
Towards VHDL-based Design
of Reversible Circuits

Work in Progress Report

Zaid Al-Wardi1,2, Robert Wille3,4, and Rolf Drechsler1,4

1Institute of Computer Science, University of Bremen, D-28359 Bremen, Germany
2Collage of Engineering, Al-Mustansiriya University, Baghdad, Iraq

3Institute for Integrated Circuits, Johannes Kepler University Linz, Austria
4Cyber-Physical Systems, DFKI GmbH, D-28359 Bremen, Germany
{alwardi,drechsle}@informatik.uni-bremen.de robert.wille@jku.at

Abstract. Hardware Description Languages (HDL) facilitate the de-
sign of complex circuits and allow for scalable synthesis. While rather
established for conventional circuits, HDLs for reversible circuits are in
their infancy and usually require a deep understanding of the reversible
computing concepts. This motivates the question whether reversible cir-
cuits can also efficiently be designed with conventional HDLs, such as
VHDL. This work discusses this question. By this, it provides the ba-
sis towards a design flow that requires no or only little knowledge of
the reversible computation paradigm which could ease the acceptance
of this non-conventional computation paradigm amongst designers and
stakeholders.

1 Introduction

The majority of reversible circuit design and synthesis methodologies are de-
rived from functional descriptions provided in terms of truth tables, two-level
descriptions, decision diagrams, or similar (Boolean) function representations
(see e.g. surveys provided in [1, 2]). These approaches are limited by their re-
stricted scalability and are not competitive to the state-of-the-art design flows
available for conventional circuits.

Hardware Description Languages (HDL) address scalable design of digital
circuits [3]. In fact, the design of conventional circuitry heavily relies on estab-
lished HDLs such as VHDL or Verilog. For reversible circuit design, a clear trend
towards higher levels of abstractions can be seen [4, 5]. The proposed approaches
employ the reversible computation paradigm with its characteristics as well as re-
strictions and, hence, rely on dedicated concepts such as reversible assignments,
reversible control logic, etc. Since, historically, design focused on circuits fol-
lowing the conventional computing paradigm, those concepts are usually rather
unfamiliar amongst HDL-designers.

This motivates the question whether reversible circuits can also efficiently
be designed with conventional HDLs such as VHDL or Verilog. Obviously, this
would break with many concepts and may lead to drawbacks such as the need to

1 entity test is
2 port (a,b: in bit; f: out bit);
3 end entity test;
4

5 architecture dataflow of example is
6 signal w: bit;
7 begin
8 S1: f <= a and w;
9 S2: w <= not b;

10 end architecture dataflow;

Fig. 1. Simple VHDL program

embed non-reversible HDL description means into reversible circuitry (causing
overhead e.g. in terms of additional circuit lines).

In this work, we address this issue and choose the widely used hardware
description language VHDL as an example of a conventional HDL. We discuss
its suitability to synthesize reversible circuits. The findings from the resulting
observations provide the basis towards a design flow that requires no or only
little knowledge of the reversible computation paradigm. At the same time, it
pinpoints to the weaknesses and open issues to be addressed in order to make
VHDL-based design indeed a more accessible alternative to the existing design
solutions for reversible circuits. Possible directions how to address these weak-
nesses are discussed in this work.

2 Realizing VHDL Signals

VHDL signal types can directly be mapped to signals of the reversible circuits.
More precisely, a VHDL signal is mapped to a reversible circuit line1.

In Fig. 1 we can see a VHDL code that declares different types of signals,
which are mapped to lines with different specifications as follows:

1. Input ports a,b : These lines carry input values to the circuit and remain
unchanged within a circuit.

2. Output port f : This has a constant ′0′ input, then an expression is assigned
to this signal (line) by a statement within the architecture body.

3. Internal signal w : This line represent an internal wire. It is similar to
output ports in that it is initially constant ′0′ and assigned in the same way
as well. The difference between outputs and wires is that wires facilitate
computing other signal(s) and then are considered garbage outputs.

4. Implicit lines: These lines are similar to internal signals in that they have
constant ′0′ inputs and constitute garbage outputs, but are not explicitly de-
clared within the code. Such lines are mandatory to compute non-reversible
operations, e.g. to compute the expression (a and w) in Fig. 1, line(8).

1 For simplicity, in the following a line refers to an N -line bundle representing an N -bit
signal (accordingly, a single line in figures represent an N -bit circuit line-bundle).

0 S <= E

E E

a. Simple assignment

0 s
Cn Cn

C2 C2

C1 C1

Ed Ed

En En

E2 E2

E1 E1

b. Conditional signal assignement

Fig. 2. Realization of signal assignment

3 Realizing VHDL statements

With the signals defined and initially realized in the circuit, the realizations of
the respective operations in terms of reversible gates can be conducted. To this
end, all statements in the VHDL code are traversed and synthesized. A statement
is considered as a sub-system that performs some action to realize the desired
operation.

3.1 Signal Assignment

A statement, in its simplest form, is usually composed of an expression which
is evaluated and whose result is afterwards assigned to a circuit signal (i.e. a
statement usually has the form (S <= E;), with E being the expression and S
being the signal to which the result is assigned). The realization of the under-
lying expressions is covered afterwards in the following section. Realizing signal
assignment (a non-reversible operation) is possible when the target signal is
known to be a constant ′0′ [6]. This assignment is realized using Toffoli gates,
as shown in Fig. 2.a.

Conditional signal assignment statements appear in the following form:
(S <= E1 when C1 else E2 when C2 ... else En when Cn else Ed;).
This assignment requires a case distinction to decide which expression is to be
assigned to the target signal. Fig. 2.b shows a possible realization for this.

3.2 Components

Components are entities instantiated within the architecture of another entity.
Each instance places a sub-circuit definition within the main circuit. Fig. 3 shows
a VHDL code that declares a component, then instantiates it twice within the
architecture body.

This structural style of describing systems is preferred for synthesis purposes.
Component sub-circuits should be determined first, and this sub-circuit defini-
tion is to be placed in the main circuit for each instant. The only change is the
mapping of component lines into the main circuit lines; therefore a port map
is associated with each instance to serve as a look-up table for this mapping, as
shown in Fig. 4.

1 entity main is
2 port(x,y,z: in bit; result: out bit);
3 end entity main;
4

5 architecture structural of main is
6 component test is
7 port(a,b: in bit; f: out bit);
8 end component test;
9 signal temp: bit;

10 begin
11 L1: test port map (a => x, b => y, f => temp);
12 L2: test port map (a => temp, b => z, f => result);
13 end architecture structural;

Fig. 3. Structural VHDL architecture with declared and instantiated components

0 −

y y
x x

z z
0 result
0 −
0 −

0 −

temp

z

a
b

f a

b
fGtest

Gtest

Gmain

Fig. 4. Using component circuits to synthesize the VHDL code from Fig. 3

4 Realizing Expressions
Up to this point, the discussion assumes that expressions are values that are,
somehow, available on certain circuit lines like any other signal. This skips a core
issue, namely how to realize expressions. VHDL provides a set of operations
to be used in expressions. These operations are not necessarily reversible. An
additional line with constant inputs is applied to make a non-reversible function
reversible [7] (leading to the implicit lines as discussed in Section 2). This is
exactly how the reversible HDL SyReC tackles this problem [4]. Hence, realizing
an expression E which is combined with N operators will implicitly add N
constant lines to the circuit. This is considered a serious drawback [8].

Line-awareness when realizing HDL expressions can tangibly increase the
overall efficiency of this approach [9]. The reduction can be started by re-
considering the necessity of adding lines in some special cases, such as with
not, xor, + and -. These operators are reversible, hence, can be computed
with no additional line. Further reduction in lines may be obtained by reverse
computing (re-computing) intermediate values and reusing these lines for further
computations [9]. To reverse a computation, just repeat it in the reverse order
of gates.

Example 1. Consider the Boolean expression E (a.b.c ⊕ a|c), which has the
following form in VHDL: (not(a and b) and c xor not(a or c)). The value
of E is computed based on six Boolean operations. Hence, six constant input
lines are required to compute this expression. Fig. 5.a shows a reversible circuit

0 −
0 −
0 −
0 −
0 −
0 E

c c

b b

a a

l1

l2

l3

l4

l5

l6

and
not

and
or

not
xor

a. Direct realization of expression E

0 −
0 E

c c

b b

a a

l1

l2

0

G
(a.b) G

−1

(a.b)
G

(a|c)

b. Line-aware realization of expression E

Fig. 5. Circuits realizing expression E from Example 1

to compute E. Fig. 5.b shows the line-aware realization of the same expression
using only two constant lines, in which G−1

(a.b)
re-computes line l1. This line is

used once more to compute the sub-expression (not (a or c)), using G
(a|c) .

5 Overall Realization

Using the realization schemes described above for signals, statements, and ex-
pressions, an overall realization can be obtained for a given VHDL code. To this
end, the respectively obtained sub-circuits need to be accordingly connected. In
conventional hardware, it does not matter which statement is synthesized first,
the resulting hardware will be exactly the same because of statements’ concur-
rency [3]. The reversible computation scheme, on the other hand, is processing
signals in a cascade fashion. Consequently, signals are successively computed.
A simple algorithm, based on signal dependence, can be applied to determine
the correct order in which statements are to be synthesized. Hence, the order in
which statements are synthesized may differ from the order in which they ap-
pear in the code. Fig. 6.a shows such an example. The figure shows the correct
realization of the VHDL code from Fig. 1, where statement S2 is synthesized
before S1 to resolve the issue of signal dependence.

The two statements S1 and S2 from Fig. 1 have expressions on their right
hand sides. A constant ′0′ line is needed, in this example, to compute each
expression. As a result, two implicit lines are added to realize the circuit (see
Fig. 6.a). For complex codes, implicit lines keep accumulating throughout the
code – resulting in large numbers of circuit lines. A line-aware realization on
the overall module level may also re-compute lines to realize garbage-free state-
ments [4]. This allows statements to reuse implicit lines. In Fig. 6.b, the implicit
line used for statement S2 is re-computed and then reused for S1. This arrange-
ment realizes the circuit with only one implicit line – compared to the two lines
needed in the circuit shown in Fig. 6.a.

6 Conclusions

In this work, we discussed how to realize VHDL code as reversible circuits. To
this end, we considered the realization of the corresponding signal declarations,

0 −
0 −

w = 0 −
f = 0 f

b b

a a

GES2
GES1

a. Direct realization

0 0

w = 0 −
f = 0 f

b b

a a

GES2
G−1

ES2
GES1

G−1
ES1

b. Line-aware realization
Fig. 6. Circuits realization of VHDL code from Fig. 1

statements, as well as expressions. Based on that, two different schemes for the
overall realization of the desired circuit have been proposed – with a particular
focus on the number of eventually resulting circuit lines. With these contri-
butions, we provide an initial basis towards a VHDL-based reversible circuit
design flow that requires no or only little knowledge of the reversible computa-
tion paradigm. For future work, it is planed to consider more data-types with
associated operators, as well as covering more statements and settings.

Acknowledgments
This work has partially been supported by the European Union through the
COST Action IC1405.

References

1. Drechsler, R., Wille, R.: From truth tables to programming languages: Progress
in the design of reversible circuits. In: Int’l Symp. on Multi-Valued Logic. (2011)
78–85

2. Saeedi, M., Markov, I.L.: Synthesis and optimization of reversible circuits - a survey.
ACM Computing Surveys (2011)

3. Ashenden, P.J.: The Designers Guide to VHDL. 3 edn. Elsevier (2008)
4. Wille, R., Schönborn, E., Soeken, M., Drechsler, R.: SyReC: A hardware description

language for the specification and synthesis of reversible circuits. INTEGRATION,
the VLSI Jour. 53 (2016) 39–53

5. Thomsen, M.K.: A functional language for describing reversible logic. In: Forum
on Specification and Design Languages. (2012) 135–142

6. Wille, R., Soeken, M., Drechsler, R.: Reducing the number of lines in reversible
circuits. In: Design Automation Conf. (2010) 647–652

7. Wille, R., Keszöcze, O., Drechsler, R.: Determining the minimal number of lines for
large reversible circuits. In: Design, Automation and Test in Europe. (2011)

8. Wille, R., Soeken, M., Miller, D.M., Drechsler, R.: Trading off circuit lines and gate
costs in the synthesis of reversible logic. INTEGRATION, the VLSI Jour. 47(2)
(2014) 284–294

9. Alwardi, Z., Wille, R., Drechsler, R.: Towards line-aware realizations of expressions
for HDL-based synthesis of reversible circuits. In: Reversible Computation. (2015)
233–247

