
Pushing the Number of Qubits Below the “Minimum”:
Realizing Compact Boolean Components for Quantum Logic

Alwin Zulehner Robert Wille
Institute for Integrated Circuits, Johannes Kepler University Linz, Austria

alwin.zulehner@jku.at robert.wille@jku.at

Abstract—Research on quantum computers has gained atten-
tion since they are able to solve certain tasks significantly faster
than classical machines (in some cases, exponential speed-ups are
possible). Since quantum computations typically contain large
Boolean components, design automation techniques are required
to realize the respective Boolean functions in quantum logic. They
usually introduce a significant amount of additional qubits – a
highly limited resource. In this work, we propose an alternative
method for the realization of Boolean components for quantum
logic. In contrast to the current state-of-the-art, we dedicatedly
address the main reasons causing the additionally required qubits
(namely the number of the most frequently occurring output
pattern as well as the number of primary outputs of the function
to be realized) and propose to manipulate the function so that
both issues are addressed. The resulting methods allow to push
the number of required qubits below what is currently considered
the minimum.

I. INTRODUCTION

Quantum computers [10] have gained significant attention
since they might be used in the future to solve certain
tasks significantly faster than classical machines – including
applications for which exponential speed-ups are possible. In
the recent years, physical realizations of quantum computers
have made significant progress [5]. Well-known companies
like Google, Microsoft, Intel, or IBM already announced to
realize quantum computers with 50 qubits within the near
future – a huge step towards quantum computers that are able
to solve practically relevant tasks. But even with all these
accomplishments, qubits are still a rather limited resource
and their number should be kept as small as possible. This
is additionally motivated because quantum computations are
subject to frequent errors caused by quantum decoherence.
As a result, information stored in qubits is very unstable and
requires constant error-correction [11] – mainly relying on
redundant computations which increase the number of qubits
further.

This poses a challenge to corresponding design automa-
tion techniques which are particularly needed to realize the
Boolean components (often called oracle) that frequently oc-
cur in many quantum algorithms. Since quantum computations
are inherently reversible, it has to be ensured that these
components are realized in a reversible fashion, i.e. as a
function realizing a unique mapping from the inputs to the
outputs and vice versa (cf. [6, 17, 14, 21]). This usually
requires a significant amount of additional qubits (also called
working or ancillae qubits of the oracle) – as said, a highly
limited resource.

In this work, we investigate how this overhead in qubits
can be reduced. We think thereby beyond the current
state-of-the-art [6, 17, 14, 21], which considers the given
Boolean function to be realized as a fixed entity. More
precisely, while previous work simply tried to minimize the
number of additional qubits for a given Boolean function f
(eventually determining a minimum number of qubits needed
to realize f), we go one step further and dedicatedly address

This work has partially been supported by the European Union through the
COST Action IC1405.

the reasons why these additional qubits become necessary in
the first place. Indeed, we discuss how the number of times
the most frequently output pattern of f occurs as well as
the number of primary outputs of f significantly affects the
number of needed qubits and propose coding techniques that
manipulate f so that both issues are addressed. As a result, the
number of additionally required qubits can be pushed below
what is currently considered the minimum.

Experimental evaluations confirm that, for most commonly
used benchmarks, the number of required qubits can sig-
nificantly be reduced compared to the minimum obtained
by the state-of-the-art. As a further positive side-effect, the
manipulations applied to f also help to reduce the costs for
realizing the Boolean components in quantum logic. In fact,
improvements of 92.7% on average and of several orders of
magnitudes in the best cases are observed.

II. NUMBER OF QUBITS FOR BOOLEAN COMPONENTS

A major obstacle in the design automation of Boolean com-
ponents for quantum logic is the fact that the Boolean function
to be realized has to be made reversible first, i.e. each possible
input pattern must map to a unique output pattern [10].
Therefore, it is essential to understand how many non-unique
output patterns exists in a function to be realized and how
often they occur.

Definition 1. Let f : Bn → Bm be a Boolean function.
Then, pi ∈ Bm, 1 ≤ i ≤ 2m is one possible output pattern
for f . The function µ : Bm → N0 gives how often an output
pattern pi ∈ Bm occurs in the function f . Furthermore, the
indices i are sorted with respect to the number of occurrences,
i.e. p1 represents the most frequently occurring output pattern,
while p2m represents the least frequently occurring output
pattern.

If µ(pi) = 1 for all possible patterns pi ∈ Bm of a given
function f , then f is already reversible (each output pattern pi
occurs only once and, hence, can uniquely be mapped to an
input pattern). In this case, nothing else needs to be done.
However, for many functions to be realized, this is often not
the case and output patterns that occur more than once have to
be made distinguishable. To this end, the respective output pat-
tern pi is extended by so-called garbage outputs which allow
to make all occurrences of pi distinguishable [6, 17, 14, 21].
Obviously, dlog2 µ(pi)e garbage outputs are sufficient for this
purpose as this allows for µ(pi) unique ways to extend pi.
Since (w.l.o.g. following the definition from above) p1 is
the most frequently occurring pattern, a total of dlog2 µ(p1)e
garbage outputs are required to make an arbitrary function f
reversible.

Example 1. Consider the Boolean function f shown in
Table Ia. The most frequently occurring output pattern is
p1 = 100. Since this patterns occurs µ(p1) = 5 times, at least
dlog2 µ(p1)e = dlog2 5e = 3 garbage outputs are required in
order to make the occurrences of the output pattern p1 distin-
guishable. Using these additional outputs, p1 can be extended

TABLE I: Truth table of a Boolean function f
(a) Original

x3x2x1 y3y2y1
0 0 0 1 0 0
0 0 1 1 0 0
0 1 0 1 1 0
0 1 1 1 0 0
1 0 0 0 1 0
1 0 1 1 0 0
1 1 0 1 0 0
1 1 1 0 1 0

(b) Reversible
a3a2a1 x3x2x1 y3y2y1 g3g2g1
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 1
0 0 0 0 1 0 1 1 0 0 0 0
0 0 0 0 1 1 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 0
0 0 0 1 0 1 1 0 0 0 1 1
0 0 0 1 1 0 1 0 0 1 0 0
0 0 0 1 1 1 0 1 0 0 1 0

...
...

as e.g. shown in Table Ib. The originally intended function f
can still be extracted by applying input patterns where the first
three qubits are set to 0 (highlighted bold in Table Ib), while
the overall functionality ensures reversibility.

Overall, adding garbage outputs obviously increases the
number of required qubits in order to realize f in quantum
logic (i.e. in a reversible fashion). In fact, given a func-
tion f : Bn → Bm with p1 being the most frequently occur-
ring output pattern, the correspondingly resulting reversible
function requires at least n′ = max(n,m + dlog2 µ(p1)e)
qubits. In other words, following the state of the art, a function
realizing f in a reversible fashion with a minimum number of
required qubits would be of the form fsota : Bn′ → Bn′

.
The scheme of determining a reversible function out of

an arbitrarily given function f as reviewed above is called
embedding and addressed e.g. in [6, 14, 21]. Afterwards, the
resulting reversible function serves as input e.g. for synthesis
approaches such as [12, 9, 7, 13]. Besides that, also alternative
solutions have been proposed which take a Boolean function
and implicitly determine the reversibility during the synthesis
(see e.g. [4, 19, 15]). They, however, yield realizations with
a large number of required qubits (usually magnitudes above
the minimum as observed e.g. in [17]).

III. PUSHING THE NUMBER OF
REQUIRED QUBITS BELOW THE MINIMUM

Since the emergence of initial design solutions for quantum
logic, a main objective was to keep the number required qubits
(and, hence, the overhead caused by ensuring reversibility) as
small as possible. This led to several solutions which guarantee
a minimum of required qubits as already discussed above (and
proposed e.g. in [6, 14, 21]). However, all these endeavors did
not address the main reasons which lead to a large number of
required qubits, namely:
• The number of times the most frequent output pattern

occurs (i.e. µ(p1)) – basically defining the number of
garbage outputs.

• The number m of primary outputs.
In this work, we propose alternative solutions that actively

takes µ(p1) as well as m into consideration and aims for reduc-
ing these values by using coding techniques. Accordingly, this
allows for reducing the number of required qubits – which in
many cases can be pushed below a value that is considered the
minimum thus far. The general ideas of the proposed solution
for reducing the number of required qubits are (1) to treat
frequently occurring output patterns in a special fashion and/or
(2) to dedicatedly encode output patterns – both in order to
reduce the values of µ(p1) and m, respectively.1

1Note that both ideas eventually yield a different function than the original
one (i.e. fsota). However, the proposed ideas can nevertheless be exploited to
realize more compact Boolean components, because those components (the or-
acles) typically employ a hierarchical structure. Here, several sub-components
are required that compute intermediate results stored in the working or ancillae
qubits. If those sub-components respectively consider that the intermediate
results are partially represented by special outputs and/or codings, the func-
tionality of the top component (eventually used by the remainder of the
quantum circuit) still can be realized as desired.

A. Adding Special Outputs

Functions f where the number of occurrences of p1 is
very dominant compared to the other output patterns (i.e. for
functions with µ(p1) � µ(p2)), often require a substantial
number of garbage outputs that serve no purpose except
making p1 distinguishable. In contrast, we propose to treat p1
by a special output sp1 . That is, we extend the initially given
function by a new output sp1 which always assumes the
value 1 iff an input assignment is supposed to generate p1. At
the same time, the original output values can be set arbitrarily
in these cases allowing for a reduction of µ(p1) and, hence, a
reduction of the number of required garbage outputs.

The general concept of this can, in principle, also be
generalized for the next frequently occurring patterns p2, p3,
etc. To this end, we can simply add up to k ∈ {1, . . . ,m}
special outputs s1, . . . , sk to an originally given function f .
These indicate whether an input assignment is supposed to
generate either one of the 2k − 1 most frequently occurring
output patterns (in case [s1, . . . , sk]2 = i > 0, the output
pattern pi is supposed to be generated) or one of the other
output patterns (in case [s1, . . . , sk]2 = 0 the output pattern
is supposed to be extracted from the actual primary outputs).
An example demonstrates the idea:

Example 2. Consider a Boolean function with 6 inputs and
5 outputs, where the output patterns are distributed as shown
in Table IIa. Furthermore, assume that we add k = 2 special
outputs to the function and, by this, handle the most frequently
occurring output patterns p1, p2, and p3 by them. This reduces
the remaining values of µ(p′i) as shown in Table IIb. If
the function is supposed e.g. to evaluate to output pattern
p2 = 11001, the special outputs s1 and s2 are set to 1 and 0,
respectively. The values of the primary outputs do not matter
in this case and, hence, can be set arbitrarily. This degree of
freedom is then used to make the occurrences of s1s2 = 01,
s1s2 = 10, and s1s2 = 11 (which represent p1, p2, and
p3, respectively) distinguishable. Consequently, the primary
outputs serve as garbage outputs in cases where s1s2 6= 00.
Since dlog2 µ(p1)e = 5, the five primary outputs are sufficient
to distinguish all occurrences.

In contrast, if the function of interest evaluates e.g. to output
pattern p4 = 01011, the special outputs s1 and s2 are both set
to 0. Then, the desired output value can be obtained from the
primary outputs, i.e. they are assigned 01011. Since p4 is now
the most frequent pattern that can be obtained at the primary
outputs, only dlog2 µ(p4)e = 2 actual garbage outputs are
required (compared to the dlog2 µ(p1)e = 5 garbage outputs
in case the original function from Table IIa is considered).

While this approach often yields reductions in the number of
required qubits, its effect strongly depends on the respective
occurrences µ(pi) of output patterns pi of f and how they
are distributed. In simple words, if most frequently occurring
output patterns are very dominant (i.e. occur quite often
compared to the remaining output patterns) large reductions
can be achieved. If their occurrences, however, differ only
slightly, no improvements or even a larger number of required
qubits results.

Example 3. Consider again the Boolean function with 6
inputs and 5 outputs, where the output patterns are distributed
as shown in Table IIa. Since the most frequent output pat-
tern occurs 21 times (i.e. µ(p1) = 21), 5 garbage outputs
are required (resulting in a reversible function which requires
max(6, 5 + 5) = 10 qubits). Adding k = 1 special output to
the function reduces the number of required garbage outputs

TABLE II: Distribution of the output patterns
(a) Original
i pi µ(pi)
1 00010 21
2 11001 14
3 01110 6
4 01011 4
...

...
...

8 00000 4
9 01111 3

10 01001 0
...

...
...

(b) With special outputs
i s1s2 p′i µ(p′i)
1 0 1 – –
2 1 0 – –
3 1 1 – –
4 0 0 01011 4
...

...
...

...
8 0 0 00000 4
9 0 0 01111 3

10 0 0 01001 0
...

...
...

(c) With coding
i p′i µ(p′i)
1 0000 21
2 0001 14
3 0010 6
4 0011 4
5 0100 4
6 0101 4
7 0110 4
8 0111 4
9 1000 3

10 1001 0
...

...
...

to dlog2 µ(p2k)e = 4, but again results in a function with
max(6, 5 + 4) + 1 = 10 qubits. Setting the number of special
outputs to k = 2 reduces the number of required qubits to
max(6, 5 + dlog2 µ(p2k)e) + 2 = 9. Adding one more special
output (k = 3), the number of required qubits again increases
to max(6, 5+2)+3 = 10. Hence, adding more special outputs
does not always result in a function that requires fewer qubits.

Overall, adding k special outputs to the original func-
tion reduces the overall number of outputs if, and only if,
k + dlog2 µ(p2k)e < dlog2 µ(p1)e. Since the overall number
of required qubits also depends on the number of primary
inputs, the optimal number of special outputs kopt for a
Boolean function f : Bn → Bm is determined by

kopt = argmin
0≤k<m

(max (n,m+ dlog2 µ(p2k)e) + k) .

This optimal kopt heavily depends on the considered function.
However, it can easily be determined by inspection of the
function and, hence, prior to the design.

B. Coding Output Patterns
Besides reducing the number of garbage outputs (as accom-

plished using special outputs discussed above), the number
of required qubits can further be optimized by reducing the
number of primary outputs m. This is particularly beneficial
if the number of primary outputs is larger than the number of
primary inputs, i.e. iff m > n. Then, at least one of the outputs
pattern pi ∈ Bm exists which never occurs as an output pattern
(i.e. µ(pi) = 0)2.

A precise approach accomplishing that reads as follows:
Consider again a Boolean function f : Bn → Bm and
let h be the number of output patterns that occur at least
once, i.e. h = |{pi|µ(pi) > 0}|. Then, dlog2 he coded outputs
c1, . . . , cdlog2 he are required to encode all output patterns,
where

[
c1, . . . , cdlog2 he

]
= i represents output pattern pi+1.

The original outputs are then not required anymore – resulting
in a new function f ′ : Bn → Bdlog2 he. An example demon-
strates the idea:

Example 4. Consider again a Boolean function with 6 inputs
and 5 outputs, where the output patterns are distributed as
shown in Table IIa. There exist h = 9 output patterns that
occur at least once. Consequently, four coded outputs are
required to represent all relevant output patterns – resulting in
the distribution of coded output patters p′i shown in Table IIc.
For example, the coded outputs p′2 = c1c2c3c4 = 0001 and
p′8 = c1c2c3c4 = 0111 represent output patterns p2 = 11001
and p8 = 00000, respectively. Applying a coding for this
function reduces the number of primary outputs from 5 to 4
and the number of required qubits from 10 to 9.

2Our experimental evaluations summarized later in Section IV confirm that
many functions indeed map the inputs patterns to a rather small subset of
output patterns.

A coding for the output patterns does not affect the number
of the required garbage outputs, because the coding is unique.
Hence, the number of occurrences of the patterns remain the
same. In case that dlog2 he < m and m + dlog2 µp1e > n,
the coding scheme proposed here indeed will allow for the
realization of a given function f with a smaller number of
required qubits.

C. Combination of Both Approaches
The approaches for reducing the number of required qubits

described in this section are independent to each other. While
the approach discussed in Section III-A aims for a reduc-
tion of the garbage outputs, the coding scheme proposed in
Section III-B aims for a reduction of the primary outputs.
Therefore, both schemes can be applied in a combined fashion.
First, we apply a coding for the outputs, and then we add
special outputs to reduce the number of garbage outputs. An
example illustrates the idea.

Example 5. Consider again the Boolean function with 6
inputs discussed in Example 4. Applying a coding for the
relevant output patterns (those that occur at least once)
reduces the number of primary outputs from 5 to 4 – resulting
in the distribution of the output patters shown in Table IIc.

The overall number of required qubits is
max(6, 4 + dlog2 p1e) = 9. To reduce the number of garbage
outputs, we again add k = 2 special outputs (cf. Example 3)
– resulting in a function with max(6, 4 + dlog2 p4e) + 2 = 8
qubits. Hence, in this example, the reductions of the individual
approaches sum up.

IV. EXPERIMENTAL RESULTS

We experimentally evaluated the approaches proposed above
for the realization of Boolean components in quantum logic
with less than the minimum number of required qubits. To
this end, we implemented the schemes from Sections III-A
and III-B in C++ and evaluated them on benchmarks taken
from commonly used benchmarks suits such as RevLib [16],
ISCAS [1], IWLS [8], and ITC [3].

A. Reduction Below the Minimum
In a first series of experiments, we evaluated how much the

number of required qubits can be pushed below the minimum
with the approaches proposed in this work. To this end, we
analyze the functions fsota obtained using the state-of-the-art
solutions from [6, 17, 14, 21] and the functions fprop obtained
by the solution proposed in this work (i.e. the combined
approach discussed in Section III-C). The accordingly obtained
numbers are listed in Table III. The first three columns list the
name of the benchmark, the number of primary inputs (n), and
the number of primary outputs (m). In the columns labeled q
we list the number of required qubits for fsota (i.e. the number
that is considered the minimum thus far) and for fprop. For
fprop, we additionally list the optimal number kopt of special
outputs. The last column of Table III provides the obtained
improvements regarding the number of required qubits. Note
that the runtime for determining the number of required qubits
is not listed in this table, since it was negligible for all
benchmarks (less than 10 seconds).

The experimental evaluation clearly shows the benefit of
the approach proposed in this work. In 38 out of 46 cases,
the function of interest can be realized with fewer qubits than
previously considered to be the minimum. For 21 benchmarks,
the number of required qubits can be reduced by more than
10 compared to the state-of-the-art. In the case of benchmark
cps, even more than 100 qubits can be saved – a reduction of

TABLE III: Synthesis results (using QMDD-based synthesis)
fsota as input fprop (Sec. III-C) as input

Name n m q t T-depth kopt q t T-depth ∆q
decod 5 16 20 0.3 50 172 1 6 0.0 441 14
bw 5 28 32 1.6 62 376 1 6 0.0 852 26
b11 8 31 36 2.3 1 070 055 0 10 0.0 5 022 26
ex5p 8 63 68 22.7 3 913 413 0 12 0.7 162 111 56
clip 9 5 11 – – 0 11 – – 0
dk27 9 9 15 0.1 134 538 0 12 0.0 59 766 3
apex4 9 19 26 4.4 1 160 232 2 14 2.6 297 222 12
sao2 10 4 14 0.5 402 333 2 12 0.0 11 772 2
alu2 10 6 14 – – 0 14 – – 0
example2 10 6 14 – – 0 14 – – 0
x2 10 7 16 0.1 290 679 2 12 0.0 6 381 4
alu3 10 8 14 0.3 605 802 0 13 0.8 589 215 1
ex1010 10 10 18 2.0 1 952 757 1 15 1.3 821 118 3
dk17 10 11 19 0.9 1 142 160 0 13 0.4 353 694 6
apla 10 12 22 0.9 1 720 944 2 13 0.1 107 679 9
cm85a 11 3 13 – – 0 13 – – 0
add6 12 7 13 – – 0 13 – – 0
alu4 14 8 19 32.7 20 530 881 0 17 45.7 15 406 296 2
f51m 14 8 19 – – 0 19 – – 0
tial 14 8 19 44.2 21 111 420 1 17 45.3 13 364 280 2
cu 14 11 25 4.2 7 087 479 2 17 0.1 110 949 8
misex3 14 14 28 86.0 64 760 979 2 16 6.6 3 488 655 12
misex3c 14 14 28 91.7 64 535 337 2 16 5.5 3 627 549 12
table3 14 14 28 79.6 66 211 986 3 17 1.5 371 895 11
s1488 14 25 38 58.1 78 345 783 2 19 35.5 13 747 935 19
s1494 14 25 38 46.5 62 481 213 2 19 40.4 14 174 664 19
in0 15 11 25 155.2 94 018 080 1 19 41.2 13 458 195 6
cmb 16 4 20 0.6 2 026 779 1 17 0.0 7 011 3
pcler8 16 5 21 12.6 7 833 705 1 17 4.2 4 333 239 4
pdc 16 40 55 406.6 121 308 453 3 22 869.3 7 472 673 33
spla 16 46 61 524.0 337 363 242 3 22 60.4 12 289 548 39
table5 17 15 32 >1h – 1 20 13.3 4 238 280 12
s208.1 18 9 19 – – 0 19 – – 0
cm151a 19 9 27 >1h – 1 21 2827.6 444 535 209 6
duke2 22 29 50 >1h – 3 26 >1h – 24
cordic 23 2 25 >1h – 1 24 1366.1 33 781 044 1
cps 24 109 132 >1h – 2 28 >1h – 104
vg2 25 8 32 >1h – 1 29 61.1 2 641 671 3
misex2 25 18 42 >1h – 3 28 >1h – 14
frg1 28 3 30 – – 0 30 – – 0
apex2 39 3 42 >1h – 1 41 >1h – 1
seq 41 35 75 >1h – 3 44 >1h – 31
apex1 45 45 89 >1h – 1 51 >1h – 38
apex3 54 50 103 >1h – 1 57 >1h – 46
e64 65 65 129 >1h – 3 68 >1h – 61
ex4p 128 28 146 >1h – 0 130 >1h – 16

almost 79%. Overall, substantial improvements are obtained
compared to the number of required qubits which are currently
considered the minimum.

B. Further Benefits
Having a function with significantly fewer qubits obviously

also effects/improves the costs of the resulting quantum cir-
cuits (i.e. a sequence of quantum operations that are applied to
the qubits). This has been evaluated in a second series of ex-
periments, in which we realize the function fsota and fprop in
quantum logic. As synthesis engine we utilized QMDD-based
synthesis which was originally proposed in [13] and recently
improved in [20]. Table III again lists the respectively obtained
results, i.e. the runtime t required to synthesize the circuit, as
well as the complexity of the circuit (by means of T-depth [2]).
The number of required qubits is inherently given by the
first series of experiments (and, thus, listed in the columns
labeled q). Note that we list only synthesis results where the
number of qubits indeed can be pushed below the minimum.

The results clearly show that the approaches proposed in
this work do not only reduce the number of required qubits,
but also yield a significantly smaller circuit complexity (in
terms of T-depth). In fact, an average improvement of 92.7% is
observed; in some cases (e.g. decod, cmb, etc.), cost reductions
of several orders of magnitudes can be reported. Functions
obtained by the proposed approaches also performs better
in terms of runtime for most benchmarks. In four cases,
the optimized function fprop even allowed to complete the
synthesis within the time limit whereas the synthesis of the
state-of-the-art function fsota failed.

These results are particularly remarkable since, thus far,
a reduction of the number of required qubits almost always

yielded an increase in the resulting circuit costs (as e.g. ob-
served in [18]). Hence, using the approaches proposed in this
work do not only allow for realizing Boolean functions in
quantum logic with less than the minimum number of required
qubits, but also enables designers to synthesize the respective
circuits with significantly fewer cost.

V. CONCLUSIONS

In this work, we proposed a novel approach for realizing
Boolean components in quantum logic using a smaller number
of qubits than what is currently considered to be the minimum.
To this end, we explicitly considered the main reasons that
lead to a large number of qubits thus far: the number of
times the most frequent output pattern occurs and the number
of primary outputs. Following the proposed approaches yield
significant reductions and, hence, allow for a much more effi-
cient realization of the corresponding quantum computations.
Considering that reducing the number of required qubits for
quantum computation has been considered for a long time,
pushing this number below what is currently considered the
minimum as proposed in this work offers a new direction
in the design of Boolean components for quantum logic. A
first complete synthesis approach towards this direction has
recently been proposed in [22].

REFERENCES
[1] ISCAS’89 benchmark information. www.cbl.ncsu.edu/ CBL_Docs/ iscas89.html,

1997.
[2] M. Amy, D. Maslov, M. Mosca, and M. Roetteler. A meet-in-the-middle algorithm

for fast synthesis of depth-optimal quantum circuits. IEEE Trans. on CAD of
Integrated Circuits and Systems, 32(6):818–830, 2013.

[3] F. Corno, M. Reorda, and G. Squillero. RT-level ITC’99 benchmarks and first
ATPG results. Design Test of Computers, IEEE, 17(3):44–53, Jul 2000.

[4] K. Fazel, M. Thornton, and J. Rice. ESOP-based Toffoli gate cascade generation.
In Communications, Computers and Signal Processing, 2007. PacRim 2007. IEEE
Pacific Rim Conference on, pages 206 –209, 2007.

[5] N. M. Linke, D. Maslov, M. Roetteler, S. Debnath, C. Figgatt, K. A. Landsman,
K. Wright, and C. Monroe. Experimental comparison of two quantum computing
architectures. Proceedings of the National Academy of Sciences, page 201618020,
2017.

[6] D. Maslov and G. W. Dueck. Reversible cascades with minimal garbage. IEEE
Trans. on CAD, 23(11):1497–1509, 2004.

[7] D. Maslov, G. W. Dueck, and D. M. Miller. Techniques for the synthesis of
reversible Toffoli networks. ACM Trans. on Design Automation of Electronic
Systems, 12(4), 2007.

[8] K. McElvain. IWLS’93 benchmark set: Version 4.0. In Int’l Workshop on Logic
Synth., 1993.

[9] D. M. Miller, D. Maslov, and G. W. Dueck. A transformation based algorithm for
reversible logic synthesis. In Design Automation Conf., pages 318–323, 2003.

[10] M. Nielsen and I. Chuang. Quantum Computation and Quantum Information.
Cambridge Univ. Press, 2000.

[11] M. Reed, L. DiCarlo, S. Nigg, L. Sun, L. Frunzio, S. Girvin, and R. Schoelkopf.
Realization of three-qubit quantum error correction with superconducting circuits.
Nature, 482(7385):382–385, 2012.

[12] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P. Hayes. Reversible logic circuit
synthesis. In Int’l Conf. on CAD, pages 353–360, 2002.

[13] M. Soeken, R. Wille, C. Hilken, N. Przigoda, and R. Drechsler. Synthesis of
reversible circuits with minimal lines for large functions. In ASP Design Automation
Conf., pages 85–92, 2012.

[14] M. Soeken, R. Wille, O. Keszocze, D. M. Miller, and R. Drechsler. Embedding
of large Boolean functions for reversible logic. J. Emerg. Technol. Comput. Syst.,
12(4):41:1–41:26, Dec. 2015.

[15] R. Wille and R. Drechsler. BDD-based synthesis of reversible logic for large
functions. In Design Automation Conf., pages 270–275, 2009.

[16] R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drechsler. RevLib: an online
resource for reversible functions and reversible circuits. In Int’l Symp. on Multi-
Valued Logic, pages 220–225, 2008. RevLib is available at http://www.revlib.org.

[17] R. Wille, O. Keszöcze, and R. Drechsler. Determining the minimal number of lines
for large reversible circuits. In Design, Automation and Test in Europe, 2011.

[18] R. Wille, M. Soeken, D. M. Miller, and R. Drechsler. Trading off circuit lines and
gate costs in the synthesis of reversible logic. Integration, 47(2):284–294, 2014.

[19] Z. Zilic, K. Radecka, and A. Kazamiphur. Reversible circuit technology mapping
from non-reversible specifications. In Design, Automation and Test in Europe,
pages 558–563, 2007.

[20] A. Zulehner and R. Wille. Improving synthesis of reversible circuits: Exploiting
redundancies in paths and nodes of QMDDs. In Conf. on Reversible Computation,
2017.

[21] A. Zulehner and R. Wille. Make it reversible: Efficient embedding of non-reversible
functions. In Design, Automation and Test in Europe, 2017.

[22] A. Zulehner and R. Wille. Exploiting coding techniques for logic synthesis of
reversible circuits. In ASP Design Automation Conf., 2018.

