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Abstract—The Clifford+T library provides robust and
fault-tolerant realizations for quantum computations. Conse-
quently, (logic) synthesis of Clifford+T quantum circuits became
an important research problem. However, previously proposed
solutions are either only applicable to very small quantum
systems or lead to circuits that are far from being optimal—
mainly caused by a local, i.e. column-wise, consideration of
the underlying transformation matrix to be synthesized. In this
paper, we suggest an improved approach that considers the
matrix globally and, by this, overcomes many of these drawbacks.
Preliminary evaluations show the promises of this direction.

I. INTRODUCTION

Due to its potential for significant speed-ups, quantum
computation [1] has attracted significant research attention in
the recent years. Here, operations are conducted by means of
quantum bits (qubits) rather than conventional bits, which can
not only assume Boolean basis states, but also superpositions
of them. This enables significant speed-ups for several inter-
esting and practically relevant problems such as factorization,
database search, or the simulation of chemical dynamics [1].
To this end, complex quantum operations are usually described
in terms of a cascade of quantum gates which eventually form
a quantum circuit.

In this regard, the Clifford+T gate library [2] provides
a convenient set of quantum gates because it is universal
(i.e. any quantum functionality can be realized with it up
to an arbitrary small error ε), fault-tolerant (i.e. robust to
many faults which easily can occur in quantum computations),
and physical implementations are expected to be available
for the most promising and large-scale quantum computation
technologies. Consequently, how to synthesize the desired
quantum functionality in terms of elementary quantum gates
from this library became an important research problem.

First approaches for synthesis followed a two-stage scheme
in which the desired quantum functionality is first synthe-
sized into a quantum circuit composed of arbitrary one-qubit
gates and so-called controlled NOT gates (using solutions as
e.g. proposed in [3], [4]) and, afterwards, the resulting gate
structure is individually compiled to Clifford+T gates (using
solutions as e.g. proposed in [5]). But this does not only
require a tremendous number of gates, but also yields just
an approximation of the desired quantum functionality. In
order to overcome this drawback, researchers considered exact
synthesis of Clifford+T quantum circuits in [6]–[8], i.e. the

desired quantum functionality is realized without any rounding
errors rather than being approximated with respect to an ε.

However, while guaranteeing exactness, the respective
schemes are either applicable to very small quantum systems
only (e.g. [6], [7]) or synthesize the given transformation
matrix (representing the desired quantum functionality) in a
local fashion, i.e. column by column (e.g. [8]). The latter is
disadvantageous since the manipulation of a single column
frequently makes the remaining columns harder to synthesize
and often several columns could be considered much more
efficiently in one step rather than in several individual steps.
Overall, this frequently leads to quantum circuits which are
“far from optimal”—as confirmed by the authors of [8].

In this work, we investigate these drawbacks and suggest an
improved approach that considers the matrix globally rather
than locally, i.e. a solution is suggested which always keeps
track of the entire matrix. This eventually yields an alternative
and improved synthesis algorithm which has strong potential to
realize the desired quantum functionality significantly cheaper
than before. A preliminary implementation of the proposed
idea shows the promises of this direction and motivates a more
detailed investigation of a global matrix consideration during
synthesis.

The remainder of this work is structured as follows: The
next section reviews the background on quantum circuits and
the considered Clifford-T library. Then, Section III discusses
the drawbacks of previously proposed synthesis approaches
for Clifford-T quantum circuits followed by suggestions for
improving this state-of-the-art. Section IV summarizes prelim-
inarily obtained results showing the promises of the proposed
method. Finally, the paper is concluded in Section V.

II. BACKGROUND

Quantum systems are composed of qubits, which can be in
one of the basis states |0〉 and |1〉 or within a superposition
α|0〉 + β|1〉 for complex-valued α, β with |α|2 + |β|2 = 1.
Accordingly, an n-qubit quantum system can be in one of
the 2n basis states (|0 . . . 00〉, |0 . . . 01〉, . . . , |1 . . . 11〉) or a
superposition of these states (represented by a state vector
of dimension 2n). The evolution of a quantum state due to a
quantum operation can be described by a unitary transforma-
tion matrix.



Realizations of (complex) quantum operations are repre-
sented by quantum gates gi which eventually form a quantum
circuit G = g1 . . . gd with 1 ≤ i ≤ d. The unitary matrix of
the entire circuit is computed as the matrix product of the
individual gate matrices (in reversed order). The Clifford+T
gate library [2] represents a set of quantum gates which is
universal (any quantum operation, i.e. unitary transformation
matrix, can be realized up to an arbitrary precision) as well as
fault-tolerant (i.e. robust implementations of these gates are
known for most technologies that are considered promising
for large-scale quantum computers).

The most elementary gates in the Clifford+T library com-
prise the Hadamard operation H (setting a qubit into a
superposition), the NOT operation X (flipping the basis states
|0〉 and |1〉), as well as the the phase shift operations T (π/4
gate), S = T 2 (Phase gate), and Z = S2. The corresponding
unitary matrices are defined as

H = 1√
2

(
1 1
1 −1

)
, X =

(
0 1
1 0

)
, T =

(
1 0
0 ω

)
where ω = 1+i√

2
= eiπ/4.

Besides that, also controlled operations on multiple qubits
are required to achieve a universal gate library. Here, the state
of the additional control qubits determines which operation is
performed on the target qubit. The most elementary represen-
tative for this is the controlled NOT (CNOT) operation on two
qubits whose transformation matrix is defined by

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

This operation performs a NOT operation on the target qubit
if, and only if, the control is in the |1〉-state.

By employing additional controls, the basic Clifford+T
operations can be applied on a dedicated subset of basis
states. Transferring this to the concatenation of quantum gates
(matrix multiplication) corresponds to altering only a certain
subset of columns in the original matrix. However, these
constructions have a high realization cost in terms of primitive
Clifford+T gates. In fact, they require many T gates which are
significantly more complex to be realized than Clifford group
gates (H , S, CNOT). A detailed overview on the costs of
multiple-controlled Clifford+T gates is given in Table I (in
terms of T -depth, assuming the availability of one additional
ancilla qubit, based on [6], [8]).

III. SYNTHESIS OF CLIFFORD+T CIRCUITS

In this work, we consider the synthesis of quantum function-
ality to elementary circuit descriptions based on the Clifford+T
library. More precisely, the task is considered in which a
quantum functionality represented in terms of a transformation
matrix F is decomposed into a sequence G = g0 . . . gd of
elementary quantum operations (i.e. quantum gates gi with
0 ≤ i < d). The resulting sequence eventually forms a
quantum circuit and is supposed to be composed of Clifford+T

TABLE I
COST METRIC FOR MULTIPLE-CONTROLLED CLIFFORD+T GATES

#CONTROLS CNOT H T
0 0 0 1
1 0 1 5
2 2 7 21
3 12 21 33
4 32 33 69
5 68 69 105
6 104 105 129
... +24 per add. control

1 1
1 . . .

1
1

1

1

Fig. 1. Local, i.e. column-wise, synthesis scheme [8].

gates as reviewed above. In the following, we re-visit the
current state-of-the-art approach which has been proposed for
this purpose and discuss its main drawbacks. Based on this,
we sketch the general idea of an improved quantum circuit
synthesis proposed in this work.

A. State-of-the-Art and Motivation

Fig. 1 sketches the current state-of-the-art in the synthesis
of Clifford+T quantum circuits as proposed by Giles and
Selinger [8]. The main idea is to apply quantum gates so that,
eventually, the given matrix to be synthesized (sketched on the
left-hand side of Fig. 1) is transformed to the identity matrix
(sketched on the right-hand side of Fig. 1). To this end, the
matrix is transformed column by column (as sketched in the
middle of Fig. 1). For each column, three steps are applied:

(a) Eliminate superposition, i.e. apply quantum gates so that
all multiple non-zero matrix entries in the column are
combined to a single non-zero entry.

(b) Move to diagonal, i.e. apply quantum gates which move
the remaining non-zero entry to the matrix’ diagonal.

(c) Remove phase shifts, i.e. apply quantum gates which
transform the diagonal entry to 1—eventually yielding
a column of the identity matrix.

Each of these steps is achieved by using so-called two-level
operations that modify pairs of entries in the current column.
More precisely, the following operations are utilized:
• Combine entries: (a, b)⇒ 1√

2
(a+ b, a− b)

• Exchange entries: (a, b)⇒ (b, a)
• Modify phase shift: (a, b)⇒ (a, b · ω) where ω = eiπ/4.

Example 1. Consider the matrix in Fig. 2a which represents
a quantum operation on three qubits x0, x1, x2. The four
non-zero entries in the first column can be combined pairwise
from (−12 ,

1
2 ) to (0, −1√

2
). The resulting pair (−1√

2
, −1√

2
) is

combined to (−1, 0). Finally, the −1 is exchanged with the 0
entry in the first row and a phase shift by −1 is applied. This
leads to the matrix shown in Fig. 2b where the first column is
of the desired form (note the extracted scalar factor of 1

2 ).
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Fig. 2. Application of the local, i.e. column-wise, synthesis scheme.

However, this approach has two major drawbacks:
1) Two-level operations do not solely have an effect on

that particular column, but on all columns of the matrix.
Consequently, locally synthesizing one column without
taking the global view, i.e. the remaining columns,
into consideration may significantly worsen the degree
of superposition in these columns (as already became
evident in the previous example where the number of
non-zero entries in columns 001 to 111 increased from
Fig. 2a to Fig. 2b).

2) Two-level operations rely on multiple-controlled Clif-
ford+T gates: Hadamard for combining, CNOT for ex-
changing, and T for modifying the phase shift between
entries. These gates have many controls (in fact, n − 1
controls where n is the number of qubits). Since the
number of control lines significantly increases the costs
of those gates (cf. Table I), this leads to high costs of
the resulting circuits.

B. General Idea of Proposed Approach

The key idea for improving logic synthesis of Clifford+T
circuits is to particularly address these two drawbacks. Regard-
ing the first drawback, it seems to be promising to globally
consider the whole matrix at once and to only apply operations
that do not lead to a worsening in any other column. Overall,
this may lead to fewer steps to be conducted in order to derive
the desired identity matrix.

Regarding the second drawback, it can be observed that
Clifford+T matrices often exhibit similar structures occurring
globally throughout the matrix. In many cases, the correspond-
ing two-level operations applied to these structures are similar
and can be combined to a joint, again global, operation that can
be realized with lower costs. That is, controls (which enforce
a local change in the matrix only) often can be saved as the
correspondingly more global change can be conducted at once.

Example 2. The first two combine operations from the pre-
vious example correspond to multiple-controlled Hadamard
gates with a target on qubit x2 and controls on x0, x1. The
only difference between the gates is that the control connection
on x0 is positive in one case and negative in the other case.
Thus, this control can be dropped and both gates can be
compressed to a single-controlled Hadamard gate. Hence, the

1
1

1

1(a) (b) (c)

Fig. 3. Proposed global synthesis scheme.

two steps cannot only be conducted with one gate rather
than two; but the required gate is even significantly cheaper.
Overall, this reduces the cost from 2 ·7 = 14 to 1 (cf. Table I).

Inspired by these observations, the general scheme of the
proposed approach can be summarized as follows: Globally
consider multiple columns simultaneously and establish re-
current structures that allow to combine as many two-level
operations as possible. More precisely, the three steps (a)-
(c) that have so far been conducted locally for the individual
columns are now globally performed on the entire matrix as
sketched in Fig. 3:
(a) Regarding the elimination of superposition, we aim to

gradually reduce superposition in the whole matrix,
i.e. establish recurrent structures that allow to reduce the
superposition in all columns at once. To this end, all
entries of the matrix have to be rearranged and (possibly)
phase shifted in such a way that all entries have a suitable
partner to be combined with.

Example 3. Consider again the matrix from Fig. 2a. After
exchanging rows 010 and 110 and applying a phase shift by i
to row 111, all entries have a suitable partner to be combined
with. Thus, an uncontrolled Hadamard gate can be applied on
qubit x1. As a consequence, the number of non-zero entries in
the matrix can be reduced by a factor of 2 in one step. The
resulting matrix is shown in Fig. 4a. Here, only rows 100 and
101 need to be swapped before another Hadamard gate on
qubit x0 eliminates the remaining superposition and leads to
the matrix shown in Fig. 4b.

(b) Regarding the movement of entries to the diagonal, there
is a large body of research on how to achieve this for
permutation matrices (i.e. transformation matrices with
Boolean entries only) . In fact, this problem is known as
reversible circuit synthesis and most of the approaches
employed for this purpose (see e.g. [9]–[11]) are based
on multiple-controlled Toffoli gates (which are exactly
realizable in the Clifford+T library; see e.g. [8, Sec. 5]).
Taking into account that potential phase shifts within in
the matrix do not affect the applicability of these (highly
optimized) approaches, any of these can be utilized here.

Example 4. Consider the resulting matrix from the previous
step (shown in Fig. 4b). Applying a CNOT gate with control
qubit x1 and target qubit x0 exchanges columns 010 and
011 with 110 and 111, respectively. This establishes zero
sub-matrices in the upper-left and lower-right quadrant of
the matrix and moves the −1 in row 110 to the diagonal.
Afterwards, a multiple-controlled NOT on x2 (with a negative
control on x0 and positive control on x1) swaps columns 010
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Fig. 4. Application of the proposed global synthesis scheme.

and 011 and takes the −1 in row 110 to the diagonal as shown
in Fig. 4c. Finally, columns 000 and 010 as well as 101 and
111 can be swapped by two CNOTs on x1 (one with a negative
control on x0 and the other with a positive control on x2). This
leads to the diagonal matrix depicted in Fig. 4d.

(c) Finally, regarding the removal of phase shifts, similar
phase shifts can be taken care of simultaneously and the
corresponding two-level operations can be joined.

Example 5. After shifting the phase of column 111 by ω (from
−1+i√

2
= ω3 to −1 = ω4), the remaining phase shifts can be

removed by a Z gate on x1 (without controls).

Overall, performing the three steps as sketched above
eventually transforms any given matrix F to the identity
and yields a quantum circuit that realizes F by solely using
Clifford+T gates. Moreover, scalability (i.e. the applicability
of this scheme for large quantum systems) can be achieved
by conducting these steps on dedicated data-structures such
as QMDDs (introduced in [12] which already found useful
applications for quantum circuit synthesis e.g. in [13]).

IV. PRELIMINARY RESULTS

In order to demonstrate the potential of the proposed ap-
proach, we prepared a preliminary implementation and com-
pared the results to the synthesis scheme previously proposed
in [8]. To this end, arbitrary transformation matrices with up
to 7 qubits (denoted arbitrary and covering certain corner
cases) have been used. The results are summarized in Table II.
In order to compute the cost for two-level operations and
multiple-controlled Clifford+T gates, we employed the cost

TABLE II
PRELIMINARY EVALUATION

State-of-the-Art [8] Proposed
Benchmark #Qubits Costs Costs

arbitrary3 3 94 12
arbitrary4 4 324 76
arbitrary5 5 1696 122
arbitrary6 6 7680 626
arbitrary7 7 16736 1275

Benchmark: Name of benchmark – #Qubits: Number of qubits –
Costs: Costs w.r.t. T -depth

metric from Table I. In summary, Table II clearly indicates
that, using the proposed method, much more compact quantum
circuits can be realized for Clifford+T functionality compared
to the state-of-the-art approach from [8].

V. CONCLUSIONS

In this work, we proposed an improved approach for the
synthesis of quantum functionality in terms of Clifford+T
quantum circuits. To this end, we explicitly addressed short-
comings of previously proposed synthesis, which relies on a
local, i.e. column-wise, consideration of the given transfor-
mation matrix. The proposed method considers this matrix
globally—thereby allowing to conduct several transformations
at once which enables quantum circuits with significantly
smaller costs. A thorough implementation and detailed evalu-
ation of the proposed approach is left for future work.
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