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Abstract—In the domain of microfluidic devices, a paradigm
shift from application-specific to fully-programmable solutions
takes place (a similar development from ASICS to FPGAs has
been observed in conventional circuitry). So-called Programmable
Microfluidic Devices (PMDs) provide a promising platform in this
regard. Here, fluids can be pushed into various reaction ves-
sels whose inflow and outflow is controlled by valves. The reg-
ular structure in combination with the flexibility of defining var-
ious flow paths through valves allows to realize a vast range of
biological or chemical applications by only changing the corre-
sponding valve-control sequence. However, determining a sound
valve-control constitutes a non-trivial task. Although first auto-
matic approaches for this problem have recently been proposed,
we show that they frequently yield impractical control sequences.
In this work, we address this issue by providing a precise defini-
tion of the underlying design task. Afterwards, we present com-
plementary solutions (both exact as well as heuristic) and discuss
how they guarantee a sound valve-control. Experimental eval-
uations demonstrate that the proposed solutions are capable of
automatically generating a sound valve-control for PMDs.

I. INTRODUCTION

Microfluidics bears the potential to revolutionize the fields
of chemical synthesis and biological analysis [1]. Correspond-
ing devices efficiently handle and process sample volumes in
the nano- to pico-liter range and, by this, allow to automati-
cally conduct complex applications such as protein crystalliza-
tion, high-throughput screening in drug development, or single
cell analysis [1, 2] using very small volumes of samples and
reagents.

The majority of the corresponding devices are targeted and
developed for specific applications. Here, a crucial task in the
development of a corresponding device is its design and phys-
ical implementation which usually requires expert knowledge
in microfabrication and fluid physics – yielding high costs in
their development [2, 3]. This is similar to the domain of inte-
grated circuits where, due to similar reasons, the development
costs for an Application-Specific Integrated Circuit (ASIC) are
substantial as well. Because of that, Field Programmable Gate
Arrays (FPGAs) got established as a cheaper alternative which
may not be as application-specific as an ASIC, but still allows
designer to realize different functionality in hardware.

A similar development can currently be observed for mi-
crofluidics, where so-called Programmable Microfluidic De-
vices (PMDs, [2, 4]; also known as Microfluidic Fully Pro-
grammable Valve Arrays e.g. in [5]) have recently been intro-
duced. They basically represent a counterpart to FPGAs for
the microfluidic domain, onto which several operations usually
conducted on an application-specific continuous flow-based
device can be realized. PMDs offer similar advantages
as FPGAs including a short time-to-market, a simple de-
sign cycle, a predictable project cycle, and also field re-
programmability. As FPGAs, they may also serve as first
prototypes for application-specific realizations of flow-based
chips.

(a) Node with four valves [2] (b) Grid of 64 nodes [2]
Fig. 1. Physical realization of a PMD

These advantages are possible because of the regular and
controllable structure of PMDs: They are composed of
so-called nodes which are arranged in terms of a rectangular
grid. Each of these nodes is used as reaction vessel and is sur-
rounded by up to four valves that allow a full control of the flow
of samples to and from adjacent nodes. Fig. 1a shows a realiza-
tion of a node. The red blocks are the four valves which can be
individually opened or closed. These nodes are composed to
larger structures as e.g. done in [2] – yielding a PMD as shown
in Fig. 1b. This realization consists of 64×300 pico-liter nodes
which are controlled by 114 individually addressable valves.

Using such structures allows to realize a vast range of ap-
plications by only changing the control of the valves – in-
cluding but not limited to fluid metering and active mixing,
surface immunoassays, as well as cell culture (see [2] for an
overview). Therefore, operations can either directly be imple-
mented on the PMD (e.g. active mixing is accomplished by
activating valves that produce a peristaltic flow which mixes
samples while incubating of samples is accomplished by using
the nodes as reaction vessels) or realized by additional exter-
nal hardware (e.g. detectors, cameras, or reservoirs). Videos at
https://goo.gl/T7JQ4t show a physical realization of
a PMD executing diverse applications.

However, properly controlling the respective valves (i.e. de-
termining a valve-control) so that indeed the desired applica-
tion is realized is left to be done by the bioengineers using the
PMD. This is highly non-trivial as it requires the concurrent
consideration of multiple samples which all have to be pushed
to their desired targets and compete for resources. Moreover, in
order to push a sample, a continuous open sequence of nodes,
i.e. a flow path, from an input to an output is required [2].

In order to support bioengineers in this task, first automatic
design approaches have recently been proposed in [6]. But
we will show in this work that they frequently yield imprac-
tical results. More precisely, the proposed approaches do not
consider the realization of sound flow paths and, hence, gener-
ate valve-controls which eventually do not realize the desired
application. Besides that, the proposed approaches consider
samples only flowing from inputs to outputs (both located on
the boundary of the PMD), but not samples contained on the
grid itself – further significantly restricting the applicability.

In this work, we address these issues by introducing a pre-
cise definition of the design task. Using this definition, we



then present two sound methods which guarantee that the de-
sired application is realized on a PMD. Both solutions are
thereby complementary to each other: The first one realizes
an exact approach which ensures that objectives (e.g. a max-
imal time limit for pushing all samples) given by the bio-
engineer are satisfied. Therefore, we use a symbolic formula-
tion which is passed to a Satisfiability Modulo Theories solver
(SMT solvers, see e.g. [7]). The second method is a heuris-
tic approach which is based on established and sophisticated
pathfinding algorithms. Both solutions have been made pub-
licly available at http://www.jku.at/iic/eda/pmd
so that bioengineers can use them and to allow other re-
searchers to extended and adopted them.

The remainder of this paper is structured as follows: The
next section introduces the realization of applications on PMDs
and gives a precise definition of the valve-control design task.
Section III motivates the work by reviewing the limitations of
the related work. In Section IV and Section V, details on the
two proposed solutions are provided. The results of our eval-
uation are summarized in Section VI and, finally, the paper is
concluded in Section VII.

II. REALIZING APPLICATIONS ON PMDS

Programmable Microfluidic Devices (PMDs, [2,4]) are used
to conduct applications by controlling and manipulating con-
tinuous flows of samples. The flows are actively controlled
using micro-mechanical valves as e.g. proposed in [8] and [9].
These valves are employed in a multi-layer platform composed
of a flow- and control-layer. More precisely, by applying a
pressure to the control-layer, a valve can be closed which seals
the channel in the flow-layer. After releasing the pressure, the
valve moves back and the flow in the channel resumes.

Four of these valves are used to build a node and these valves
allow to control the sample flow. The nodes are used for con-
ducting operations (e.g. mixing and incubating [2, 4]) on sam-
ples. The samples are injected from inputs located at the border
of the PMD, which are also used to apply an external pressure
pushing the samples. Similarly, a PMD contains outputs which
are connected to waste-chambers or output-reservoirs. More
formally, the structure of a PMD can be defined as follows:

Definition 1 PMDs are represented as a grid of nodes
of size W ×H, where W is the width and H is the
height. The nodes on the PMD are uniquely addressed
by positions P = {(x,y) : 0≤ x <W ∧0≤ y < H}. Block-
ages B (with B⊆ P) are blocked nodes and cannot be used.
The set In = {ina : 0 ≤ a < 2 · (W + H)} and the set
Out = {outa : 0≤ a < 2 · (W +H)} (where In∩Out = /0) iden-
tify positions at the border (in a clock-wise order starting at the
left-top corner) connected to inputs and outputs, respectively.

Example 1 Fig. 2 shows a schematic of a PMD of size 7×7
(the valves have oval shapes and are filled red in case they are
closed). The blockage B = {(4,1),(5,1),(4,2),(5,2)} is high-
lighted in terms of a black-patterned area and its nodes can-
not be used. Furthermore, this PMD has two inputs at border
positions in2 and in3 as well as two outputs at border posi-
tions out14 and out15.

An application can be described using a protocol in form of
a sequencing graph. Such graphs define the used samples, the
operations to be executed, and their dependencies.

Example 2 Fig. 3 shows an excerpt of a sequencing graph.
This excerpt defines that samples (s1 and s2) first have to be
mixed by operations (m1 and m2) and, afterwards, have to be
detected by operations (d1 and d2).
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Fig. 2. Schematic of a PMD
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Fig. 3. Sequencing graph excerpt

For processing a sequencing graph on a PMD, multiple steps
including scheduling, binding, and placement of the operations
as well as washing have to be conducted. For this purpose,
existing approaches of related technologies and especially of
flow-based microfluidic biochips can be re-used with only mi-
nor modifications. Besides others, the work published in [10]
gives a comprehensive overview of the proposed algorithms.

However, an important task dedicated for PMDs remains
left: how to properly control the valves? More precisely, the
valves have to be configured so that samples can flow from
their source positions to their target positions. For a sample,
the source position can be a dedicated input from which it is
injected or any arbitrary position on the PMD. Similarly, the
target position can be a dedicated output or another arbitrary
position on the PMD1. In order to push the sample through
the grid, a continuous flow path is required [2] which is to be
realized by a sequence of open valves connecting nodes from
an input (injecting the pressure) through the sample (pushing
the sample) eventually to an output (allowing air and/or other
fluids to leave the PMD).

The flow of a sample from a source position to a target po-
sition requires an amount of time. This time depends, besides
physical properties such as the applied pressure and the vis-
cosities of the samples, on the length of the path covered by
the sample (in terms of nodes). As in [6], we define a time
step to denote the “real time” a sample requires to flow from
one node to an adjacent position. In each time step where the
sample should flow towards its target, a flow path is required.
During all these time steps, the nodes on the flow path are oc-
cupied and cannot be used for other flow paths or operations.

In order to realize an application described by a sequencing
graph, such flow paths have to be determined (and, afterwards,
realized by properly controlling the respective valves) for all
time steps. This can be formally described as follows:
Definition 2 Let S = {s0,s1, . . .sN−1} be a set of samples
with N being its number. Each of these samples s ∈ S has
a length ls (in terms of nodes), as well as source positions
srcs = {srcs[i] : src ∈ P∪ In and 0≤ i < ls} and target posi-
tions tgts = {tgts[i] : tgt ∈ P∪Out and 0≤ i < ls}. Then, for
pushing a sample s, a flow path from any input in ∈ I, through
the sample s, and finally to any output out ∈ Out has to be de-
termined. In detail, in one time step a sample is pushed exactly
one node further (towards the output) in the flow path. To this
end, it has to be ensured that the flow path of s does not inter-
sect/overlap with the flow path of another sample s′ ∈ S \ {s}
or an operation. Overall, the task is to push all samples of S
to their target positions by determining flow paths in each re-
quired time step.

1Note that, depending on the sample volume and the volume of a node on
the PMD, source and target positions may be defined by multiple nodes on the
grid.



Example 3 Again, consider the sequencing graph shown in
Fig. 3. Further, let’s assume the mixing operations m1 and m2
have already been completed and produced two samples s1
with ls1 = 2 and s2 with ls2 = 2. Fig. 2 shows the intermedi-
ate state of the PMD where sample s1 is highlighted green and
sample s2 is highlighted blue. The task is now to push both
samples from their source positions (srcs1 = {(1,2),(1,1)}
and srcs2 = {(3,2),(3,1)} which are shown as filled ar-
eas) to their new target positions (tgts1 = {(4,5),(3,5)} and
tgts2 = {(4,4),(3,4)} which are shown as patterns) where the
next detecting operations d1 and d2 can be conducted. Fig. 2
shows possible flow paths by means of green and blue lines,
e.g. using the green flow path for 6 time steps would allow to
push sample s1 to its target tgts1 .

As a further objective besides the introduced task and flow
path, the valve-control sequence should take as less as possible
time steps. However, due to the limited resources (area of the
PMDs, other operations, inputs, and outputs) and intersections
of flow paths, it is likely that not all samples can be pushed
concurrently.

III. RELATED WORK AND MOTIVATION
Determining a sound valve-control which realizes applica-

tions on PMDs as reviewed above is a highly non-trivial task.
For each sample s ∈ S, it has to be defined how to push the
sample through the grid, in what time step should the sam-
ple be pushed, and how to realize the respectively needed flow
path. Moreover, many applications require the consideration of
multiple samples concurrently. As these samples compete for
nodes, inputs, and outputs, it is cumbersome and error-prone
to manually determine a control sequence for the valves for
all time steps. Additionally, the overall number of time steps
required to complete the task should be minimized.

Motivated by that, the development of automatic design so-
lutions for a valve-control received interest. First approaches
towards this have been presented in [6]. They are used to solve
tasks such as illustrated by the following example:
Example 4 Consider the PMD shown in Fig. 4a which has
five inputs (In = {in5, in7, in16, in40, in42}) and five outputs
(Out = {out17,out24,out27,out31,out39}). The task considered
and taken from [6] is to determine valve states which allow five
samples S = {s1, . . . ,s5} to flow from a corresponding input to
an output. For example, the sample s1 with final length ls1 = 5
(shown as green sample in Fig. 4a) has to flow from the in-
put in5 to the output out39.

However, the approaches presented in [6] come with major
limitations:
• The approaches only support a sample flow from an in-

put to an output but do not support a sample flow start-
ing or ending on the PMD. More formally, the source
position srcs and target position tgts can only be an in-
put in ∈ In or an output out ∈ Out, respectively. Conse-
quently, it does not allow a sample to flow to a position
on the grid where e.g. a mixing operation can take place.
As a result, these approaches cannot be used for the im-
plementation of a sequencing graph describing a practical
application.

• An even more significant limitation of the approaches is
that they do not consider the realization of a flow path,
i.e. samples might be pushed without a guaranteed se-
quence of open valves connecting nodes from an input
(injecting the pressure) through the sample to an out-
put (cf. Definition 2). Because of this, solutions are fre-
quently obtained which cannot be executed on a PMD.

In fact, these two limitations can be observed by analyzing
the results obtained and reported in [6]:
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(a) PMD state after 4 time steps
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(b) PMD state after 5 time steps

Fig. 4. A result obtained from [6], which cannot be executed on a PMD.

Example 5 Fig. 4a and 4b show results for the task specified
in Example 4 for time step 4 and 5, respectively. It can be
seen that only samples which flow from inputs to outputs are
considered (first limitation). Moreover, the obtained results ig-
nore the fact that dedicated flow paths have to be realized for
each sample (second limitation). In fact, the lines in Fig. 4b
show the flow paths which would be necessary to realize the
shown movement. Since these paths constantly cross each
other, they could not be realized on a PMD. The approaches
presented in [6] oversimplify the problem and do not yield a
sound valve-control.

In the remainder of this work, we show that the methods pre-
sented in [6] indeed almost always determine a valve-control
sequence which is not sound and does not realize the intended
application (cf. Section VI). However, before that, we intro-
duce alternative methods which overcome the limitations of
this previous work in two complementarily different fashions.
The first one (described in Section IV) solves the design task
in an exact fashion by considering the entire search space and,
hence, obtains solutions guaranteeing the bioengineer’s objec-
tives. Since this usually requires large computational power,
the second one (described in Section V) solves the design task
using a heuristic which still generates good solutions (guaran-
teeing a sound valve-control) in acceptable runtimes.

IV. EXACT DETERMINATION OF A VALVE-CONTROL

In this section, the exact method for determining a sound
valve-control is presented. In this regard, “exact” means that
the method either determines a valve-control satisfying all ob-
jectives or proves that no such solution exists. To this end, we
utilize solvers for Satisfiability Modulo Theories (SMT solvers,
see e.g. [7]) which have been proven effective for other design
automation tasks e.g. for digital microfluidic biochips [11,12],
for continuous-flow microfluidic biochips [13], and for micro-
electrode-dot-array digital microfluidics [14].

In order to use SMT solvers, the considered problem is
formulated as a decision problem, i.e. “Is there a sound
valve-control sequence which pushes all samples from their
source position to the desired target position, ensures valid
flow paths, and additionally completes this within a given up-
per bound T of time steps?”. To this end, we first introduce
the symbolic formulation representing all possible solutions.
Afterwards, we describe the constraints enforcing that not an
arbitrary solution, but the desired one (being sound and satisfy-
ing all objectives) is obtained. Finally, we discuss the pros and
cons of the proposed exact method at the end of this section.
A. Symbolic Formulation

To symbolically formulate all possible solutions, it is not
necessary to represent the state of all valves using dedicated
variables. Instead, we use a symbolic formulation modeling
the sample positions, the used inputs and outputs, as well as the
flow paths. A solution (i.e. an assignment of the variables) then



allows to derive the respective valve states. More precisely,
we first introduce variables representing the positions of cells
which are occupied by a sample at a particular time step.
Definition 3 For each sample s ∈ S with length ls and for ev-
ery time step t with 0≤ t < T , we introduce position-variables
post

s = {(post
s[i].x, post

s[i].y) : 0 ≤ i < ls} describing the oc-
cupied nodes of the grid. Each pair (post

s[i].x, post
s[i].y)

are two integer-typed variables. The position at index 0
(i.e. (post

s[0].x, post
s[0].y)) is called head and the position at

index ls−1 (i.e. (post
s[ls−1].x, post

s[ls−1].y)) is called tail.
Example 6 Consider the PMD state of time step t = 0 shown
in Fig. 2. The positions of sample s1 and s2 are described
by pos0

s0
= {(1,2),(1,1)} and pos0

s1
= {(3,2),(3,1)}, respec-

tively.
Next, we introduce a formulation which allows to model the

flow path. Recall, external pumps connected to the inputs pro-
duce a pressure which is used to push the sample inside the
chip and this pressure has to exit the chip through outputs. To
represent which input is used to push the sample and which
output is used to release the pressure, we introduce the follow-
ing variables:
Definition 4 For each sample s ∈ S and for every time step t
with 0 ≤ t < T , we introduce two integer-typed variables int

s
and outt

s. Their respective values describe which input/output
is used for pushing the sample/allowing the pressure to leave
the PMD.
Example 7 Consider the PMD state shown in Fig. 2. The
input in2 is used for pushing sample s1 at time step t = 0,
i.e. in0

s1
= 2. Similarly, the output out15 is used for releasing

the pressure of sample s1, i.e. out0
s1
= 15.

Finally, we introduce a symbolic representation of the flow
path between these inputs/outputs and the sample. Therefore, a
flow path can be split in two sequences, i.e. a sequence of open
valves from any input to the tail of the sample and a sequence
of open valves from the head of the sample to any output. In
order to describe these two sequences, we do not symbolically
model all used nodes which are occupied by the sequences as
this would result in a (too) large number of variables. Instead,
we represent the flow path with so-called bend points. These
bend points describe positions on the grid. By connecting them
and the used input/output with straight lines, the flow path is
described. Bend points are used to describe 90 degree turns of
the flow path.

The used number of bend points per sequence, allows to
configure how often a sequence can turn by 90 degrees. In
the case with only one bend point, the sequence is either a
straight line or has an L-shape. Our implementation allows
to freely configure the number of bend points and, therefore,
gives the bioengineer a mechanism to control the complexity
of the resulting solutions and also the complexity of the re-
sulting SMT-instance. Formally, we introduce the following
variables:
Definition 5 For each sample s ∈ S and for every time
step t with 0 ≤ t < T , we introduce bend point-variables
bendt

s = {(bendt
s[i].x,bendt

s[i].y) : 0≤ i < 2∗ k}, where k rep-
resents the number of used bend points per sequence. Then, the
first 0≤ i < k variables bendt

s[i] are used for the first sequence
between the input to the tail of the sample and the remaining k
variables are used for the second sequence from the head of
the sample to the output.

Example 8 Consider again the PMD state and especially
the two flow paths for sample s1 and s2 as shown in
Fig. 2. Assume the bioengineer chooses k = 2 bend points

per sample. These two flow paths are described by an as-
signment equal to bend0

s1
= {(2,0),(1,0),(1,5),(5,5)} and

bend0
s2
= {(3,0),(3,0),(3,4),(6,4)}, respectively. For in-

stance, the first sequence of the flow path for sample s1 can
be obtained by connecting straight lines between input in2,
to (2,0), to (1,0), and finally to the tail of the sample at (1,1).
Accordingly, the second sequence of the flow path for sample s1
can be obtained by connecting straight lines between the head
of the sample at (1,2), to (1,5), to (5,5), and finally to the
output out15.

These two flow paths allow the samples to flow one node
further, i.e. at time step t = 1 the samples are located at pos1

s0
=

{(1,3),(1,2)} and pos1
s1
= {(3,3),(3,2)}. Note that not all

bend point-variables have to change the direction. This is the
case for the first sequence represented by bend0

s2
, where the

first two points do not change the direction and are assigned
equally.

The resulting symbolic formulation now allows to represent
arbitrary flow paths and, hence, arbitrary valve-controls. How-
ever, passing this symbolic formulation to a solving engine
would yield an arbitrary assignment of the variables. Hence,
it is not guaranteed that the samples correctly flow from their
source positions to their target positions and that flow paths are
realized. Therefore, we have to restrict the assignments of the
symbolic formulation using constraints introduced in the next
section.
B. Constraints

Because of space limitations, we only sketch some of the
used constraints in the following. While this should be suffi-
cient to get the general idea, a complete implementation is pub-
licly available at http://www.jku.at/iic/eda/pmd.

First, constraints are added which ensure that the samples
start at time step t = 0 at their respective source positions, i.e.∧

s∈S
pos0

s = srcs.

Second, constraints are added which ensure that the samples
reach their respective target positions at some time step tt and
afterwards stay there, i.e.∧

s∈S
∃tt

(
0≤ tt < T ∧

∧
tt≤t<T

post
s = tgts

)
.

Note that these two constraints are adapted when the sample is
injected from an input or the sample exits the PMD through an
output.

Next, we have to restrict the position-variables post
s to posi-

tions P of the grid, i.e.∧
s∈S

∧
0≤i<ls

∧
0≤t<T

0≤ post
s[i].x <W ∧0≤ post

s[i].y < H.

Similarly, the bend point-variables are restricted to positions
of the grid. Moreover, some areas on the PMD are blocked
e.g. due to other operations. Therefore, we add constraints
which ensure that the position- and the bend point-variables
cannot take values within these blockages B. Also, the input
and output variables are restricted to the respective border po-
sition, i.e.∧

s∈S

∧
0≤t<T

int
s ∈ In and

∧
s∈S

∧
0≤t<T

outt
s ∈ Out.

The constraints introduced so far restrict the allowed values
but do not ensure a correct flow of samples including their flow
paths. As discussed above, in one time step, a sample can flow



to an adjacent node or can stay. This movement is ensured
using the position of the head of the sample from the previous
time step t−1, i.e.∧

s∈S

∧
0≤t<T

(post
s[0].x = post−1

s [0].x∧ post
s[0].y = post−1

s [0].y−1)︸ ︷︷ ︸
U pt

s

∨ (. . .)︸︷︷︸
Downt

s

∨(. . .)︸︷︷︸
Le f tt

s

∨ (. . .)︸︷︷︸
Rightt

s

∨ (. . .)︸︷︷︸
Pauset

s

.

In case the sample flows in an adjacent node in time step t, the
values of the remaining position variables can be derived from
the previous time step t−1, i.e.∧

s∈S

∧
0≤t<T

U pt
s∨Downt

s∨Le f tt
s ∨Rightt

s→∧
1≤i<ls

post
s[i].x = post−1

s [i−1].x∧ post
s[i].y = post−1

s [i−1].y.

Otherwise, when the sample pauses its flow in time step t, a
constraint assigns the position variables equally to the prede-
cessor time step t−1.

In case a sample flows in an adjacent node in time step t,
we have to ensure a sound flow path. Therefore, we add con-
straints which restrict the bend point-variables so that they de-
scribe straight lines between the used input and tail of the sam-
ple as well as the head of the sample and the used output. This
can be done by only allowing at most one coordinate (either x-
or y-coordinate) to change its value.

Left is to ensure that no flow path intersects or overlaps with
another flow path or a blockage. Therefore, we add constraints
which check if lines are crossing or any two samples occupy
the same position. Note that these constraints also ensure that
inputs and outputs are used by at most one sample at a certain
time step.
C. Discussion

The symbolic formulation described above can easily be
extended and/or adjusted in order to support further con-
straints and objectives. Furthermore, this formulation con-
siders all possible solutions (including the full consideration
of e.g. whether and how samples can concurrently be pushed
on the PMD). Overall, this allows to determine the minimum
number of time steps required to push all samples to the de-
sired target positions e.g. by first checking the availability of
a solution for T = 1 time step (or a known lower bound) and
increasing T until a sound solution can be determined.

To ensure all that, a rather huge search space has to be
considered – making the proposed exact method applicable
for small instances only. However, this still proves beneficial
e.g. for evaluating how far heuristic solutions are from being
minimal. Fortunately, in most cases bioengineers do not need
exact solutions. Instead they require methods to quickly obtain
a physically correct solution. This motivates a fast, extendible,
and scalable method based on a heuristic, which is presented
in the next section.

V. HEURISTIC DETERMINATION OF A VALVE-CONTROL

In this section, the heuristic method for determining a sound
valve-control is presented. To cope with the huge search
space, we simplify the considered problem by (1) only con-
sidering solutions where samples continuously flow from their
source positions to their target positions and (2) determining
the flow path for each sample one after another rather than
concurrently (taking into account valve-sequences already de-
termined for previously considered samples). In contrast to the
exact method proposed above, this does not guarantee anymore
that a solution within a certain amount of time steps is deter-
mined. But therefore, reasonable solutions can be obtained in

only a fraction of the time needed by the exact method. Fur-
thermore, compared to the method previously proposed in [6],
the determination of a sound valve-control is guaranteed.

More precisely, the proposed heuristic solution considers all
samples s∈ S one after another and generates a flow path com-
posed of the sub-paths

1. from any input in ∈ I to the tail of the source posi-
tion srcs[ls−1],

2. from the head of the source position srcs[0] to the tail of
the target position tgts[ls−1], and

3. from the head of the target position tgts[0] to any output
out ∈ Out.

An open sequence of valves consisting of these three sub-paths
gives a sound flow path, which allows the sample to flow from
its source to its target.

Determining the three sub-paths reduces the determination
of a valve-control for one single sample to a classical pathfind-
ing problem. Here, we apply a standard routing algorithm,
namely maze routing with a rip-up and reroute method [15,16].
In the following, we provide an overview of our algorithm.

The algorithm starts at time step ts = 0 and tries to realize as
much as possible flow paths. As introduced above, a flow path
consists of three sub-paths which are determined by the maze
routing method. If a flow path for a sample can be determined,
we block the respective nodes for the amount of time steps the
sample requires to flow to its target position (i.e. the length of
the second sub-path specifies the required time steps). If a sam-
ple cannot be completely routed, we apply a rip-up and reroute
method. More precisely, we determine which path blocks a
successful routing of the currently considered path (i.e. by a
wave expansion [15]). Then, we rip-up the respective routing,
route the previously unroutable path, and finally also reroute
the ripped-up path.

This process is continued until no more samples can be
routed starting at the currently considered time step ts = 0. Af-
terwards, the algorithm tries to continue the routing at a later
time step. This next start time step ts is determined by the ar-
rival time of any of the currently pushed sample at its target
position (then, it is guaranteed that the nodes of the flow path
are not used anymore). At this time step, the algorithm tries
again to realize as much as possible flow paths of the samples
which have not yet been completed. This is continued until all
samples of S reach their target.

Overall, the method can guarantee that all samples finally
reach their target due to the rip-up and reroute method. As
a disadvantage, the heuristic cannot guarantee a certain upper
bound on the number of needed time steps. However, as eval-
uations summarized in the next section confirm, acceptable re-
sults are usually obtained.

VI. EVALUATION
In order to evaluate the proposed methods, we conducted

a quality and performance evaluation as well as a compar-
ison to related work. To this end, the exact solution de-
scribed in Section IV has been implemented in Java and the
SMT solver Z3 [17] in its latest version is used. The heuris-
tic solution described in Section V has been implemented
partly in C and in Java. For the maze routing with the rip-
up and reroute method, we used the open source implemen-
tation of [18]. Our implementations are publicly available at
http://www.jku.at/iic/eda/pmd. As benchmarks,
we used test cases from [6] and additionally applied the heuris-
tic solution to In-Vitro Diagnostics (IVD) applications which
have been taken from [19] and adapted for PMDs by adding
two inputs and two outputs. All experiments have been con-
ducted on a 3.8 GHz Intel Core i7 machine with 32GB of mem-
ory running 64-bit Ubuntu 16.04. A summary of the obtained
results is provided next.



TABLE I
QUALITY AND PERFORMANCE EVALUATION

Exact Heuristic
Case TS CPU TS CPU

6x6; 2 Samples 20 308 26 0.093
6x6; 3 Samples 20 21156 26 0.088
6x6; 4 Samples 27 9134 41 0.094

8x8; 2 Samples 25 519 34 0.105
8x8; 3 Samples 25 28465 34 0.136
8x8; 4 Samples timeout 52 0.106

10x10; 2 Samples 30 10236 41 0.092
10x10; 3 Samples timeout 41 0.090
10x10; 4 Samples timeout 64 0.095

A. Quality and Performance

In this section, we compare the obtained quality and the
performance of the exact solution with the heuristic solution.
The results are summarized in Table I. Both methods pro-
duce sound solutions and we use the number of time steps of
the obtained result (column “TS”) and the computation time
(column “CPU”) as criteria. Since, due to the computational
complexity, the exact solution can only handle small test cases
(defined by the grid size and number of samples; see col-
umn “Case”), we scaled down the test cases from [6] for this
evaluation.

We can observe that the exact solution is capable of deter-
mining valve-control sequences which in all cases take less
time steps to push all samples to their targets. As a clear draw-
back, we can see that the exact method is applicable for rather
small test cases only and times out for larger instances (a time-
out of 10 hours has been applied). In contrast, the heuristic ap-
proach always produces results in a fraction of a second. The
comparison with the values obtained by the exact approach ad-
ditionally confirms that the obtained heuristic results are also
of feasible quality.

B. Comparison to Related Work

In this section, we compare the proposed solutions to the re-
lated work [6] discussed in Section III. Table II summarizes the
obtained results for the test cases from [6] and additionally for
two IVD applications. In this evaluation, we explicitly checked
each result for soundness, i.e. checked whether a flow of a sam-
ple is backed by a corresponding flow path. Column “S?” in
Table II lists whether (denoted by 3) or not (denoted by 7) this
is the case.

Our evaluations revealed that all results obtained using
method “Routability” and “MIS” of [6] are unsound (making
the obtained time steps T S meaningless). Only the method
named “Sequential”, which realizes the flow of each sample
sequentially, produces sound results. That is, already here the
superiority of the proposed (heuristic) method compared to the
current state-of-the-art is shown: The only solution proposed
in [6] which yields sound results (namely method “Sequen-
tial”) requires up to a factor of 3 more time steps than the
method proposed in this work.

Besides that, the evaluation considering the IVD applica-
tions confirm further benefits. Since this includes samples
whose source and target positions are not necessarily at the
inputs and outputs of the PMD, respectively, the previously
proposed approaches are not applicable for this case. That is,
up to now, such applications have not been supported by any
automatic method and required a bioengineer to manually de-
termine a corresponding valve-control. Using the proposed so-
lution, this now can be conducted automatically in negligible
runtime.

TABLE II
COMPARISION TO RELATED WORK

Routability [6] MIS [6] Sequential [6] Prop. Heuristic
Case S? TS CPU S? TS CPU S? TS CPU S? TS CPU

10x10; 5 Samples 7 26 0.001 7 45 0.001 3 82 0.001 3 51 0.109
10x10; 10 Samples 7 37 0.033 7 62 0.033 3 163 0.001 3 89 0.131
20x20; 20 Samples 7 58 0.241 7 146 0.322 3 538 0.001 3 251 0.259
30x30; 30 Samples 7 83 1.112 7 232 1.119 3 1151 0.001 3 490 0.552
40x40; 40 Samples 7 106 2.513 7 302 2.879 3 1973 0.001 3 753 1.121
50x50; 50 Samples 7 131 5.430 7 423 5.767 3 3007 0.001 3 1073 2.290

IVD-1 16x16; 32 Samples Not applicable 3 297 0.175
IVD-2 14x14; 40 Samples Not applicable 3 290 0.176

VII. CONCLUSION

In this work, we presented an exact and a heuristic solu-
tion for determining a sound valve-control allowing all sam-
ples to be pushed to their targets. These two methods over-
come limitations of the related work and allow bioengineers
to automatically determine sound solutions which indeed real-
ize their intended applications. Experimental evaluations con-
firmed the practicability of the methods by evaluating their per-
formance and comparing them to the related work. Therefore,
the determination of valve-sequences for applications includ-
ing In-Vitro Diagnostics have been considered. Both methods
have been made publicly available to bioengineers to use them
as well as to researchers to extended and adopted them.
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