that n = m without restriction.

As the BDD representing χf is guaranteed to be exponential in size for the
variable order x1 � . . . � xn � y1 � . . . � ym (at least for reversible functions),
we enforce an interleaved variable order x1 � y1 � x2 � y2 � . . . � xn � yn when
constructing the BDD for χf .

Example 8. Consider again the half adder example. The BDDs representing the
helper functions h1 = f1�y1 and h2 = f2�y2 are computed using the BDD
equivalent of the logical XNOR operation and are shown in Fig. 4 (next to the
BDDs representing f1 and f2). By AND-ing these BDDs, we obtain the BDD
representing χf which is shown in the center of Fig. 4. In this BDD, all edges
pointing to the zero-terminal are indicated by stubs for the sake of a better
readability and to emphasize the similarity to the targeted QMDD.

3.3 Transforming the BDD into a QMDD

With a BDD in interleaved variable order representing χf , the matrix partition-
ing employed by QMDDs is already laid out implicitly. In fact, corresponding
bits of the column and row indices are represented by different, but adjacent
variables (xi and yi), while QMDDs combine these in a single variable. Con-
sequently, the BDD of χf can be transformed into the QMDD for f using the
general transformation rule shown in Fig. 5. However, there are two special cases
that have to be treated separately:

– If an input variable xi is skipped (more precisely: a vertex labeled by yi is
the child of a vertex not labeled by xi), this implies the xi vertex would be
redundant, i.e. high and low edge point to the same vertex. This case can

xi

yi yi

f00 f01 f10 f11

⇒ xi

f00 f10 f01 f11

Fig. 5. General transformation rule from characteristic BDDs to QMDDs.

l

yi

f0 f1

(l 6= xi)

⇒⇐

xi primary input xi add. input

xi

f0 f0 f1 f1

xi

f0
0

f1

0

(a) Skipped input variables

xi

l

f0

(l 6= yi)

⇒
xi

f0 ? f0 ?

(b) Skipped output variables

Fig. 6. Handling skipped variables.

easily be handled by setting f00 = f10 = f0 or f01 = f11 = f1, respectively, as
illustrated on the left-hand side of Fig. 6a. If, however, xi is not an original
input of the function, but has been introduced later in order obtain the
same number of in- and outputs, we set f10 = f11 = 0 instead to ensure that
the original functionality occurs only once in the final function matrix (as
illustrated on the right-hand side of Fig. 6a).

– If an output variable level yi is skipped (more precisely: the high or low edge
of a vertex labeled by xi point to a vertex labeled by l 6= yi), this implies the
skipped yi vertex would be redundant (both children would be the same).
This case can easily be handled by setting f00 = f01 = f0 or f10 = f11 = f1,
respectively, before applying the general transformation rule. For instance,
the case of a skipped variable on the low edge is illustrated in Fig. 6b.

Example 9. Consider again the characteristic BDD shown in the center of Fig. 4.
Here, the single x1 vertex and the leftmost x2 vertex can be transformed to
their QMDD equivalent by applying the general transformation rule. For the
remaining x2 vertices, the methodology for skipped y2 output variables is to be
applied. Overall, this yields the QMDD shown on the right-hand side of Fig. 4.

Overall, following this procedure yields a QMDD representing the function
matrix (in case of a reversible function, a permutation matrix) of any Boolean
function f originally provided in terms of an SOP.

4 Constructing QMDDs for Quantum Functionality

In this section, we describe how to efficiently construct a QMDD representing
desired quantum functionality. General quantum functionality is usually either
given (a) in terms of an abstract quantum algorithm which describes a series of
computational steps or complex quantum operations (modules) to be conducted

x1

x2

x3 H

(a) Quantum circuit

0
0
0

0
0
1

0
1
0

0
1
1

1
0
0

1
0
1

1
1
0

1
1
1

000 1√
2

1√
2

0 0 0 0 0 0

001 0 0 1√
2

−1√
2

0 0 0 0

010 0 0 1√
2

1√
2

0 0 0 0

011 1√
2

−1√
2

0 0 0 0 0 0

100 0 0 0 0 1√
2

1√
2

0 0

101 0 0 0 0 0 0 1√
2

−1√
2

110 0 0 0 0 0 0 1√
2

1√
2

111 0 0 0 0 1√
2

−1√
2

0 0

x2x1

x3
Inputs

O
u
tp

u
ts

(b) Transformation matrix

x1

x2

x3 x3

1

1√
2

0 0

0 0 0 0

−1

(c) QMDD

Fig. 7. Different representations of quantum functionality.

or (b) in terms of a quantum circuit consisting of a cascade of elementary quan-
tum operations (so-called quantum gates) that form a more complex operation.

Example 10. Consider the 3-qubit quantum circuit shown in Fig. 7a. Horizontal
lines represent qubits. Quantum gates, i.e. H (a Hadamard operation) and
(a controlled NOT, CNOT), are applied successively from left to right. The cor-
responding transformation matrix is depicted in Fig. 7b. As for any matrix of
a linear transformation, columns denote input basis vectors and rows denote
output basis vectors. In the quantum domain, the basis vectors are called basis
states and are commonly denoted as |x1x2x3〉 using the so-called ket-notation.
For instance, the basis state |001〉 is mapped to the linear combination (superpo-
sition) 1√

2
|000〉 − 1√

2
|011〉. Note that there is a strong relationship between the

partitioning of the matrix with respect to a variable xj and the input/output
mapping of the corresponding qubit. More precisely, the top-left sub-matrix of
a partitioning represents the mapping |0〉 7→ |0〉, the top-right sub-matrix rep-
resents the mapping |1〉 7→ |0〉, and so on. This transfers to the corresponding
QMDD vertices such that the outgoing edges represent the mappings |0〉 7→ |0〉,
|1〉 7→ |0〉, |0〉 7→ |1〉, and |1〉 7→ |1〉 from left to right and are denoted by
e00, e10, e01, e11 in the following. Finally, the corresponding QMDD is depicted
in Fig. 7c.

For quantum algorithms as well as circuits, the representation/description of
the overall functionality is successively built from functional descriptions/repre-
sentations of the individual parts (modules or gates). More precisely, for a cas-
cade of modules/gates g1g2 . . . gl where the transformation for module/gate gi
is defined by matrix Mi, the transformation for the complete algorithm/circuit
is given by the direct matrix product Ml ·Ml−1 · . . . ·M1. Note that the or-
der of the matrices has to be reversed to achieve the correct order of applying
the modules/gates (first g1, then g2, etc.). To construct this matrix product,
the QMDDs for the single modules/gates simply have to be multiplied using the

QMDD-based algorithm for matrix multiplication. Consequently, for the remain-
der of this section we focus on how the QMDD representations for elementary
quantum gates can be constructed efficiently.

A gate g is specified by the 2×2 base transition matrix B, the target qubit xt
and a possible empty set of control qubits C ⊂ {x1, . . . , xn} (with xt /∈ C)
together with a map α : C → {|0〉, |1〉} which describes the activating values, i.e.
qubit basis states, of each control qubit.

Example 11. The base transition matrix of the first gate of the quantum circuit
in Fig. 7a (Hadamard gate) is given by H = 1√

2

(
1 1
1 −1

)
. This gate has a target x3

and no controls, i.e. C = ∅. The second gate of the circuit is a controlled NOT
gate with the base transition matrix X =

(
0 1
1 0

)
, a target x2, and one positive

control, i.e. C = {x3} with α(x3) = |1〉. This gate effectively swaps the basis
states |0〉 and |1〉 on qubit x2 if, and only if, qubit x3 is in the |1〉-state.

The QMDD for a quantum gate is built variable by variable (qubit by qubit)
in a bottom-up fashion from the terminal to the root vertex. To this end, we
assume the variable order x1 � x2 � . . . � xn from the root vertex towards the
terminal vertex. In order to indicate which set of variables has been processed so
far, we use the notation M{xk,...,xn}. Moreover, for the sake of an easier reference,
we term those edges of a QMDD vertex diagonal that correspond to a |i〉 → |i〉
mapping (i = 0, 1), i.e. e00 and e11, and the remaining edges off-diagonal.

Although it is possible to construct the QMDD for the gate in a single run as
roughly sketched in [8], for a better understanding we follow [13] and construct
two QMDDs representing the cases that the gate is active (all control qubits
are in their activating state) or inactive (at least one control qubit is not).3 By
adding these QMDDs, the actual QMDD for the gate results.

Case “gate is active”, i.e. the base transition B is performed on qubit xt if,
and only if, all controls are in their activating state. All other qubits preserve
their original state.
Consequently, the QMDD for the active case contains all (non-zero) paths
of the final QMDD for which all decision variables (qubits) except for the
target have an activating assignment.
In order to have a valid starting point, we begin at the terminal level with
an edge pointing to the terminal vertex with weight 1, i.e. M∅ = [1]1×1.4

Afterwards, the qubits are processed in a bottom-up fashion. If the current
qubit xc

– is neither a control nor the target, i.e. xc 6= xt, xc /∈ C, the gate is
active regardless of the qubit’s state. Consequently, at the matrix level
the result is id2×2⊗M{xc+1,...,xn} which corresponds to a QMDD vertex
labeled xc where all diagonal edges point to the existing QMDD and all
remaining edges are 0-edges.

3 Without loss of generality, we consider only basis states of the underlying quantum
system, i.e. each qubit is assumed to be in one of its basis states. Due to the linearity
of quantum operations, these are sufficient to construct the corresponding transfor-
mation matrix which yields the correct behaviour also for the case of superposed
input states.

4 The appropriate weights of the base transition will be incorporated later.

x1

x2

x3

1

1√
2

00

−1

00

(a) First gate

x1

x2

x3

1

00

00

00 0

Inactive

x1 x1

x2 x2

x3 x3 x3

1 1

00

0 0

0 00

=

Active

00

0 0000 0

+

(b) Second gate

Fig. 8. QMDD representations for the gates from the quantum circuit in Fig. 7a.

– is a control, i.e. xc ∈ C, the gate is only active for one control value
|i〉 = α(xc). Consequently, the result is a vertex labeled xc with only 0-
edges except from the edge |i〉 → |i〉 which points to the existing QMDD.

– is the target, i.e. xc = xt, the base transition is performed. Consequently,
the result is B ⊗M{xc+1,...,xn}, i.e. a vertex labeled xt with all edges
pointing to the existing QMDD with the corresponding edge weight taken
from the base transition matrix B (if a weight is zero, the corresponding
edge is a 0-edge directly pointing to the terminal).

During this construction, the QMDD is normalized as described in Example 4.

Example 12. Consider the QMDD in Fig. 8a which represents the first gate of
the quantum circuit shown in Fig. 7a. As this gate does not have any controls,
it is always active and, thus, it suffices to build the QMDD representing the
active part. We start with an edge to the terminal vertex with weight 1. As
the bottom-most qubit is already the target qubit, all edges of the x3-vertex
point directly to this terminal with the appropriate weight of the Hadamard
transformation matrix H = 1√

2

(
1 1
1 −1

)
. Note that normalization will propagate

the common multiplier 1√
2

of this matrix to the root edge. The remaining qubits

are neither control nor target. Thus, vertices representing an identity mapping
of these qubits are inserted.

The QMDD for the inactive case is constructed similarly.

Case “gate is inactive”, i.e. the identity transition is performed on qubit xt
since at least one control is not in its activating state. All qubits preserve
their original state, i.e. none but diagonal edges are populated at all.
Consequently, the QMDD for the inactive case contains all (non-zero) paths
of the final QMDD for which at least one decision variable (qubit) does not
have an activating assignment.
However, when constructing the QMDD in a bottom-up fashion, we always
use the hypothesis that all controls above the current qubit are in their
activating states and at least one control below is not.
To make sure that this hypothesis gives the correct result even for the
bottom-most control (for which no inactive control may exist below), we
start at the terminal level with an edge pointing to the terminal vertex with

weight 0, i.e. M∅ = [0]1×1. This ensures that all edges corresponding to the
activating value of this bottom-most control are 0-edges.
The remaining qubits are processed as follows. If the current qubit xc
– is neither a control nor the target, i.e. xc 6= xt, xc /∈ C, the gate is

inactive regardless of the qubit’s state. Consequently, at the matrix level
the result is id2×2⊗M{xc+1,...,xn} which corresponds to a QMDD vertex
labeled xc where all diagonal edges point to the existing QMDD and all
remaining edges are 0-edges.

– is a control, i.e. xc ∈ C, the gate is definitely inactive for all but one con-
trol value |i〉 = α(xc). For the latter, the activity of the gate depends on
the remaining qubits. Consequently, the result is a vertex with all diag-
onal edges pointing to the k-fold tensor product id2×2

⊗k (nothing hap-
pens to all k qubits below the current one) except from the edge |i〉 → |i〉.
The latter handles the case that the qubit is in its activating state and
is pointing to the existing QMDD M{xc+1,...,xn}.

5 All off-diagonal edges
are 0-edges.

– is the target, i.e. xc = xt, the identity transformation is performed on
the target. Consequently, the result is id2×2 ⊗M{xc+1,...,xn} like in the
unconnected case.

Example 13. The QMDDs for the circuit’s second gate is shown in Fig. 8b.
For the inactive part, we start with a 0-edge. For the control on x3, we con-

struct a vertex which uses this 0-edge as e11 and for which the other diagonal
edge e00 represents the identity id2×2

⊗0 = [1]1×1, i.e. it points to the terminal
vertex with weight 1. As x3 is the only control, we simply add vertices repre-
senting an identity mapping for the remaining qubits.

For the active part, we start with an edge to the terminal vertex which
becomes the e11 edge of the x3-vertex, as the activating state of x3 is |1〉. For
the target qubit x2 with the base transition matrix X =

(
0 1
1 0

)
, an x2-vertex is

added. For this vertex, both off-diagonal edges point to the x3-vertex constructed
before (with weight 1 as the corresponding entry in X is 1) and both diagonal
edges are 0-edges (as the corresponding entry in X is 0). Last, but not least, for
the unconnected qubit x1 a vertex representing its identity mapping is added.
Finally, by adding the QMDDs for the inactive and active part, we obtain the
actual QMDD for the CNOT gate.

Overall, the resulting QMDDs for the active as well as the inactive part of
the gate are linear in the number of variables—regardless of the complexity of
the gate under consideration. Both QMDDs can be constructed in parallel while
iterating through the variables in a bottom-up fashion. In addition, they describe
disjoint parts of the gate matrix, while they are padded with zeros outside of that
particular part. Consequently, their sum can be computed in linear time and will
also be linear in size. In fact, there are only trivial additions where at least one
of the summands is a 0-matrix and, as already recognized in [8], the addition
could be saved entirely, such that the whole construction could be performed in
a single pass from the terminal to the root vertex with no backtracking or recur-
sion. Either way, QMDD representations for single gates can be computed very
efficiently and the potentially rather expensive part of constructing a QMDD

5 If there is no further control below the current qubit, the gate inactivity is ensured
by choosing a 0-edge as the initial QMDD.

representation for quantum algorithms or quantum circuits (as well as any other
quantum logic representation) is given by the (QMDD-based) matrix multiplica-
tion that is required to concatenate the representations of single modules/gates.

5 Feasibility Study

In this section, we demonstrate the applicability of the discussed methods for
QMDD construction. To this end, we implemented them in C++ on top of the
QMDD package (provided together with [13]) and the BDD package CUDD [18].
As benchmarks for the construction of QMDDs representing Boolean functions,
we considered functions from RevLib [19]. For quantum benchmarks, we con-
sidered quantum realizations of the Boolean functions from RevLib, realizations
of the Quantum Fourier Transformation and Grover’s search algorithm (cf. [9]),
implementations of error-correcting codes (taken from [7]) as well as randomly
generated Clifford group circuits. All experiments have been conducted on a
4 GHz processor with 32 GB of memory running Linux 4.4.

Table 1a lists the results for the QMDD construction for Boolean functions
(reversible as well as non-reversible ones). The first three columns list the name
of the benchmark as well as the number of primary inputs and primary outputs
(denoted by PI and PO, respectively). Note that the number of variables of the
resulting QMDD is accordingly given by n = max(PI, PO). The remaining two
columns of Table 1a list the run-time (in CPU seconds) required for constructing
the QMDD and the size of the resulting QMDD (i.e. its number of vertices).

The numbers show that the QMDDs construction could either be conducted
in negligible run-time (i.e. in less than a second) or fails by running into a
timeout of 10 000 seconds (denoted by TO). However, the latter case was only
observed for two benchmarks with more than 100 QMDD variables. The limiting
factor in these cases was the construction of the characteristic function, since
the variables in the BDD have to adhere to a certain order. More precisely,
the variables representing primary inputs and primary outputs are interleaved
– allowing that the transformation of the characteristic function into a QMDD
can be conducted as described in Section 3.3. While certainly a limitation, this
is in line with the characteristic matrix partitioning of QMDDs, i.e. QMDDs
eventually employ a similar order (only with the difference that corresponding
PIs and POs are jointly considered in a single vertex). That is, the QMDD data-
structure itself is the limiting factor for these two functions; not the proposed
construction method.

Table 1b shows the obtained results for constructing QMDDs for quantum
computations. The first three columns of the table list the name of the bench-
marks, the number of qubits n as well as the number of gates of the quantum
circuit |G|. The remaining two columns list the run-time required to construct
the QMDD and its number of vertices. Here, the numbers show that a QMDD
can be constructed for quantum circuits composed of more than one thousand
gates quite efficiently. Indeed, we observe a run-time of less than one second
for most cases. However, there are also a few benchmarks for which the time to
construct the QMDD takes longer (e.g. Clifford-20 or Clifford-25), but these are
exactly the cases where the size of the resulting QMDD is large.

6 Conclusions
In this work, we considered how to efficiently construct a QMDD representation
for Boolean functions, reversible and non-reversible ones, as well as quantum

Table 1. Feasibility Study

(a) Boolean functions

Benchmark PI PO t size
5xp1 90 7 10 0.10 342
sao2 199 10 4 0.11 138
urf3 75 10 10 0.15 1001
urf4 89 11 11 0.22 2774
add6 92 12 7 0.11 309
alu1 94 12 8 0.12 189
apla 107 10 12 0.12 288
cycle10 2 61 12 12 0.13 66
sqr6 204 6 12 0.11 112
0410184 85 14 14 0.26 38
alu4 98 14 8 0.16 1471
cu 141 14 11 0.10 165
misex3c 181 14 14 0.13 522
table3 209 14 14 0.12 934
tial 214 14 8 0.14 1503
ham15 30 15 15 0.50 2021
in0 162 15 11 0.10 492
urf6 77 15 15 0.53 2312
cmb 134 16 4 0.11 86
decod 137 5 16 0.12 111
apex4 103 9 19 0.16 1189
cm151a 129 19 9 0.11 141
mux 185 21 1 0.15 145
cordic 138 23 2 0.11 132
bw 116 5 28 0.11 432
frg1 160 28 3 0.12 417
apex2 101 39 3 0.22 1797
pdc 191 16 40 0.29 1800
seq 201 41 35 0.35 1881
spla 202 16 46 0.25 1538
ex5p 154 8 63 0.20 1139
e64 149 65 65 0.22 1161
cps 140 24 109 0.92 3763
apex5 104 117 88 TO –
frg2 161 143 139 TO –

(b) Quantum functionality

Benchmark n |G| t size
QFT-3 3 9 0.11 21
QFT-4 4 16 0.10 85
QFT-5 5 21 0.11 341
QFT-6 6 30 0.11 1365
7-qubit-code 7 18 0.11 29
Grover-3 7 83 0.10 209
hwb6 56 7 1153 0.15 87
QFT-7 7 37 0.11 5461
5-qubit-code 9 24 0.11 83
9-qubit-code-A 9 11 0.11 25
Grover-4 9 106 0.12 1075
rd73 252 10 660 0.18 42
9symml 195 11 2945 0.49 53
dc1 221 11 290 0.11 64
Grover-5 11 131 0.18 2816
cycle10 2 110 12 722 0.13 66
adr4 197 13 426 0.18 174
dist 223 13 3544 2.42 284
radd 250 13 327 0.16 151
co14 215 15 1290 0.29 65
dc2 222 15 1218 0.67 360
ham15 107 15 1101 0.25 4521
Clifford-15 15 100 1.43 22697
5xp1 194 17 931 0.36 719
9-qubit-code-B 17 40 0.11 1075
Clifford-18 18 100 0.84 21609
Clifford-20 20 100 10.21 76473
decod 217 21 845 0.15 187
pcler8 248 21 289 0.26 1083
apla 203 22 2051 1.43 421
cu 219 25 752 1.28 525
Clifford-25 25 100 284.16 580992
cm151a 211 28 639 45.13 6408
cm163a 213 29 575 3.44 1205
add64 184 193 576 0.14 701

functionality. These representations are essential for the efficiency of various ap-
proaches in reversible/quantum logic design, but are usually not the originally
provided description means. For the Boolean case, we developed a methodology
to obtain and transform the BDD of the characteristic function which is struc-
turally already very similar to the desired QMDD. For the quantum case, we
focused on the construction of QMDD representations for elementary quantum
gates from which the representation of the entire circuit or algorithm can be
obtained using (QMDD-based) matrix multiplication. The feasibility of the pro-
posed methods has been confirmed on several examples. In fact, the obtained
results showed that the construction can be conducted in negligible run-time
when the characteristic matrix partitioning of QMDDs allows for an efficient
representation. Overall, this work closes an important gap for several design
solutions based on QMDDs e.g. for embedding, synthesis, or verification.

Acknowledgements

This work has partially been supported by the European Union through the
COST Action IC1405.

References

1. Athas, W., Svensson, L.: Reversible logic issues in adiabatic CMOS. In: Proc.
Workshop on Physics and Computation, 1994. PhysComp ’94. pp. 111–118 (1994)

2. Berut, A., Arakelyan, A., Petrosyan, A., Ciliberto, S., Dillenschneider, R., Lutz,
E.: Experimental verification of Landauer’s principle linking information and ther-
modynamics. Nature 483, 187–189 (2012)

3. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Trans. on Comp. 35(8), 677–691 (1986)

4. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Theory
of computing. pp. 212–219 (1996)

5. Houri, S., Valentian, A., Fanet, H.: Comparing CMOS-based and NEMS-based adi-
abatic logic circuits. In: Conference on Reversible Computation, pp. 36–45 (2013)

6. Merkle, R.C.: Reversible electronic logic using switches. Nanotechnology 4(1), 21
(1993)

7. Mermin, N.D.: Quantum Computer Science: An Introduction. Cambridge Univer-
sity Press (2007)

8. Miller, D.M., Thornton, M.A.: QMDD: A decision diagram structure for reversible
and quantum circuits. In: Int’l Symp. on Multi-Valued Logic. p. 6 (2006)

9. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cam-
bridge Univ. Press (2000)

10. Niemann, P., Wille, R., Drechsler, R.: On the “Q” in QMDDs: Efficient represen-
tation of quantum functionality in the QMDD data-structure. In: Conference on
Reversible Computation. pp. 125–140 (2013)

11. Niemann, P., Wille, R., Drechsler, R.: Efficient synthesis of quantum circuits imple-
menting Clifford group operations. In: ASP Design Automation Conf. pp. 483–488
(2014)

12. Niemann, P., Wille, R., Drechsler, R.: Equivalence checking in multi-level quantum
systems. In: Conference on Reversible Computation. pp. 201–215 (2014)

13. Niemann, P., Wille, R., Miller, D.M., Thornton, M.A., Drechsler, R.: QMDDs:
Efficient quantum function representation and manipulation. IEEE Trans. on CAD
35(1), 86–99 (2016)

14. Ren, J., Semenov, V., Polyakov, Y., Averin, D., Tsai, J.S.: Progress towards re-
versible computing with nSQUID arrays. IEEE Transactions on Applied Super-
conductivity 19(3), 961–967 (2009)

15. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. Foundations of Computer Science pp. 124–134 (1994)

16. Soeken, M., Wille, R., Hilken, C., Przigoda, N., Drechsler, R.: Synthesis of re-
versible circuits with minimal lines for large functions. In: ASP Design Automation
Conf. pp. 85–92 (2012)

17. Soeken, M., Wille, R., Keszocze, O., Miller, D.M., Drechsler, R.: Embedding of
large Boolean functions for reversible logic. J. Emerg. Technol. Comput. Syst.
12(4), 41:1–41:26 (2015)

18. Somenzi, F.: Efficient manipulation of decision diagrams. Software Tools for Tech-
nology Transfer 3(2), 171–181 (2001)

19. Wille, R., Große, D., Teuber, L., Dueck, G.W., Drechsler, R.: RevLib: an online
resource for reversible functions and reversible circuits. In: Int’l Symp. on Multi-
Valued Logic. pp. 220–225 (2008), RevLib is available at http://www.revlib.org

20. Zulehner, A., Wille, R.: Make it reversible: Efficient embedding of non-reversible
functions. In: Design, Automation and Test in Europe. pp. 458–463 (2017)

