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Abstract—Reversible circuits are composed of a set of circuit
lines that are passed through a cascade of reversible gates. Since
the number of circuit lines is crucial, functional logic synthesis ap-
proaches have been proposed which realize circuits where the num-
ber of circuit lines is minimal. However, since the function to be re-
alized is often non-reversible, additional variables have to be added
to the function in order to establish reversibility – leading to a sig-
nificant overhead that affects the scalability of the synthesis method
and yields rather complex circuits. In this work, we propose to over-
come these problems by exploiting coding techniques in the logic
synthesis of reversible circuits. To this end, we propose an interme-
diate encoding of the output patterns that requires fewer additional
inputs and outputs. Using this synthesis scheme allows to perform
the majority of the synthesis on significantly fewer variables and to
exploit several don’t care values in the code. Experimental evalua-
tions – where we obtain better scalability and circuits with magni-
tudes fewer costs – confirmed the benefits of the proposed synthesis
approach.

I. INTRODUCTION

Reversible logic allows not only for performing computa-
tion from the inputs towards the outputs, but also for recover-
ing the inputs from the outputs. Originally, this computation
paradigm was motivated due to its relation to low-power com-
puting (cf. [10, 4, 5]) and its application in the domain of quan-
tum computing [14]. However, in the recent years further appli-
cation areas evolved, including the design of on-chip intercon-
nects [23, 26] and encoders [30] in general, as well as verifi-
cation [2] – which makes reversible logic (and, thus, reversible
circuits) a highly investigated research area.

Reversible circuits have a complementarily different structure
compared to conventional circuitry, since they are – due to the
non-existence of a direct realization of fan-out and feedback –
composed of a set of circuit lines that are passed through a cas-
cade of reversible gates. Consequently, new design techniques
are required for synthesizing reversible circuits.

First accomplishments in design automation for reversible cir-
cuit synthesis were published more than a decade ago (cf. [13]).
Since then, several methods have been proposed aiming for bet-
ter scalability or for reducing the complexity of the resulting cir-
cuits. Structural approaches (e.g. [22, 6]), i.e. approaches that
map building blocks of conventional data-structures for func-
tion representation such as BDDs, ESoPs, etc. to their reversible
counterpart, turned out to be the most scalable and yield rather
cheap circuits (with respect to commonly applied cost metrics).
However, they generate circuits where the number of circuit lines
is magnitudes above the minimum (as e.g. evaluated in [25]). The
number of circuit lines is crucial, since each circuit line has to be
represented physically in the underlying technology. Therefore,
functional approaches that allow for synthesis of circuits with
the minimum number of circuit lines have been proposed. These
methods consider the whole function to be synthesized during
synthesis, which leads to a less scalable synthesis and rather
complex circuits [7, 13, 8]. But also here, significant progress
in improving scalability and in reducing the complexity of the
resulting circuits has been made recently (cf. [19, 18, 16]).

However, it turns out that the side-effects of the so-called em-
bedding process more and more becomes the bottleneck for func-
tional synthesis of reversible circuits. Embedding is needed in
order to transform a possibly non-reversible function to be syn-
thesized into a reversible one [11, 25, 20, 28] – a prerequisite
for functional synthesis. In this process, additional inputs and
outputs are added to the function to make all occurrences of an
output pattern distinguishable. This number of additional inputs
and outputs is obviously dominated by the most frequent out-

put pattern (this is covered in more detail later in Section III).
Even though embedding has been proven to be a coNP-hard
problem [20], rather scalable approaches have been proposed re-
cently [20, 28]. However, since the synthesis becomes exponen-
tially harder with each more variable, adding further inputs and
outputs as a result of the embedding process poses a significant
threat to the scalability of logic synthesis for reversible circuits.
Besides that, also the complexity of the resulting circuit increases
since functions with more variables usually require more costly
gates to become realized.

In this work, we aim for improving the scalability of functional
synthesis and for reducing the complexity of the resulting circuit
– while guaranteeing minimality with respect to the number of
circuit lines. The main idea is motivated by the fact that many
of the additional inputs and outputs added during embedding are
only required for few output patterns. Representing these out-
put patterns with a smaller number of output bits saves a signif-
icant amount of extra logic. In order to accomplish that coding
techniques are employed which determines an intermediate, re-
versibly embedded, function with significantly fewer additional
outputs. While this significantly simplifies the synthesis of the
function, a corresponding decoder is additionally required. This,
however, can be realized efficiently and with a small number of
gates in most of the cases.

Experimental results demonstrate the benefits of the proposed
idea. The resulting synthesis approach is much more scalable
than the current state of the art. Besides that, we obtain circuits
with significant improvements in terms of quantum cost (a com-
monly applied cost metric for reversible circuits). In fact, reduc-
tions of several orders of magnitude have been observed in many
cases.

This paper is structured as follows. In Section II, we briefly
review reversible functions, their representation, as well as re-
versible circuits. In Section III, we analyze the current design
flow for synthesis of reversible circuits and discuss the open po-
tential that leads to the general idea of this work. Details on an
efficient implementation of the proposed scheme are presented in
Section IV, whereas Section V summarizes the obtained results.
Section VI concludes the paper.

II. BACKGROUND
In this section, we briefly recap reversible functions, their rep-

resentation, as well as reversible circuits.

Definition 1 A Boolean function f : Bn → Bm is reversible, iff
n = m and f is bijective.

Example 1 Consider the Boolean function represented by
means of the truth table shown in Table Ia. This function is re-
versible, since the number of inputs is equal to the number of
outputs and there exists a one-to-one mapping from inputs to out-
puts, i.e. each pattern occurs once at the input and once at the
output.

Since reversible functions describe a permutation of the input
patterns, they are also commonly described by permutation ma-
trices.

Definition 2 Let f : Bn → Bn be a reversible Boolean function.
Then, the permutation matrixM of f is a 2n×2n Boolean matrix
where the entries mi,j (0 ≤ i, j < n) indicate whether an input
(column) is mapped to an output (row), i.e.

mi,j =

{
1 if f(j) = i,
0 otherwise.



TABLE I
REVERSIBLE FUNCTION REPRESENTATION

(a) Truth-table
x2 x1 x

′
2 x

′
1

0 0 1 0
0 1 0 0
1 0 0 1
1 1 1 1

(b) Permutation matrix
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Fig. 1. A reversible circuit

Example 1 (continued) Consider again the Boolean function
shown in Table Ia. The corresponding permutation matrix is
shown in Table Ib. Note that there is exactly one 1-entry in each
row and in each column. The 1-entry in the second column de-
scribes a mapping from input x2x1 = 01 to output x′2x

′
1 = 00.1

Reversible functions can be realized by a reversible circuit,
which allows to compute not only the outputs from the inputs, but
also vice versa. Reversible circuits employ a completely differ-
ent structure than conventional circuitry. In fact, the variables of
the reversible function are represented by means of circuit lines,
which are passed through a cascade of reversible gates. These
gates may change the value of some circuit lines.

Definition 3 A reversible circuit C = (X,G) is composed of
a set X = {x1, x2, . . . xn} of n circuit lines and a sequence
G = g1, g2, . . . gl of reversible gates. A commonly used re-
versible gate is the Toffoli gate gi = (Ci, ti), which is composed
of a setCi ⊆ {x+j |xj ∈ X} ∪ {x

−
j |xj ∈ X} of positive and neg-

ative control lines and a target line ti ∈ X with {t−i , t
+
i }∩Ci =

∅. Furthermore, a circuit line must not occur as positive and
negative control line in a gate. The value of the target line ti
is inverted by gate gi iff all positive (negative) control lines are
assigned one (zero). All other lines are passed through the gate
unaltered.

Example 2 Fig. 1 shows a reversible circuit composed of three
circuit lines and four Toffoli gates. Furthermore, the circuit lines
are annotated with their respective value when applying input
combination x3x2x1 = 111. The first gate g1 inverts the value of
target line x2, because the positive control line x+3 is assigned 1.
Gate g2 inverts the value of target line x3, because the control
lines x−2 and x+1 are assigned 0 and 1, respectively. The remain-
ing two gates do not alter the value on any circuit lines, because
the control lines are not assigned accordingly.

The complexity of reversible circuits is usually measured by
means of quantum cost. These cost result from a mapping of the
reversible gates to a quantum gate library (e.g. Clifford+T). In
case of the Clifford+T library, the quantum cost is then called
T-depth, which is determined by the number of T-gates that are
applied subsequently [3]. Obviously, the quantum cost depends
on how the reversible gates are mapped to the respective library.
In this paper, we use the latest version of RevKit [17] to deter-
mine the quantum cost of reversible gates/circuits. The quantum
cost increases with the number of control lines. For example,
Toffoli gates with 1, 2, 3, and 4 control lines have a T-depth of 0,
3, 12, and 30, respectively.

Example 2 (continued) The reversible circuit shown in Fig. 1
has a T-depth of 6.

III. CURRENT DESIGN PROCESS AND OPEN POTENTIAL

This section reviews the established process for the functional
design of reversible circuits. Based on that, we discuss open po-
tential in this process which motivates the general idea of this
work and, eventually, allows for a design process yielding much
more compact reversible circuits.

1In the following, we will use the term variable when referring to the mapping
from the ith bit of the input to the ith bit of the output.

TABLE II
EMBEDDING OF A NON-REVERSIBLE FUNCTION

(a) Orig. function
x3 x2 x1 x

′
3 x

′
2 x

′
1

0 0 0 0 1 0
0 0 1 0 1 0
0 1 0 1 0 0
0 1 1 1 0 0
1 0 0 0 1 1
1 0 1 0 1 0
1 1 0 0 1 0
1 1 1 0 0 1

(b) Output patterns
i pi µ(pi)
1 010 4
2 100 2
3 001 1
4 011 1
5 000 0
6 101 0
7 110 0
8 111 0

(c) Embedded function
a2a1x3x2x1x

′
3x

′
2x

′
1g2g1

0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 1 0 0 1
0 0 0 1 0 1 0 0 0 0
0 0 0 1 1 1 0 0 0 1
0 0 1 0 0 0 1 1 0 0
0 0 1 0 1 0 1 0 1 0
0 0 1 1 0 0 1 0 1 1
0 0 1 1 1 0 0 1 0 0

...
...

A. Current Design Process

Using functional approaches, reversible circuits are usually re-
alized in a two-stage process: embedding followed by the actual
functional synthesis. Embedding is required in order to realize
non-reversible functions where multiple input assignments are
mapped to the same output patterns and, hence, must be made
distinguishable to ensure a unique input/output-mapping. To this
end, outputs (so-called garbage outputs) are added to the func-
tion which allow for this distinction. The following definition
and example formalizes and illustrates this step, respectively.

Definition 4 Let f : Bn → Bm be a Boolean function with n
inputs and m outputs. Furthermore, let µ : Bm → N be a
function that provides the number of times a respective output
pattern p ∈ Bm is generated by f . Then, the ith most fre-
quent output pattern (1 ≤ i ≤ 2m) is denoted by pi. In order
to distinguish all occurrences of an output pattern pi, at least
ki = dlog2 µ(pi)e garbage outputs are required. Since ki ≤ k1
always holds (i.e. the number of garbage outputs required for
an output pattern pi is always less than or equal to the num-
ber of garbage outputs required for the most frequent output pat-
tern p1), the total number of garbage outputs required for a given
function f is k1 = dlog2 µ(p1)e.

Example 3 Consider the Boolean function shown in Table IIa.
Table IIb lists the output patterns pi as well as their occurrences
determined by µ. Since p1 = 010 is the most frequent output pat-
tern and it occurs µ(p1) = 4 times, k1 = dlog2 4e = 2 garbage
outputs are required to make all occurrences of the pattern dis-
tinguishable. For pattern p2 = 100, one garbage output is suf-
ficient to distinguish the µ(p2) = 2 occurrences of this pattern.
This garbage outputs is already covered by the two garbage out-
puts that are demanded by output pattern p1. All other output
patterns do not demand for a garbage output, since they occur at
most once.

Having the additional garbage outputs, the number of inputs
of f might have to be adjusted as well. In fact, since the total
number of inputs and the total number of outputs must be equal
in a reversible function (cf. Def. 1), we need max (n,m+ k1)
inputs. In case of n < m + k1, this requires the addition of
so-called constant inputs.

Example 3 (continued) For the considered function f , we have
n = 3 inputs and m = 3 outputs. Since the most frequent out-
put pattern p1 = 010 occurs µ(pi) = 4 times, we additionally
need k1 = 2 garbage outputs. Overall, this yields a reversible
function that embeds f (e.g. the one shown in Table IIc), which
is composed of a total of max(3, 3 + 2) = 5 variables. By set-
ting the added constant inputs to 0, the non-garbage outputs will
realize the desired function f (highlighted bold in Table IIc).

After the embedding step, a reversible function results which
can be synthesized as a reversible circuit. To this end, numer-
ous synthesis methods have been proposed in the past. Since a
detailed understanding of the underlying methods of these syn-
thesis approaches is not required to follow the remainder of this
work, we refer to the respective related work such as [19, 18, 16]
for a more detailed treatment. For our purposes, it is sufficient
to understand that the complexity of the synthesis increases with



TABLE III
CODE FOR THE FUNCTION SHOWN IN TABLE IIA

(a) Resulting encoding
i pi c(pi)
1 010 0 - -
2 100 1 0 -
3 001 1 1 0
4 011 1 1 1

(b) Encoded function
x3 x2 x1 x

′
3 x

′
2 x

′
1

0 0 0 0 - -
0 0 1 0 - -
0 1 0 1 0 -
0 1 1 1 0 -
1 0 0 1 1 1
1 0 1 0 - -
1 1 0 0 - -
1 1 1 1 1 0

the number of variables of the function to be synthesized. This
raises the question whether the previously conducted embedding
step can be improved in order to ease the synthesis process. The
next section discusses open potential in this regard.

B. Open Potential and General Idea of This Work

The established design process as reviewed above employs a
rather naive embedding scheme. In fact, it simply adds a to-
tal of k1 = dlog2 µ(p1)e garbage outputs, although, as already
discussed by means of Example 3, not all output patterns usu-
ally require this amount of garbage outputs. As a consequence,
the resulting reversible function (as well as the correspondingly
derived reversible circuit) includes a significant amount of extra
logic which in many cases is only required for the output pat-
tern p1. Avoiding this overhead provides significant potential for
improving the design process as well as for realizing cheaper cir-
cuits.

In this work, we aim to exploit this potential. The main idea
is to represent frequently occurring output patterns (which re-
quire more garbage outputs) with a smaller number of variables.
Vice versa, less frequently occurring patterns (which require less
garbage outputs) are represented with a larger number of vari-
ables. In other words, coding techniques are utilized in order
to encode the desired function with a variable-length code c in
which the length of the code word c(pi) for an output pattern pi
is indirectly proportional to the number µ(pi) of times the pattern
occurs. An example illustrates the idea.

Example 4 Consider again the Boolean function shown in Ta-
ble IIa and its distribution of the output patterns as shown in
Table IIb. One possible variable-length code is shown in Ta-
ble IIIa. There, the most frequent output pattern p1 = 010 is
encoded by c(p1) = 0. Since this pattern requires two garbage
outputs, in total 1 + 2 = 3 outputs are required. The garbage
outputs are represented by a dash, since they represent don’t care
values (as long as it is ensured that the resulting function is re-
versible). The second most frequent output pattern p2 = 100 is
encoded by c(p2) = 10. Since this pattern occurs only twice,
one garbage output is required – again resulting in 2 + 1 = 3
outputs. The patterns p3 and p4 are encoded by c(p3) = 110
and c(p4) = 111, respectively. Here, no garbage outputs are
required. The remaining patterns (p5 to p8) do not have to be en-
coded, since they never occur. Overall, this yields an (encoded)
reversible function which embeds f as shown in Table IIIb and
is composed of a total of 3 inputs/outputs only (compared to the
original embedding shown in Table IIc which is composed of 5
inputs/outputs).

Following this idea significantly reduces the number of in-
puts/outputs and, hence, the number of variables to consider dur-
ing synthesis. Since the complexity of the synthesis increases
exponentially with the number of variables in the function to be
synthesized, already this allows for substantial improvements for
the synthesis step. Moreover, a nice side-effect occurs by en-
coding the function to be synthesized. Since the values of the
garbage outputs are basically don’t care (except the restriction
that a reversible function has to be realized), there is a significant
degree of freedom that can be exploited in order to reduce the
complexity of the resulting circuits. This has also been recently
exploited in the concept of one-pass synthesis of reversible logic
which combines the process of embedding and synthesis [29].

On the downside, a proper variable-length code has to be deter-
mined and, after the (encoded) function has been realized as re-
versible circuit, a corresponding decoding circuit is additionally
needed. After applying the decoder, a circuit with the minimum
number max(n,m+ k1) of circuit lines results again. However,
the major part of the synthesis task is performed on the encoded
function with a significant smaller number of variables. How all
these steps can be accomplished in an efficient fashion, while
still exploiting the open potential and generating much cheaper
circuits, is described in detail in the next section.

IV. IMPLEMENTATION

In order to realize a given function f : Bn → Bm follow-
ing the general idea proposed above, three steps have to be con-
ducted: (1) a variable-length code has to be determined, (2) the
resulting (encoded) function has to be synthesized as reversible
circuit, and (3) a circuit has to be generated which decodes the
output of the derived circuit back to the originally intended val-
ues. This section provides the implementation details for all
these steps.

A. Determining the Code
As discussed above, we aim for a code that allows for split-

ting the available outputs into a code word and garbage outputs.
Doing this splitting individually for each output pattern allows
to use short code words (i.e. few primary outputs) for frequently
occurring patterns which require a large number of garbage out-
puts. Vice versa, less frequently occurring output patterns can be
encoded with larger code words, since they do not require many
garbage outputs. By this, the need for many garbage outputs is
compensated by smaller code words. By definition, a Huffman
code [9] can guarantee this.

The code is computed by generating the so-called Huffman
tree: For each output pattern pi that occurs at least once in the
considered function f (i.e. for each pi with µ(pi) > 0), we add
a leaf vertex vi to the Huffman tree. Each of these leaf vertices
vi is associated with a weight wi = ki = dlog2 µ(pi)e defined
by the number of garbage outputs are required to distinguish all
occurrences of pi. Assume that h such leaf vertices are added.
After this initialization, we combine the two vertices vj and vk
(1 ≤ j, k ≤ h) with the smallest weights to a new vertex vh+1

with weight wh+1 = max(wj , wk) + 1. This represents that
wh+1 outputs are required to distinguish all occurrences of the
output patterns pj and pk (plus one additional primary output to
distinguish the two patterns). These combinations are repeated
until a single vertex – the root of the Huffman tree – results.

Example 5 Consider again the distribution of the output pat-
terns as shown in Table IIb. To determine the Huffman code, we
start with the vertices v1, v2, v3, and v4 – one for each output pat-
tern pi with µ(pi) > 0. These vertices are shown at the bottom
of Fig. 2. The weights are drawn inside the respective vertices.
The weight of vertex v1 is w1 = k1 = 2, because output pattern
p1 = 010 requires two garbage outputs. The weights of the ver-
tices representing p2, p3, and p4 are 1, 0, and 0, respectively. In a
first step, we combine the vertices v3 and v4 (both have weight 0).
The resulting vertex v5 has a weight of w5 = max(0, 0)+1 = 1.
Next, we combine the two vertices with weight 1 (i.e. v2 and v5).
The resulting vertex v6 has a weight of w6 = max(1, 1)+1 = 2.
Finally, the two remaining vertices are combined to a new vertex
v7 with weight w7 = max(2, 2) + 1 = 3 – eventually resulting
in the tree shown in Fig. 2.

After generating the Huffman tree, the overall number of vari-
ables that are required to realize the encoded function in re-
versible logic is given by the weight of the root vertex of the
tree. The resulting code is inherently given by the structure of
the Huffman tree. In fact, each path from the root vertex to a leaf
vertex represents a code word, where taking the left (right) edge
implies a 0 (1).
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Fig. 2. Huffman tree for the function from Table IIa

Example 5 (continued) Since the root vertex has a weight of 3,
three variables are required to realize the encoded function (note
again that, without encoding, max(3, 3+2) = 5 variables would
be required). The path from the root vertex to the leaf vertex h2
(which represents output pattern p2) traverses the right edge of
the root vertex h7 as well as the left edge of h6. Consequently,
c(p2) = 10 encodes p2 = 100. Since h2 has weight w2 = 1,
one output is used as garbage output in this case. Accordingly,
code words for all other output patterns are determined – even-
tually resulting in the code c shown in Table IIIa. Dashes again
represent don’t cares.

Note that the number of output patterns that may occur at least
once may increase exponentially with the total number of inputs
– a significant threat to the proposed approach with respect to
scalability. However, experimental evaluations (later summa-
rized in Section V) shows that, for most functions, the number
of output patterns pi with µ(pi) > 0 is feasible (the vast major-
ity of output patterns never occur and, hence, do not need to be
considered in the code).

B. Exploiting the Encoding During Synthesis
In contrast to the established design process reviewed in Sec-

tion III.A, the Huffman code yields a function to be synthesized
in which single outputs may be used as both, actual primary out-
puts as well as garbage outputs – dependent on the output pat-
tern. Besides the fact that this allows for performing the actual
synthesis with a significantly smaller number of variables, it in-
herently motivates a synthesis scheme in which a huge degree of
freedom can be exploited. More precisely, the don’t care values
can arbitrarily be assigned since their value does not matter as
long as a reversible function results. Since this is an inherently
given property of reversible circuits, we do not have to care about
their value. To show how these don’t cares can be exploited to
reduce the complexity of the resulting circuits, we briefly discuss
the main concepts behind functional synthesis approaches first.

In general, functional synthesis approaches operate on a func-
tion description F of the function to be synthesized (e.g. a per-
mutation matrix). The goal is to determine a sequence of gatesG
that transforms the function description to the identity. Since
F ◦F−1 = I , this yields a reversible circuit G that realizes F−1.
From this, we can easily obtain a realization for F by revers-
ing the order of the gate in G and exchanging each gate with its
inverse (Toffoli gates are self-inverse).

Since we aim for exploiting the don’t care values, we propose
the strategy to transform one variable after the other to the iden-
tity – starting at the most significant variable. To this end, we rep-
resent the function to be synthesized using a permutation matrix.
This is motivated by the fact that compact representations for
permutation matrices exists (e.g. QMDDs as proposed in [15]).
Example 6 Applying the determined Huffman code (cf. Ta-
ble IIIa) to the output patterns of the function shown in Table IIa
yields the encoded function shown in Table IIIb. The correspond-
ing permutation matrix is depicted in Fig. 3a. In the original
function, the input combinations 000, 001, 101, and 110 are
all mapped to the output patterns p1 = 010. Since this out-
put pattern is now encoded by 0--, there are four possibilities for
each of the input combinations where to locate the corresponding
1-entry in the permutation matrix (the only requirement is that
the 1-entries must be in different rows to guarantee reversibil-
ity). This degree of freedom is sketched by a blue rectangle in
Fig. 3. A similar degree of freedom (sketched by a red rectangle
in Fig. 3) occurs for output pattern 100 which is encoded by 10-.

As mentioned above, we aim for transforming the permutation
matrix to the identity by transforming one variable after the other
to the identity – starting with the most significant variable xn.
Recall, that a variable represents a mapping from one input bit to
the corresponding output bit. Obviously, there exist four possi-
bilities of such a mapping: 0 is mapped to 0, 0 is mapped to 1, 1
is mapped to 0, or 1 is mapped to 1. For the most significant vari-
able xn, these possibilities are represented by the four quadrants
of the matrix, e.g. a 1-entry in the top right quadrant represents a
mapping of xn from 1 to 0 for a certain input combination. Since
we aim for transforming the permutation matrix to the identity,
one has to move all 1-entries from the top right and the bottom
left quadrant to the top left and the bottom right quadrant, respec-
tively (obtaining the identity, i.e. a mapping from 0 to 0 or from
1 to 1 for xn in all cases). Moving 1-entries can be performed by
applying Toffoli gates, which allow to swap columns. More pre-
cisely, a Toffoli gate TOF (Ci, ti) swaps the columns represent
by Ci ∪ t−i with those represented by Ci ∪ t+i .

Example 6 (continued) To establish the identity for the most
significant variable x3 in the permutation matrix shown in
Fig. 3a, we have to swap the columns 101 and 110 with columns
010 and 011, respectively. This can e.g be achieved by apply-
ing the Toffoli gates TOF ({x+1 , x

+
3 }, x2) and TOF ({x+2 }, x3).

The first gate exchanges columns 101 and 111 (by inverting x2),
whereas the second Toffoli gate simultaneously swaps columns
110 and 111 with columns 010 and 011. The resulting permuta-
tion matrix is shown in Fig. 3b.

Once we have established the identity for the most significant
variable, we apply this scheme to the next significant variable –
affecting the top left and the bottom right quadrant. To ensure
that the gates do only affect the currently considered sub-matrix,
a negative control line x−n is added to each gate that shall be ap-
plied to transform the top left quadrant (since the most frequent
variable xn is 0 for all columns of this sub-matrix). Analogously,
a positive control line x+n is added to each gate that shall be ap-
plied to transform the bottom right quadrant. This is recursively
applied for all remaining variables until we reach the least signif-
icant one. Hence, the deeper we step into the recursion, the more
additional control lines are added to the gates that are required
to transform the corresponding sub-matrix to the identity. Even
though the number of these additional control lines can be re-
duced by exploiting some redundancy in the permutation matrix
(cf. [19, 27]), this usually yields rather expensive circuits (as re-
viewed in Section II, the respective costs depend on the number
of control lines in each gate).

However, by exploiting the available degree of freedom (pro-
vided by the don’t care values), this overhead can significantly
be reduced: Assume without the loss of generality that we have
just transformed the most significant variable xn to the identity
and that all other variables xn−1 . . . x1 are don’t care in case
xn = 0 (i.e. the top left quadrant is don’t care). This would
be the case when the most frequent output pattern p1 is encoded
with c(p1) = 0. Since all values in the top left quadrant are don’t
care, it does not matter which gates are applied to that quadrant.
The only constraint is that a reversible function results, which
is inherently given since we only apply reversible gates. Conse-
quently, we do not have to care whether the gates that are applied
to transform the bottom right quadrant also affects the top left
quadrant. Therefore, we do not have to add the additional con-
trol line.

Example 6 (continued) Since the left upper quadrant is com-
posed of don’t care values only, no positive control line x3 has
to be added when applying the algorithm recursively to the bot-
tom right quadrant. Transforming the most significant variable
of this sub-matrix (i.e. x2) to the identity requires to apply a
Toffoli gate TOF (∅, x2). The resulting permutation matrix is
shown in Fig. 3c. Since again the top left quadrant is composed
of don’t cares, no additional control lines are required when ap-
plying the algorithm recursively to the 2 × 2 sub-matrix in the
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Fig. 3. Synthesis of the encoded function

bottom right corner of the permutation matrix. Finally, the Tof-
foli gate TOF (∅, x1) is required to transform this sub-matrix
to the identity – eventually resulting in the permutation matrix
shown in Fig. 3d.2 The resulting circuit (composed of three cir-
cuit lines) is shown in the left part of Fig. 4.

C. Generating the Decoder

As mentioned above, we have used coding techniques in order
to allow for a reduction of the variables that have to be considered
during synthesis. However, since this realizes a reversible func-
tion which is different to the desired one, a decoder is required
which recalculates the original outputs. In this decoder, we have
to add the variables that were saved during the actual synthesis
again – yielding a circuit with a total number of max (n,m+ k1)
inputs/outputs.

A large portion of the decoder can be realized very efficiently:
Assume that r additional variables are required such that the
overall number of variables is again max(n,m+ k1). Then,
we add r ancillary lines ar, . . . a1 (initialized with zero) to the
circuit that realizes the encoded function. We use these r lines
to decode the r most significant bits of the original output pat-
terns (i.e. x′m, . . . x

′
m−r+1). To this end, we traverse all code-

words c(pi). If the codeword encodes an output patterns pi with
x′j = 1 (m − r < j ≤ m), we have to invert the value of cir-
cuit line aj−(m−r) for that codeword. To this end, we apply a
Toffoli gate with target line aj−(m−r) and a set of control lines
that represent codeword c(pi). More precisely, the set of control
lines contains a positive (negative) control line for each 0 (1) in
c(pi). This procedure allows to realize r primary outputs very
efficiently. An example demonstrates the idea.

Example 7 Recall the non-reversible function shown in Ta-
ble IIa and the resulting Huffman code for the output patterns
shown in Table IIIa. The left part of Fig. 4 shows the realization
of the encoded function (cf. Table IIIb). Since the original func-
tion requires max(3, 3+ 2) = 5 variables, we add r = 2 further
circuit lines (a2 and a1) to the circuit. We use these lines to de-
code the primary outputs x′3 and x′2. As discussed above, we tra-
verse the codewords shown in Table IIIa. Codeword c(p1) = 0
encodes output patterns p1 = x′3x

′
2x
′
1 = 010. To decode x′2 = 1

for output pattern p1, we add a Toffoli gate TOF ({x−3 }, a1) to
the circuit. Analogously, we apply gates TOF ({x+3 , x

−
2 }, a2)

and TOF ({x+3 , x
+
2 , x

+
1 }, a1) to decode codewords c(p2) = 10

and c(p4) = 111 (cf. right part of Fig. 4).

Note that this procedure cannot be applied to the remaining
m− r the primary outputs, because these outputs have to be de-
coded on lines that are not initialized with constant zero. Hence,
these remaining primary outputs have to be decoded using any
functional synthesis algorithm (no embedding is required since
the function is already reversible). However, since this is neces-
sary only for a small number of primary outputs, it hardly affects
the overall synthesis result. This is also confirmed by the experi-
mental evaluation.

2The don’t care values are assigned along the main diagonal. Therefore, no
further gates are required.

a2 = 0 x′
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a1 = 0 x′
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x3 x′
1

x2 g2

x1 g1

realizing the
encoded function

decoder

Fig. 4. Resulting circuit

Example 7 Finally, we have to adjust the least significant pri-
mary output x′1. Note that for all code words except for
c(p2) = 10 the most significant bit of the code word is equal to
x′1 of the original output pattern. To establish the desired map-
ping also for this case, we add a Toffoli gate TOF ({a2}, x3) –
eventually resulting in the circuit shown in Fig. 4. The first four
gates of the circuit realizes the encoded function and, thus, oper-
ates on three lines only. The remaining gates realize the decoder
and, therefore, may operate on all five circuit lines.

V. EXPERIMENTAL EVALUATION

In this section we compare the proposed synthesis flow for
functional reversible circuit synthesis to the current state of
the art. To this end, we have implemented the proposed ap-
proach in C++ utilizing RevKit [17], the QMDD package pro-
vided with [15], and the BDD package CUDD [21]. We
compared the realizations generated by the proposed approach
to two state-of-the-art functional synthesis approaches. The
first state-of-the-art approach (denoted sotaA in the follow-
ing) is composed of the embedding proposed in [20] and a
symbolic variant of transformation-based synthesis [16] (exe-
cutable in RevKit using the command embed -b; tbs -b). The
second state-of-the-art approach (denoted sotaB in the fol-
lowing) is composed of the embedding proposed in [28] and
QMDD-based synthesis (initially proposed in [19] and recently
improved in [27]). As benchmarks served functions available at
RevLib [24], ISCAS [1], and IWLS93 [12].3 All experiments
were conducted at a 4 GHz machine with 32 GB of memory.

Table IV shows the results of our experimental evaluation. The
first four columns list the name of the benchmark, its number of
primary inputs n and primary outputs m, as well as the num-
ber of variables (circuit lines) l that are required to represent the
function in reversible logic. The remaining columns are grouped
into three parts – one for each state-of-the-art functional synthe-
sis scheme sotaA as well as sotaB and the proposed synthesis
approach that exploits coding techniques during synthesis. For
each design approach, we list the required time t (including em-
bedding and synthesis) as well as the T-depth of the resulting
circuit. Note that all these approaches end up with with circuits
that are composed of l lines. However, since the proposed ap-
proach performs the synthesis step on fewer variables, we list the
number of lines lc that are required to realize the encoded func-
tion as well in this case (we highlighted the cases where lc < l
in bold).

Table IV clearly shows the improved scalability of the pro-
posed method compared the state-of-the-art approaches. Both
state-of-the-art approaches sotaA and sotaB (which are com-
posed of an embedding step followed by the actual synthesis) run

3We neglected benchmarks that already describe a reversible function, since
in these cases a code cannot be beneficial.



TABLE IV
EXPERIMENTAL RESULTS

sotaA [20, 16] sotaB [28, 19, 27] Proposed
Name n m l t T-depth t T-depth lc t T-depth
9symml 9 1 10 2.02 99 381 0.10 196 764 10 0.07 7 320
life 9 1 10 1.91 100 227 0.08 183 264 10 0.10 5 580
max46 9 1 10 2.00 98 289 0.09 84 000 10 0.06 6 096
sym9 9 1 10 1.90 99 381 0.10 196 764 10 0.07 7 320
clip 9 5 11 2.38 102 489 0.84 581 007 10 1.16 207 903
dk27 9 9 15 3.86 123 276 0.89 2 409 495 10 0.17 48 405
apex4 9 19 26 26.04 170 100 14.79 14 682 966 10 24.73 363 045
sym10 10 1 11 8.04 238 674 0.13 396 120 11 0.12 13 080
sao2 10 4 14 16.19 296 841 1.45 2 189 838 11 0.20 32 313
alu2 10 6 14 16.64 308 214 2.58 3 396 543 11 1.90 349 125
example2 10 6 14 16.21 308 214 2.63 3 396 543 11 1.72 349 125
x2 10 7 16 25.10 391 404 1.98 4 516 011 11 0.13 21 075
alu3 10 8 14 19.75 337 281 2.08 3 368 610 11 2.51 533 685
ex1010 10 10 18 54.41 475 536 10.10 14 638 416 11 7.81 655 830
dk17 10 11 19 56.66 492 033 17.52 37 365 105 11 0.94 258 510
apla 10 12 22 199.15 604 542 41.97 77 151 615 11 1.00 87 336
cm152a 11 1 11 43.41 638 454 0.02 54 804 11 0.14 143 952
cm85a 11 3 13 54.78 674 883 0.18 948 348 12 0.53 123 633
add6 12 7 13 288.91 1 606 533 13.64 5 067 762 13 31.25 5 099 763
alu1 12 8 18 1073.99 2 389 212 7.96 16 141 887 13 20.02 2 984 298
co14 14 1 15 TO – 0.04 26 544 15 0.01 3 360
alu4 14 8 19 TO – 331.85 324 374 364 15 70.39 11 027 733
f51m 14 8 19 TO – TO – 15 158.65 15 178 923
tial 14 8 19 TO – TO – 15 78.27 10 438 254
cu 14 11 25 TO – TO – 15 0.63 76 311
misex3 14 14 28 TO – TO – 15 522.65 3 925 806
misex3c 14 14 28 TO – TO – 15 540.23 3 956 025
table3 14 14 28 TO – TO – 15 6.93 463 260
s1488 14 25 38 TO – TO – 15 197.74 9 553 668
s1494 14 25 38 TO – TO – 15 207.13 9 180 474
b12.pla 15 9 22 TO – 51.31 151 591 518 16 115.10 17 219 412
in0 15 11 25 TO – TO – 16 81.27 11 725 497
parity 16 1 16 2490.59 9 083 781 0.01 0* 16 0.18 0*
ryy6 16 1 17 TO – 1.27 80 349 048 17 0.03 6 078
t481 16 1 17 TO – 12.33 89 912 472 17 0.02 288
cmb 16 4 20 TO – TO – 17 0.02 9 036
pcler8 16 5 21 TO – 18.11 60 332 238 17 56.69 7 878 141
cm163a 16 13 25 TO – TO – 17 708.99 80 405 748
pdc 16 40 55 TO – TO – 17 3004.29 10 401 426
spla 16 46 61 TO – TO – 17 2488.81 13 852 266
table5 17 15 32 TO – TO – 18 77.55 10 065 483
cm150a 21 1 22 TO – TO – 22 0.36 7 704
mux 21 1 22 TO – TO – 22 0.48 7 056
cordic 23 2 25 TO – TO – 24 1028.91 17 630 250
e64 65 65 129 TO – TO – 65 4.84 95 202

* A T-depth of zero indicates that the resulting circuit is soely composed of Toffoli gates
with at most one control line.

into the timeout of 1 hour in several cases, whereas the proposed
synthesis approach allows for synthesizing a reversible circuit
within a second (e.g. for benchmarks cm150a and mux).4 This
significant improvement can be explained since the synthesis in
the proposed synthesis scheme operates on significantly fewer
variables. Comparing the columns lc and l of Table IV shows
that, in 32 out of 45 cases, the proposed code allows for a reduc-
tion of the variables that have to be considered during synthe-
sis. This allows e.g. to synthesize benchmark e64, which is com-
posed of 65 inputs and outputs (and requires 129 circuit lines),
within 5 seconds, whereas the previously proposed approaches
already timeout in the embedding step.

Besides the significant improvement with respect to scalabil-
ity, also the complexity of the resulting circuits is significantly
reduced. In the majority of the cases, the proposed approach
generates significantly smaller circuits (e.g. for benchmarks apla
or x2). Only in rare cases, we obtain circuits that are more com-
plex than those generated by the state-of-the-art flows sotaA and
sotaB . On average, we obtain a reduction of the T-depth of
66.3% compared to the sotaA and a reduction of the T-depth
of 92.6% compared to sotaB .5 There exist cases (e.g. ryy6
and t481) in which the proposed synthesis approach generates
circuits with magnitudes fewer T-depth than sotaB . These sig-
nificant reductions in T-depth can be explained by the fact that
significantly fewer variables were considered during synthesis in
many cases – leading to gates with fewer control lines. Further-
more, exploiting don’t cares during synthesis and the efficient
construction of the decoder (cf. Section IV) allowed for realiz-
ing the desired functionality in reversible logic using rather few
gates.

4The largest part of the runtime was consumed is the synthesis of the encoded
function. The Huffman code could be generated withing a few seconds for all
benchmarks and the decoder could have been synthesized within 100 seconds.

5These differences on the average improvements is not surprising, since
sotaA typically generates less complex circuits than sotaB . However, sotaB is
more scalable.

VI. CONCLUSION
In this work, we have shown how coding techniques can be

exploited to improve the functional synthesis of reversible cir-
cuits. By using a variable-length code for the output patterns,
significantly fewer variables have to be considered during syn-
thesis (which is the main limitation of the scalability of cur-
rent approaches). Besides that, the resulting codes contain a
large portion of don’t care values, which can be exploited dur-
ing synthesis in order to further reduce the complexity of the
resulting circuit. Since this results in a reversible circuit that re-
alizes an encoded function, a decoder has to be applied after-
wards (which, however, can again be realized rather efficiently).
Experimental evaluations confirm the benefits of this approach:
A significant improvement with respect to scalability compared
to state-of-the-art approaches has been observed. Besides that,
significantly smaller circuit result in the majority of the cases –
sometimes circuits with several orders of magnitude fewer quan-
tum cost have been realized. Future work includes a comparison
of the proposed synthesis scheme to recently proposed design
flows such as one-pass design of reversible circuits [29].
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