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Abstract—Quantum-dot Cellular Automata (QCA) are an
emerging computation technology in which basic states are rep-
resented by nanosize particles and logic operations are conducted
through corresponding effects such as Coulomb interaction. This
allows to overcome physical boundaries of conventional solutions
such as CMOS and, hence, constitutes a promising direction for
future computing devices. Despite these promises, however, the
development of (automatic) design methods for QCAs is still in
its infancy. In fact, QCA circuits are mainly designed manually
thus far and only few heuristics are available. This frequently
leads to unsatisfactory results and generally makes it hard to
evaluate the quality of respective QCA designs. In this work, we
propose an exact solution for the design of QCA circuits that
can be configured e. g. to generate circuits that satisfy certain
design objectives and/or physical constraints. For the first time,
this allows for design exploration of QCA circuits. Experimental
evaluations and case studies demonstrate the benefit of the
proposed solution.

I. INTRODUCTION

Quantum-dot Cellular Automata (QCA) have been deemed
as a candidate for substituting conventional integrated circuit
technologies as these are reaching its physical limits [1],
[2]. QCA is a Field-Coupled Nanotechnology (FCN) that
applies cells of quantum-dots in order to represent and process
binary information [3]. Theoretical and experimental results
indicate that QCA have the potential to allow for systems with
highest processing performance and remarkable low energy
dissipation [4], [5].

The promising properties of this technology encouraged
numerous works on the design of circuits based on QCA. This
led to initial QCA designs realizing arithmetic circuits [6],
processors [7], and FPGAs [8]. However, most of these cir-
cuits have been realized manually. With increasing complexity
and/or physical restrictions to be considered (besides others,
e. g. dedicated clocking schemes, the crossings of wires, re-
stricted wire lengths, etc.), methods for design automation of
QCA circuits are inevitable.

While initial solutions e. g. for the automatic synthesis of
QCA circuits have been proposed, they often only focused on
a single design objective. In particular, the realization of the
data flow in a QCA circuit has been considered. This strongly
depends on the respectively assumed clocking scheme – an
architectural characteristic of each QCA design that defines
how an external clocking signal is distributed. The works by
Bubna et al. [9], Ravichandran et al. [10] and Vankamamidi
et al. [11] solely focused on implementations based on an
unidirectional data flow. Trindade et al. [12] presented a design
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solution supporting a clocking scheme allowing for a flexible
and bidirectional data flow.

However, beyond that, several further (partially contradic-
tory) objectives have to be considered when designing QCA
circuits. For example, whether or not crossings are allowed
or whether or not signals are supposed to arrive at the same
clock cycle may have a significant impact on the required
area. Besides that, physical restrictions such as the minimum
distance between wires may have to be considered. The current
state-of-the-art mentioned above does not help here, since all
solutions proposed thus far (1) rely on heuristic algorithms
and, hence, cannot guarantee that all objectives/constraints are
indeed satisfied and (2) usually focus on a single objective but
do not consider alternatives that would allow e. g. to trade-off
several objectives. This frequently leads to unsatisfactory re-
sults and generally makes it hard to evaluate the quality of
respective QCA designs.

In this work, we propose an automatic design method
for QCA circuits, which addresses these shortcomings. More
precisely, we introduce a symbolic formulation which encap-
sulates the actual design task (realizing a given function in
terms of a QCA circuit) as well as all objectives/constraints
that need to be satisfied. Passing the resulting formulation to
a reasoning engine allows either for the extraction of a cor-
responding QCA design realizing the function and satisfying
the objectives/constraints or proves that no such realization
exists. The symbolic formulation can be configured e. g. to
address different objectives or to guarantee the satisfaction
of certain physical constraints. This way, an exact design
method becomes available which is capable of generating
different QCA designs satisfying different (complementary)
objectives/constraints. For the first time, this allows for a
sophisticated design exploration of QCA.

The benefits of the proposed solution are discussed by
comparing them with the current state-of-the-art as well as
demonstrated on different case studies. This confirms that
previously proposed design solutions (based on heuristics)
generate results which are far from being optimal. Moreover,
the case studies illustrate how the proposed methods, for the
first time, allows for the design exploration of QCA circuits
with respect to different objectives/constraints.

The remainder of this work is structured as follows: The
next section reviews the basics on QCAs as well as the
design of the corresponding circuits. Section III introduces
the proposed design method, i. e. describes the general idea as
well as provides details on the proposed symbolic formulation.
Afterwards, the benefits are discussed and demonstrated in
Section IV – providing a comparison to previously proposed
automatic design methods as well as case studies showing how
the solution proposed in this work aids design exploration of
QCA circuits. Finally, Section V concludes the paper.
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(d) QCA majority

Fig. 1: QCA states and operations

II. DESIGN OF QUANTUM-DOT CELLULAR AUTOMATA

This section reviews the basics on Quantum-dot Cellular
Automata and their current design flow. This includes a
discussion of the related work and their shortcomings which
motivates the contribution proposed in this work.

A. Quantum-dot Cellular Automata

Quantum-dot Cellular Automata (QCA) are a field-coupled
technology that conducts computations fundamentally differ-
ently from today’s technologies. Information is stored and
processed by quantum dots, which are structures able to
confine an electric charge [4], [1]. A QCA cell is typically
composed of four quantum dots arranged at the corners of a
square, such as depicted in Fig. 1 (circles represent quantum-
dots). Further, each cell contains two free and mobile electrons
(illustrated by black dots in Fig. 1), which are able to tunnel
between adjacent dots. Tunneling to the outside of the cell
is prevented by a potential barrier. The electrons experience
mutual repulsion due to Coulomb interaction and tend to locate
at opposing diagonals. Consequently, an isolated cell may be
in one of two equivalent energy states, called cell polarizations
P = −1 and P = +1 as shown in Fig. 1a. This allows for the
codification of binary information by considering that P = −1
represents binary 0 and P = +1 means binary 1.

Moreover, when placed near to each other, the polarization
of one cell influences the polarization of the other – again
caused by Coulomb interaction. This causes electrons to avoid
to be located in neighboring quantum dots. Exploiting this
effect allows for the realization of wires and logic functions.

Example 1. Based on the concepts introduced above, the
following logic elements can easily be realized:

• A wire as shown in Fig. 1b, where e. g. a 1-state is
propagated through several cells by Coulomb interac-
tion (here, from left to right).

• An inverter as shown in Fig. 1c, where e. g. a 1-state
is copied to two paths, which then are combined
diagonally, such that the 1-state is inverted to a 0-state
(again, from left to right).

• A majority gate as shown in Fig. 1d, where e. g. a
0-state from input a competes with two 1-states com-
ing from inputs b and c. The output follows the
majority of the input states, which is a 1-state in this
case.

Note that, from the majority gate, further logic operations such
as OR or AND gate can easily be derived by locking one of
its inputs to a 1-state (yielding an OR) or 0-state (yielding an
AND).
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Fig. 2: QCA wire with cells in 4 clock zones
In order to execute these operations, a dedicated clocking

is required which, starting with the initialization of the QCA
cells, properly propagates the data from cell to cell and
avoids metastable states [13]. To this end, an external clock
is employed which consists of four phases and regulates the
interdot barriers within a QCA cell such that the cell can be
polarized or not. In the so-called release phase, the interdot
barriers are lowered, removing the old polarization of the cell.
In the following relax phase, the cell remains depolarized.
During the third phase, called switch, the interdot barriers
are raised while a new input is being applied. Consequently,
the cell polarizes into one of the two antipodal states. In the
following hold phase, the cell keeps its polarization and acts
as input for adjacent cells in the switch phase. Usually, four
different clock signals phase-shifted by 90 degree are provided
for this purpose [14]. Further, cells are grouped in clock zones,
whereby each zone is controlled by one of the four clock
signals. The data flow is controlled by placing adjacent clock
zones such that the cells which shall pass their data are in the
hold phase when the cells that shall receive the data are in the
switch phase. An example illustrates the concepts.

Example 2. Consider Fig. 2 showing a QCA wire with cells in
four different clock zones (emphasized by different coloring).
When clock zone 2 is in the switch phase, then clock zone 1
is in the hold phase. Thus, in this clock phase, cells in clock
zone 2 polarize according to the polarization of the adjacent
cell in clock zone 1. During the next clock phase, clock zone 2
changes to hold, while clock zone 3 is in switch. Consequently,
data is passed from zone 2 to 3, similar to a pipeline structure.

B. Design of QCA Circuits
The main goal of each design process in this domain

is to realize a given Boolean function f : Bn → Bm as
a QCA circuit. To this end, traditional design solutions for
logic synthesis of conventional circuits can be employed in the
first steps of the design flow since QCA realizations (denoted
QCA gates in the following) of typical logic functions such as
Inverter, OR, AND, XOR, etc. are readily available (e. g. [15]).
However, as discussed above, the resulting gates must be
arranged such that the corresponding assignment of underlying
clock zones is respected, i. e. data is properly passed from one
clock zone to another. To this end, usually a fix arrangement
of clock zones is imposed on a QCA layout [11], [9], [16].

Example 3. Fig. 3 shows a selection of QCA gates for common
logic operations (eventually yielding a gate library introduced
in [15]). The QCA gates are implemented in a certain amount
of clock zones (represented by squares) whereas each clock
zone has the size of 5× 5 QCA cells. Operations such as OR
and AND are rather simple and can be realized within one
clock zone. In contrast, functions like NAND or NOR require
two adjacent clock zones. In this case, it has to be assured that
the intended data flow follows the predefined concept of the
respectively applied clocking scheme. That means, the QCA
structures forming the gates must be arranged such that the
output of one QCA structure is placed to an input of another
structure which is located in a consecutively numbered clock
zone (i. e. 1 is followed by 2, or 4 is followed by 1, etc.).

There have been several proposals for clocking schemes,
like 2DDWave [11], tile-based design [17] or USE (Universal,
Scalable and Efficient) [16]. Without loss of generality, we em-
ploy the latter, which is characterized by a regular architecture
and the ability of creating feedback paths, both turning USE
in a clocking scheme suitable for design automation.
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Fig. 3: Boolean QCA gates realized in one and two clock zones

USE defines a grid of clock zones which are arranged such
that all inner clock zones usually have two neighboring clock
zones providing data (i. e. possessing a preceding clock zone
number) and two neighboring clock zones receiving data (i. e.
possessing a consecutive clock zone number). The clock zones
are numbered from 1 to 4, whereby consecutive numbered
zones have clock signals shifted by 90 degree. Fig. 4a depicts
the concept of USE (again, each square is a clock zone of the
size of 5 × 5 QCA cells, following the proposal from [16]).
Further, the arrows indicate the possible data flow between
adjacent clock zones.

Example 4. Consider the USE grid shown in Fig. 4a. If clock
zones with number 1 are in the hold phase, then zones with
number 2 are in switch, zones with number 3 are in relax, and
zones with number 4 are in release. In this case, data can be
transferred from QCA cells in clock zones with number 1 to
cells in adjacent clock zones with number 2. In the next step,
clock zones with number 2 change to hold and clock zones
with number 3 to switch allowing for data to be transferred
from adjacent zones with number 2 to zones with number 3.

Considering these technology-dependent properties, arbi-
trary Boolean functions can now be realized by synthesizing
the function to a netlist composed of gates supported by
the gate library and, afterwards, mapping each gate by the
respective QCA gates provided. The mapping itself can be
arbitrary as long as consecutive operations are properly con-
nected according to the predefined flow of the USE clocking
scheme. Following related work such as [12], the costs of the
resulting circuit is measured by different means such as the
number of used QCA cells, the area of the resulting grid, the
critical path, etc.

Example 5. Consider the 2:1 MUX function f = as̄ + bs
to be realized. Using conventional design tools yields a gate
level representation of this function. Mapping this netlist to
a QCA grid as shown in Fig. 4b properly satisfies all clock
zone constraints, i. e. all inputs of a QCA gate must come from
QCA structures located in a preceding clock zone. In total, the
resulting QCA circuit has costs of 3× 3 clock zones which is
equal to 15 × 15 QCA cells. This circuit has a critical path
length of 5 clock zones.

III. EXACT DESIGN OF QCAS

In this work, we introduce a method for the design of QCA
circuits which, in contrast to previously proposed solutions dis-
cussed in Section I, is fully automatic (i. e. requires no manual
realization) as well as exact (i. e. does not rely on heuristics
and guarantees the satisfaction of the respectively given design
objectives/constraints). In the following, we briefly introduce
the main idea of the proposed approach, which relies on a
symbolic formulation of the design problem as well as the
utilization of reasoning engines. Afterwards, details on the
proposed symbolic formulation are provided. Based on that,
Section IV illustrates how to apply the resulting solution for
QCA design.
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Fig. 4: QCA clocking scheme USE

A. General Idea

In order to design QCA circuits, we assume that the given
Boolean function f : Bn → Bm has already been synthesized
using conventional logic synthesis methods and a standard
library – yielding a netlist which serves as input as already
discussed in the previous section. Besides that, the respective
design objectives/constraints are provided, e. g. a USE grid of
size N = x × y onto which the function is supposed to be
realized (with x and y being the width and height of the grid,
respectively) and/or physical constraints (e. g. the minimum
distance between wires, whether crossings are possible, etc.).

Based on that, we formally capture whether the netlist
can be realized on the grid adhering the given objec-
tives/constraints. To this end, we define a formulation Φ in
unquantified first order logic which symbolically represents the
design problem. Passing the resulting symbolic formulation Φ
to a reasoning engine (e. g. an SMT solver [18]), either yields
an assignment to all variables satisfying all constraints in Φ
or proves that no such assignment exists. From this result,
either the desired QCA circuit can be extracted or it has
been proven no such circuit exists under the respectively given
objectives/constraints.

This can be applied for design exploration of QCA circuits
e. g. by checking different instances of the formulation with
different constraints. For example, enforcing several hard con-
straints may likely yield an unsatisfiable symbolic formulation
(to be checked by the reasoning engine) and, hence, a proof
that the function cannot be realized under these constraints.
Then, the designer has to decide what constraints shall be
loosen. In a similar fashion, minimality with respect to a
certain cost metric can be accomplished. For example, if the
designer is interested in the minimal grid size onto which
a desired function can be realized, he or she simply has to
apply a sequence of symbolic formulations with iteratively
increasing grid sizes (starting e. g. with a known lower bound).
Then, the grid size for which a satisfying assignment can be
obtained first, obviously represents the minimum. In a similar
fashion, reasoning engines have been utilized e. g. for the exact
design of reversible circuits [19], quantum circuits [20] or
biochips [21].

B. Proposed Symbolic Formulation

For the symbolic formulation, we separate the elements
of the netlist representing the function f : Bn → Bm to be
realized into operations and wires.1 These should be mapped
to the formerly mentioned grid of N clock zones, where each
clock zone is either empty or holds an element. To express this,
a set of Boolean variables goc is used to symbolically represent

1Note that we treat fan-outs as operations which perform the identity
function of B1 → B2.



whether clock zone c ∈ C is occupied by operation o ∈ O
(goc = 1) or not (goc = 0). Additionally, a set of Boolean
variables gwc is utilized to express whether wire w ∈ W is
assigned to clock zone c (gwc = 1) or not (gwc = 0).

Passing this symbolic formulation to a reasoning engine
(without any further constraints) obviously would yield an
arbitrary assignment to all variables – symbolically represent-
ing an arbitrary QCA circuit, which does not necessarily be
compliant to physical or logical constraints. Of course, we
are not interested in an arbitrary assignment, though. Hence,
we have to restrict the symbolic formulation so that only
assignments are allowed that yield valid QCA circuits and
satisfy all objectives/constraints.

To this end, we first ensure that each operation is placed ex-
actly once onto the grid. Therefore, we add a constraint which
ensures that the number of variables representing operations
per clock zone set to true is equal to one. Intuitively speaking,
this means that any operation need to be placed somewhere
on the grid. More formally:∧

o∈O

(∑
c∈C

goc

)
= 1 (C1)

This restriction does not need to hold for wires because
they can be of arbitrary length by concatenating numerous
wire elements. Nonetheless, it is necessary to enforce that each
clock zone is allowed to be occupied at most by either one wire
or one operation. To enforce this, we provide another constraint
which looks similar to the first one, but is formulated from the
perspective of the QCA grid, i. e. for all clock zones, we allow
at most one of the operation or wire variables to be set to true:∧

c∈C

(∑
o∈O

goc +
∑
w∈W

gwc

)
≤ 1 (C2)

So far, elements from the netlist can be placed onto the
grid, but the interconnections as defined by the netlist are
not respected yet. Here, we are faced with two levels: the
adjacency relation on the netlist and the adjacency relation
on the QCA grid. Both have to match. To formulate this, we
introduce the following definitions and notations:

• The USE clocking scheme provides a defined data
flow which can be expressed by an adjacency function
αC : C → 2C which returns the set of successor clock
zones for a given clock zone. Vice versa, we define
an inverse adjacency function α̂C : C → 2C which
returns the set of predecessor clock zones. Similar
definitions are available on the netlist, i. e. αO and
α̂O, respectively.

• We use the notation wo1,o2 to refer to the wire
connecting operation o1 and o2 in the netlist.

• We will use auxiliary variables ic,c′ modeling inter-
connections between two clock zones on the QCA
grid. Their exact meaning is explained later.

We now express the adjacency by two constraints: The
constraint C3 considers the case that an operation has been
placed onto some clock zone, and the other constraint C4
considers the case that a wire segment has been placed onto
some clock zone.

More precisely, for C3 we formalize that the placed opera-
tion is either followed by the connected operation directly (so
the wire has been skipped) or by a wire segment. In contrast,
C4 states that each segment of a wire is followed by another
wire segment or the connected operation as given by the netlist.

Please note, both constraints C3 and C4 follow the same
scheme: if some operation o or some wire w has been placed
on clock zone c, it is implied that some of the adjacent
clock zones must be assigned to an adjacent successive op-
eration/wire of the netlist. The corresponding case describing
the corresponding predecessor relation is ensured using the
inverse adjacency functions.

This results in the following constraints:

∧
c∈C,
o∈O

goc =⇒

 ∧
o′∈αO(o)

∨
c′∈αC(c)

(
go

′

c′ ∨ g
wo,o′

c′

)
∧ ic,c′

∧
 ∧
o′∈α̂O(o)

∨
c′∈α̂C(c)

(
go

′

c′ ∨ g
wo′,o
c′

)
∧ ic′,c


(C3)

for the operations, and

∧
c∈C,
w∈W

gwc =⇒

 ∧
o′∈t(w)

∨
c′∈αC(c)

(
go

′

c′ ∨ gwc′
)
∧ ic,c′

∧
 ∧
o′∈s(w)

∨
c′∈α̂C(c)

(
go

′

c′ ∨ gwc′
)
∧ ic′,c

 (C4)

for the wires, where s(w) and t(w) refer to the set of sources
and targets of wire w in the netlist, respectively.

We now explain the meaning and functionality of the i-
variables: For each adjacency on the USE grid, i. e. each arrow
in Fig. 4a leading from a clock zone c to a clock zone c′, a new
Boolean connection variable ic,c′ is introduced which is set to
true for each connectivity established by the constraints C3 and
C4 (i. e. the disjunction can only become true if a connection
is established by the left side of the inner conjunction and
if the corresponding i-variable is set to true). The i-variables
enable us to prevent random wire cycles from appearing on the
grid in the next step. Since the underlying netlist is cycle free,
we have to ensure the same for the QCA grid. Based on the
constraints introduced so far, wire loops without a connection
to an operation are possible. To prevent cycles, we introduce
an additional set of Boolean variables which we call path
variables pc,c′ for each pair of clock zones c, c′ ∈ C. Note
that all N2 variables are needed here. This is not the case for
the interconnection variables where a variable ic,c′ has been
introduced if and only if c and c′ were consecutively numbered
clock zones.

The concept of a path variable is as follows: a path
variable pc,c′ should become true, if there are a number of
interconnection variables all set to true, such that there exists
a path from c to c′. This is described by two constraints: The
first one maps adjacent connections to sub-paths by a single
implication. We get: ∧

c,c′∈C
c6=c′

ic,c′ =⇒ pc,c′ (C5)

The second one spans the paths transitively by stating that
the existence of a path from clock zone c to clock zone c′ and
the existence of a path from clock zone c′ to clock zone c′′



leads to the existence of a path from clock zone c to clock
zone c′′, i. e. ∧

c,c′,c′′∈C
c6=c′,c′ 6=c′′

pc,c′ ∧ pc′,c′′ =⇒ pc,c′′ (C6)

Having these preconditions ensured, we are now able to
prevent cycles completely by simply disallowing paths that
come back to where they started. Formally, no path vari-
able pc,c can be true: ∧

c∈C
pc,c (C7)

Passing the resulting formulation to a reasoning engine
would lead to almost valid results. Now, it only has to be
ensured that the lengths of all fan-in paths to any multi-input
operation on the grid do not differ by more than 3 clock
zones, exploiting the pipeline-like structure of QCA circuits
and therefore leading to highest throughput.

To respect this restriction, we add another constraint to
the formulation. Essentially, we express that the number of all
clock zones occupied by all fan-in paths to an operation with
more than one input (P(o)) need to be the same. Additionally,
the clock zone number (cn) of the first path element (p∗)
is considered to respect the clock zone constraints correctly
(leading to a maximum difference of 3 clock zones). We get:

∧
o∈O

∧
p1,p2∈P(o)
p1 6=p2

cn(p∗1) +
∑
c∈C
e1∈p1

(ge1c )

 =

cn(p∗2) +
∑
c∈C
e2∈p2

(ge2c )

 (C8)

To complete the symbolic formulation, some “minor con-
straints” are required. Due to page limitations, we only give
an informal description:

1) We forbid that empty clock zones have any connec-
tion or path variables established leading from or
towards them.

2) We forbid that operations or wires are assigned to
clock zones with an insufficient number of adjacen-
cies for that very operation or wire.

3) We ensure that the number of established connections
for each clock zone match the number of adjacencies
of the assigned operation or wire in the netlist.

Overall, by the help of a reasoning engine we can use
the presented symbolic formulation to determine whether a
given Boolean function f represented in terms of a netlist
can be realized on a QCA grid of size N = x × y. Besides
that, the symbolic formulation can be extended so that further
objectives/constraints are considered. How this eventually can
be applied in order to improve the current state-of-the-art in
QCA design is illustrated by means of case studies in the next
section.

IV. EVALUATION AND APPLICATION

This section discusses the applicability and the capabilities
of the proposed design method. To this end, a tool has been
implemented in C++ which automatically generates the sym-
bolic formulation based on a given function f to be realized

TABLE I: Comparison to heuristic approach

Heuristic [12] Proposed approach
Circuit Area CP t in s Area CP t in s
2:1 MUX 20× 25 5 9 15× 15 5 < 1
XOR 20× 35 7 11 15× 15 5 < 1
XNOR 30× 30 8 13 20× 20 8 2
Half adder 35× 30 8 55 25× 25 10 13
c17 [23] 50× 30 13 15 25× 30 16 56
ParGen [24] 45× 50 14 27 35× 30 14 791
ParCheck [24] 50× 70 14 3014 20× 60 16 1140
4:1 MUX 55× 40 19 9612 35× 35 22 5131

(represented in terms of a netlist) as well as the corresponding
parameters such as grid size and objectives/constraints. As
reasoning engine, we utilized the SMT solver Z3 [18] ver-
sion 4.5.1 64 Bit. Based on that, we conducted evaluations
and case studies which compare the respectively obtained
QCA circuits against the state-of-the-art and demonstrate the
capabilities of the resulting design method for the purpose
of design exploration. All evaluations of our exact approach
have been conducted on an Intel Xeon E5-2630 v3 machine
with 2.40 GHz (up to 3.20 GHz boost) and 64 GB of main
memory running Fedora 22. In the following, we summarize
the evaluations and demonstrations.

A. Comparison to Related Work

In order to demonstrate the quality of the solutions obtained
by the proposed method compared to the state-of-the-art, we
realized several benchmarks (given as Verilog netlists) which
have recently been considered for evaluating the heuristic
synthesis solution proposed in [12]. The resulting designs
have been verified using the Coherence Vector Simulation
Engine provided by the design tool QCADesigner [22]. Both
approaches (the heuristic one from [12] as well as the exact
one proposed in this work) aimed at minimizing the area of
the QCA circuit, i. e. the size of the occupied grid of QCA
cells. The respectively obtained results are reported in Table I,
where column Area lists the resulting grid size, column CP the
resulting critical path, and column t in s the required execution
time in seconds to generate the result. Again, we are looking
for the minimal area in this work. Thus, the critical path may
be of arbitrary length.

The results first show that, indeed, determining results with
minimal area as conducted in this evaluation is computationally
expensive and requires a significant amount of time. However,
as also can be seen, the proposed solution and the power of
the applied SMT solver nevertheless allows for determining
the desired results in reasonable time. Moreover, even though
the heuristic approach has been executed on a machine with
lower performance, the runtime is remarkably high.2 For the
first time ever, this allows to precisely evaluate previously
proposed heuristic solutions. This unveils e. g. that the method
proposed in [12] yields results that are almost three times
larger than the actual minimum. That shows further potential
for improving heuristic solutions to be investigated in future
work. Besides that (and also in contrast to previous work),
the proposed method additionally allows to enforce further
objectives/constraints as demonstrated next.

B. Design Exploration

Existing design methods for QCA such as [9], [11], [12],
[25] focus on single design objectives only and often do not
consider further issues. In contrast, the symbolic formulation
introduced in Section III can be extended so that designs result
that satisfy further/other objectives/constraints. This allows for
the exact exploration of different design configurations, giving

2The heuristic approach was executed on an Intel Core i7 4800MQ
with 2.70 GHz (up to 3.70 GHz boost) and 8 GB of main memory running
Windows 7.



TABLE II: Design exploration in terms of wire crossings

Without crossings Single crossing With crossings
Circuit Area CP Area CP Area CP
2:1 MUX 15× 15 5 15× 15 5 15× 15 5
XOR 15× 15 5 15× 15 5 15× 15 5
XNOR 15× 30 9 20× 20 8 20× 20 8
Half adder 25× 30 10 25× 30 8 25× 25 10
c17 [23] 25× 35 14 25× 30 11 25× 30 16
ParGen [24] 50× 25 18 25× 45 14 35× 30 14
ParCheck [24] 20× 70 17 35× 35 12 20× 60 16
4:1 MUX 40× 35 16 25× 55 16 35× 35 22

the designer the possibility to identify the most adequate
solution for his or her requirements. In the following, we
demonstrate this for two representative design objectives.

First, we considered wire crossings, which we implemented
via the multilayer approach discussed in [26].3 In general,
wire crossings in QCA designs are undesired as it requires the
change between QCA layers or the application of rotated cells
in case of coplanar crossings. Both affecting the reliability and
performance [26], [3]. On the other side, allowing crossings
could yield designs with much less area demands (or make a
function realizable in the first place). Hence, designers might
be interested whether and at what costs a function can be
realized with a specific upper bound of wire crossings or even
without any crossings.

Incorporating a limitation on the number of crossings can
easily be implemented in the proposed solution by adjusting
constraint C2. Doing that allowing for no crossings, a single
crossing or without any limitations on crossings eventually
yields results as summarized in Tab. II. As can be seen, all
considered functions can also be realized without crossings
(assuming that I/1O placement is unrestricted). This causes an
increase in the area by up to 20 % (Half adder), though. Based
on these evaluations, a designer now can decide whether such
an increase in area is worth avoiding crossings or not.

In a second evaluation, we considered the impact of con-
straining that all input signals of a logic cell arrive within the
same clock cycle. Thus far, it is a common approach to design
QCA circuits such that in each clock cycle new input data can
be passed in leading to high throughput (Tp). This requires
equal signal lengths, though, which is ensured by the proposed
approach by means of constraint C8. On the downside, addi-
tional wires might be necessary for synchronization purposes
only. The proposed approach enables the exploration of the
resulting trade-off between throughput and area.

More precisely, disabling constraint C8 eventually yields
results as summarized in Tab. III. Column Area gain lists
thereby the area improvement and column Tp the resulting
throughput, both with respect to the circuits listed in Tab. I
(obtained with constraint C8 enabled). The throughput reduc-
tion follows from the necessity to delay new input data in order
to assure synchronicity amongst internal signals.

In case of the ParGen circuit, the area could be reduced by
half – surely making it interesting to leave the comfort area at
the costs of throughput reduction to 1/4 of the maximum value.
Comparing to that, the circuit ParCheck received a lower gain
of 29 %. Nonetheless, it did so by only reducing its Tp by
half. In case of the 4:1 MUX circuit however, the throughput
dropped to 1/6 while only 14 % area gain could be achieved.

In a similar fashion, many further constraints/objectives
could easily be considered and, hence, evaluated, using the
proposed method.

3Since the formal model does not differ, the proposed method also supports
coplanar wire crossings.

TABLE III: Design exploration in terms of equal signal lengths

Without crossings
Circuit Area CP Area gain Tp
2:1 MUX 15× 15 5 0% 1/1
XOR 15× 15 5 0% 1/1
XNOR 15× 25 9 17% 1/2
Half adder 25× 30 13 0% 1/2
c17 [23] 20× 30 14 31% 1/3
ParGen [24] 15× 40 16 52% 1/4
ParCheck [24] 20× 50 13 29% 1/2
4:1 MUX 30× 40 24 14% 1/6

V. CONCLUSION

In this work, we presented an automatic and exact design
method for QCA circuits. In contrast to existing (manual or
heuristic) approaches, our method guarantees the satisfaction
of desired design objectives and physical constraints. To this
end, we proposed a symbolic formulation which captures
whether a considered netlist can be realized on a QCA grid of
size N adhering the given objectives/constraints. By leveraging
formal reasoning engines for the symbolic formulation, we
can determine QCA circuits satisfying the respective fea-
tures. By this, it is possible to evaluate different design con-
straints/objectives in an exact fashion – providing significant
potential for design exploration for QCA circuits. Experimental
evaluations confirmed the benefits of the proposed approach.
We were able to show that previously proposed design solu-
tions (based on heuristics) generate results which are far from
being optimal. Moreover, we demonstrated how the proposed
method allows for the design exploration of QCA circuits with
respect to different objectives/constraints.
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