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Abstract—Recent advances in microfluidics have been the
major driving force behind the ubiquity of Labs-on-Chip (LoC)
in biochemical protocol automation. The preparation of dilutions
and mixtures of fluids is a basic step in sample preparation for
which several algorithms and chip-architectures are well known.
Dilution and mixing are implemented on biochips through a
sequence of basic fluid-mixing and splitting operations performed
in certain ratios. These steps are abstracted using a mixing graph.
During this process, on-chip storage-units are needed to store
intermediate fluids to be used later in the sequence. This allows
to optimize the reactant-costs, to reduce the sample-preparation
time, and/or to achieve the desired ratio. However, the number
of storage-units is usually limited in given LoC architectures.
Since this restriction is not considered by existing methods for
sample preparation, the results that are obtained are often found
to be useless (in the case when more storage-units are required
than available) or more expensive than necessary (in the case
when storage-units are available but not used, e.g., to further
reduce the number of mixing operations or reactant-cost). In
this paper, we present a storage-aware algorithm for sample
preparation with flow-based LoCs which addresses these issues.
We present a SAT-based approach to construct a mixing graph
that enables the best usage of available storage-units while
optimizing sample-preparation cost and/or time. Experimental
results on several test cases reveal the scope, effectiveness, and
the flexibility of the proposed method.

I. INTRODUCTION

Advances in microfluidic technologies revolutionize
laboratory-based diagnostic procedures by offering portable
Lab-on-a-Chip (LoC) devices [1]. A microfluidic biochip or
LoC is a highly integrated analogue of bulky biochemical
analyzers offering a low-cost automated platform for
point-of-care diagnosis [2], sample preparation [3–7], DNA
analysis [8], and drug discovery [9]. Two major classes of
LoCs are commonly used in practice: digital microfluidic
biochips (DMFBs) and continuous-flow microfluidic biochips
(CFMBs). The latter class enjoys wide acceptance in
the chemical engineering community [2, 8, 10] for
historical reason. Modern CFMBs are usually equipped
with pressure-driven micro-valves that allow for controlling
the fluid flow through a network of micro-channels [11–13].

More precisely, a CFMB typically consists of two layers of
permanently etched micro-channels called the flow and control
layer as shown in Fig. 1(a). External pressure sources are
applied to the control layer to deflect the flexible membrane
(placed at the intersection between the two layers) deep into
the flow layer. This creates a pressure-driven micro-valve
that allows for controlling the fluid flow. Based on this,
more complex units such as mixers, micro-pumps, multiplex-
ers, and storage-units can be built by suitably organizing
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micro-valves [10–12] e.g. as sketched in Fig. 1(b). Here, a
mixing operation is conducted by opening the valves so that
fluids are pushed into the ring-channels in the middle of the
architecture. Afterwards, the pumping valves are actuated in
a peristaltic sequence at a high frequency which, eventually,
mixes the inserted fluids.

Microfluidic biochips have been considered as one of the
key technologies for automatic sample preparation that in-
cludes dilution and mixing of fluids in certain ratios. Several
approaches have been proposed for sample preparation on
LoCs (see e.g. [3–7, 14]) considering different optimization
objectives such as minimization of the (1) number of mixing
operations (i.e., time), (2) consumption of valuable reagents,
and (3) amount of waste generation.

Most of the existing LoC sample preparation methods in-
deed consider these three optimization objectives but they are
oblivious of a crucial fact: the number of storage-units which
are available on a CFMB is usually limited. A storage-unit is
needed when an intermediate fluid-mixture needs to be stored
for subsequent use. Unfortunately, maintaining an on-chip
storage module in a CFMB is significantly expensive [14],
since fluidic multiplexers (MUXs) [12] are required for this
purpose. They do not only increase the area of the chip and
require additional channel connections, but also lead to a more
complicated control layer. As a consequence, corresponding
sample preparation methods need to consider this restriction.
Moreover, in cases where sample preparation is possible
without any intermediate storage-unit, the algorithm should
exploit the available storage-units at the platform in order to
further reduce the consumption of reagents.

In this paper, we propose a storage-aware sample prepa-
ration method for mixing two or more biochemical reagents
on a CFMB which, for the first time, addresses these issues.
To this end, a SAT-based approach is proposed which allows
to efficiently check several options of generating the desired
target ratio and, eventually, choosing the one which makes the
best usuage of the available storage-units while, at the same
time, optimizing sample preparation costs and/or time. Implic-
itly, the proposed method also guarantees that no solution is
chosen which requires more storage-units than available for
the given platform, and flags when a solution does not exist.

The organization of the remainder of this paper is as
follows. Section II briefly descibes the preliminaries of sample
preparation, reviews existing sample preparation algorithms
on CFMBs, and motivates this work. Afterwards, a detailed
description of the proposed method for dilution and mixing is
presented in Section III. Experimental results are reported in
Section IV. Finally, the paper is concluded in Section V.
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Fig. 2: (a) A 4-segment rotary mixer (Mixer-4) and possible
mixing models (b) (1:3) (c) (1:1) (d) (1:2:1) (e) (1:1:1:1)

II. BACKGROUND AND MOTIVATION

This section briefly reviews the task of sample preparation
using CFMB as well as the available methods proposed for
this purpose. Afterwards, we are discussing how the restriction
on the number of storage-units affects the sample preparation
and requires alternative solutions for this crucial task.
A. Background: Sample Preparation and State of the Art
Sample preparation is the process of mixing two or more bio-
chemical fluidic reagents in a given volumetric ratio through a
sequence of mixing operations1. Given a target ratio, sample
preparation methods represent the desired ratio with respect to
a mixing model supported by the microfluidic platform (here:
CFMB) and a user-defined tolerance 0 ≤ ε < 1 for the target
ratio.

More precisely, CFMBs allow to realize multiple
mixing-ratios using a Mixer-N which is divided into N
equally large segments as shown in Fig. 2(a). The ratio valves
allow to fill each segment with a different fluid as exemplarily
illustrated in Figs. 2(b)-(e). Afterwards, those fluidics can
be mixed by actuating the pumping valves in a peristaltic
sequence at a high frequency. Eventually, this allows to
employ various mixing models e.g. (1:3), (1:1), (1:2:1), or
(1:1:1:1) if Mixer-4 is deployed. Applying such mixing steps
in a sequence (usually represented by a so-called mixing
graph) allows to mix m input reagents so that eventually
the desired ratio results. Beforehand, a ratio of m input
reagents {R1 : R2 : · · · : Rm = x1 : x2 : · · · : xm}, where∑m

i=1 xi = 1, must be represented as reachable mixing
ratio {R1 : R2 : · · · : Rm = y1 : y2 : · · · : ym}, where∑m

i=1 yi = Nd, d ∈ N, on the CFMB platform supporting
multiple mixing model which are possible with a Mixer-N .
Fig. 3 summarizes the main steps of this process.
Note that d is selected depending on the user-defined error
tolerance limit 0 ≤ ε < 1 satisfying maxi{|xi − yi

Nd |} < ε.
The depth of the mixing tree is determined by d. A
detailed description of ratio transformation in sample

1Note that the term dilution is used when two fluids (usually sample and
buffer) are mixed; otherwise the general term mixing is common.
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Fig. 3: Overview of sample preparation

preparation can be found in [7]. For example, a
target ratio {sample : buffer = 0.489 : 0.511} (note
that, 0.489 + 0.511 = 1) can be represented as
{sample : buffer = 125 : 131} (125 + 131 = 44) for
Mixer-4 (i.e., N = 4) and user-defined ε = 0.001. Note that
max{|0.489 − 125

44 |, |0.511 − 131
44 |} = 0.0007 < ε, i.e., d is

chosen to be four. In fact, d = 4 gives the smallest number of
mixing operations which satisfies the given error-tolerance.

In the recent past, Liu et al. proposed a tree pruning and
grafting method (called TPG [6]) that starts from an initial
mixing tree (based on a (1:1) mixing model) and transforms
it for obtaining a dilution graph for unequally segmented
rotary mixer (Ring-N ). In [5], a volume-oriented sample
preparation algorithm (called VOSPA) has been introduced
which employs a greedy strategy. Lei et al. [15] proposed
a network-flow based multi-objective dilution method that
utilizes the full flexibility of the multiple mixing model offered
by Mixer-N . Later, a flow-based sample preparation algorithm
(called FloSPA) was proposed in [7] that can handle dilution
and mixing within one framework and fully utilize the power
of the multiple mixing model supported by the Mixer-N . A
summary of these existing CFMB-based sample-preparation
methods is provided in Table I.

TABLE I: Summary of CFMB sample preparation algorithms
Method #-Input reagents Use all possible mixing ratios

of underlying mixing model?
Considers number
of storage-units?

NWayMix [7] 2 No No∗
TPG [6] 2 No No�
VOSPA [5] 2 No No�

Flow-based [15] 2 Yes† No�
FloSPA [7] ≥ 2 Yes No�
Proposed ≥ 2 Yes Yes
∗ Does not utilize any storage-unit at all (and, hence, yields rather expensive solutions
when storage-units are available).
� Provides an invalid solution when the number of storage-units is insufficient compared
to what is necessitated by the algorithm.
† Is computationally expensive when the number of segments in Mixer-N increases.

B. Motivation: Storage-aware Sample Preparation
All previously proposed methods for sample preparation using
CFMB do not explicitly take the number of available storage-
units into account (as reviewed in Table I). This leads to
severe problems and drawbacks as illustrated by the following
example.

Example 1. Suppose we need to prepare a mixing ratio
{sample : buffer = 125 : 131} on a CFMB platform that
supports only two on-chip storage-units. The mixing graph
determined with existing sample preparation methods, e.g.,
VOSPA [5] and FloSPA [7], require four and five storage-units
as shown in Fig. 4(a) and Fig. 4(b), respectively. Hence, these
results obtained by these approaches are useless. Moreover,
since a dilution problem is considered here, a mixing graph
requiring zero storage-unit as shown in Fig. 4(c) can be
determined using the NWayMix [7] approach. But since this
does not utilize the available storage-units, a total of 9 units
of the sample are required in this case (cf. Fig. 4(c)) – a very
expensive solution. In contrast, the desired mixing ratio can
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Fig. 4: Dilution graph generated with (a) NWayMix, (b)
VOSPA, (c) FloSPA, and (d) the proposed method for
{sample : buffer = 125 : 131}

be realized more efficiently as shown in Fig. 4(d). Not only the
improved solution requires no more than the available number
of storage-units (hence, it is a valid solution) but also exploits
them to reduce the total number of sample-units from 9 to 4.

The above-mentioned example motivates a storage-aware
sample-preparation method, which does not generate a mixing
graph exceeding the number of available storage-units and, at
the same time, fully exploits them in order to reduce the costs.
In this work, we propose such a method.

III. STORAGE-AWARE SAMPLE PREPARATION

In this section, the proposed method is described in detail.
The main idea is to utilize mixing graphs generated by earlier
approaches as basis, which already provide an option how
to eventually realize the desired concentration ratio [5, 7].
Next, the mixing tree is augmented with additional nodes
(allowing to use further input reagents) and edges (allowing
to share intermediate fluids) – eventually providing several
further options for realizing the desired input ratio. However,
in order to determine the one which gives the minimum
reagent usage and, at the same time satisfies the limitations
in storage-units is a computationally complex task. In order
to cope with this complexity, we use the computational power
of Boolean satisfiabiliy solvers [16, 17], which already have
been found effective for similar tasks in the design of LoCs
(see e.g. [18, 19]). The main idea is to symbolically represent
all possible options (given by the augmented mixing graph)
and to extend this representation by constraints enforcing
the storage limitation. Finally, the resulting formulation is
passed to a solving engine which either determines a satisfying
solution (out of which a mixing graph satisfying the storage
constraints can be derived) or proves that, considering the
available options, no such solution exists.

In the following, the proposed approach is described in two
steps. First, we consider dilution problems only, i.e., the case
where only two fluids (a sample and a buffer) are mixed.
Here, in fact, every ratio can be realized with zero storage-
unit (although the storage-units which are available anyway
can be utilized to reduce the costs of the sample preparation).
Afterwards, the general case of mixing is covered, i.e. the
case where more than two fluids are mixed. This requires
stricter constraints to be satisfied and, hence, is described in a
separate subsection. The main steps of both flows for dilution
and mixing are summarized in Fig. 5 and Fig. 6, respectively.

Φ← symbolic
representation of T ′

{sample : buffer
= x : y}

Φ′ ← Φ∧
storage constraint(k)

SMT solve(Φ′) using an
optimizing SMT solver
for minimizing reactant

Storage: kDilution
graph

Output:

T ′ ← add extra
edges on T for
enabling reagent
minimization
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generated with
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Fig. 5: Flowchart of the proposed algorithm for dilution
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Fig. 6: Flowchart of the proposed algorithm for mixing

A. Proposed Method for Dilution
We describe the proposed method for dilution. Given a desired
ratio of sample and buffer, the method starts with a mixing
graph generated with an existing sample preparation method.
Here, the approach called NWayMix and proposed in [7] is
suitable due to two main reasons2: First, NWayMix generates a
target ratio using Mixer-N with a minimum number of mixing
steps i.e. a minimum sample preparation time. Second, the
mixing tree generated by NWayMix resembles a chain (i.e.,
a skewed graph) and, hence, can be executed on a single
CFMB-mixer without any on-chip storage-unit for interme-
diate fluids. Fig. 7(a) sketches the resulting graph.

The main idea is to augment the mixing graph produced
by NWayMix with additional leaf-nodes (input reagents) and
edges – allowing for further options to realize the desired ratio.
This is sketched by means of blue leaf-nodes and edges in
the graph shown in Fig. 7(b). The general structure of such
transformation is shown in Fig. 7(c). They eventually represent
further options for mixing in which intermediate results (stored
in storage-units) are re-used. This yields the question what
inputs shall be used in each mixing step (i.e., what edges
shall remain in the mixing graph). In order to determine the
best possible result, all possibilities should be checked for
this purpose. Since doing this enumerately is infeasible, we
formulate this problem in terms of a satisfiability instance. To
this end, we introduce the following free variables:
Node variables: For each mixing node at depth i in the mixing
graph, we define two rational variables Xi and Yi (1 ≤ i ≤ d)
that denote the ratio between sample and buffer of the resulting
mixing operation at depth i.
Reagent variables: The input reagents (sample and buffer) can
be used in any mixing node at depth i, where 1 ≤ i ≤ d. For
denoting the number of segments filled with sample and buffer
in a Mixer-N at depth i, two integer variables xi and yi are
associated, respectively.
Segment sharing variables: The integer variables wi,j repre-
sent the number of segments that are used in Mixer-N at depth
j from Mixer-N at depth i, where 1 ≤ j < i ≤ d.
Storage variables: An integer variable si is associated with
each mixing node at depth i (1 ≤ i ≤ d) for denoting
the number of on-chip storage-units required for executing
the portion of induced subgraph containing mixing nodes at
depth j, where i ≤ j ≤ d. Note that s1 denotes the storage
requirement for the entire mixing graph.

2Nevertheless, the proposed method can similarly be applied using other
sample-preparation methods.
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The annotations in Fig. 7(c) provide all variables used in
this case. However, passing this representation to a solving
engine would yield an arbitrary assignment to all variables
and, hence, a mixing tree that realizes arbitrary ratios in each
depth using an arbitrary number of storage-units – obviously
a solution which is neither valid nor desired. Hence, we need
to further constrain the introduced variables so that indeed the
desired result is determined.
Enforcing the Desired Ratio
First, the correctness of the respective mixing ratios is en-
forced. To this end, the following constraints are introduced
for each mixing node at depth i of the mixing graph:
xi + wd,iXd + wd−1,iXd−1 + · · ·+ wi+1,iXi+1 = NXi (1)
yi + wd,iYd + wd−1,iYd−1 + · · ·+ wi+1,iYi+1 = NYi (2)

Note that each mixing node at depth i can fill its segments
with sample, buffer, or any unused fluid segments produced at
depth j > i. Hence, the desired ratio of sample and buffer at
depth i i.e., {Xi : Yi} is determined with these equations.
Furthermore, the non-linearity of above equations can be
removed easily by adding few extra constraints as carried out
in [7]. This transformation helps to run powerful sound and
complete SMT-solvers [16, 17] and speed up the computation
significantly. Additionally, we need to ensure that all N input
segments for a Mixer-N must be filled with intermediate fluids
or reagents, whereas, Mixer-N can serve at most N segments
to other mixers. The required consistency constraints at depth
i are enforced by:

xi + yi + wd,i + wd−1,i + · · ·+ wi−1,i = N (3)
wi,i−1 + wi,i−2 + · · ·+ wi,i ≤ N (4)

Besides that, all weights must satisfy 0 ≤ wi,j ≤ N − 1,
for 1 ≤ j < i ≤ d. Analogously, 0 ≤ xi, yi ≤ N − 1 for
1 ≤ i ≤ d. Finally, the constraint (X1 = x) ∧ (Y1 = y)
guarantees that the desired target ratio of sample and buffer
{x : y} is produced.
Enforcing the Available Number of Storage-Units
Next, we have to enforce that not more than the available
number of storage-units is used. To this end, we compute
the number of requires storage-units which would be needed
according to a particular assignment of the variables by
traversing the mixing nodes in a bottom-up fashion. Recall
that, for each depth, a storage variable si is available which
denotes the number of on-chip storage-units required for
executing the portion of induced subgraph containing mixing

nodes at depth j, where i ≤ j ≤ d. This amount is determined
by the following equation:

si =

{
si+1 + wd,i + wd−1,i + · · ·+ wi+2,i, 1 ≤ i < d

0, i = d
(5)

Accordingly, s1 denotes the storage requirement for the
entire mixing graph. Restricting this variable to the number k
of available storage-units, i.e., enforcing s1 ≤ k, only allows
assignments for all other variables which eventually represent
solutions that do not use more than k storage-units.
Fig. 8 shows the induced subgraph of the general mixing
graph from Fig. 7(b) used in the storage calculation. Note
that no storage-unit is required for subgraph containing mixing
node at depth d only. Hence sd = 0. However for comput-
ing storage requirement of the induced subgraph given in
Fig. 8, we need to add si+1 and the total number of on-
chip storage-units used for storing unused segments at depth
i+ 2, i+ 3, · · · , d, that are used in the mixing node at depth
i. Hence, si = si+1 + wd,i + wd−1,i + · · · + wi+2,i. It can
be easily verified that the bottom-up computation of s1 gives
the minimum number of on-chip storage-units for executing a
dilution graph on the CFMB platform (Fig. 1(b)) equipped
with a single mixer. Note that it is up to the optimizing
SMT-solver [16, 17] that finds the reagent minimal solution on
the general dilution tree (fig. 7(b)) that gives minimal reagent
solution satisfying storage constraint.
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Fig. 8: Structure of the induced subgraph in the general
dilution tree, containing mixing nodes at depth i, i+ 1, · · · , d,
used for storage computation

Example 2. Fig. 9 shows solutions realizing the target ratio
{sample : buffer = 125 : 131} with the least reactant-cost
based on the graph of Fig. 7(a) and considering the avail-
ability of a different number of on-chip storage-units on
the considered architecture given in Fig. 1(b). The proposed
algorithm modifies the graph based on the number of available
storage-units (#storage-units = 0, 1, · · · , 5).
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B. Proposed Method for Mixing

The proposed method for mixing basically follows the same
idea as the method for dilution. However, in contrast to
dilution, it is not always possible to perform mixing of three or
more reagents with zero on-chip storage-unit. This is due to the
inherent tree structure of the mixing graph which commonly
appears in mixture preparation. As before, we start with a
basis mixing graph produced by previously proposed methods
(here, e.g., genMixing [7]) and introduce additional variables
and constraints to provide a symbolic representation of all
possible options out of which the best one satisfying the
storage limitation is determined by the solving engine. To this
end, we particularly have to adjust the storage constraints3.

Enforcing the Available Number of Storage-Units

Fig. 10 sketches a generic node in a mixing graph as well as
a simplified notation of the variables that are used in storage
calculation. On a mixing tree, a mixing node may take a
segment of fluid from one of its subtrees or it may take input
reagents to fill one of its N segments. Hence, there can be
at most N subtrees possible for a mixing node. In Fig. 10,
wi (segment sharing variable) and ri (reagent variable) denote
the number of segments of a Mixer-N is filled with fluids
taken from the root node of subtree-i and the input reagent
Ri, respectively. Besides that, si denotes again the storage
requirement of subtree-i. Then, the number of storage-units s
can be determined with the following equation:

s =

N∨

j=1




j−1∑

i=1

wi + sj +

N∑

i=j+1

wi


 (6)
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subtree-1
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subtree-t

s1 s2 st

s

w1 w2 wt

Mixer-N

r1 r2 rm

t ≤ N

Fig. 10: Structure of a node in the mixing tree used in storage
computation

Note that Equation 6 symbolically represents the various
scheduling issues for each node. As in dilution, enforcing the
corresponding s-variables of all mixing nodes in the mixing
tree to be smaller or equal than the number k of available
storage-units will eventually only allow solutions which can
be realized under this restriction.

Example 3. Figs. 11(a)-(c) show the mixing graphs for the
target ratio {R1 : R2 : R3 : R4 = 22 : 14 : 14 : 14} obtained
by genMixing [7], FloSPA [7], and by the proposed method,
respectively. Note that Fig. 11(a) requires two storage-units.
Fig. 11(b) shows a cheaper solution obtained by FloSPA using
two storage-units. On the other hand, the proposed method
ensures that no solution exists with zero storage-unit starting
from Fig. 11(a); it also provides a solution with one storage-
unit (Fig. 11(b)), and with two storage-units (Fig. 11(c)).

3Note that, due to page limitations, we are not repeating the definition of
the variables and constraints enforcing the target ratios. They are basically
identical to the ones used for dilution.
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Fig. 11: Mixing tree for the target ratio {R1 : R2 : R3 :
R4 = 22 : 14 : 14 : 14} generated by (a) genMixing [7], (b)
FloSPA [7] and by the proposed method for #storage-units ≥
2 , and (c) by the proposed method when #storage-unit = 1

IV. EXPERIMENTAL RESULTS

The methods described above are compared with several state-
of-the-art sample-preparation methods, namely NWayMix [7]
and VOSPA [5] for dilution as well as with FloSPA [7] for
dilution and general mixing. In the following, the obtained
results for both cases are summarized4.
A. Performance for Dilution
VOSPA [5] and FloSPA [7] focus on reagent minimization
and do not take the number of available storage-units into
account. This can have crucial consequences as illustrated by
a first series of experiments summarized in Fig. 12. Here, we
have generated dilution graphs for all possible target ratios of
sample and buffer by varying d = 4, 5 for N = 4 and listed
for how many ratios a particular number of storage-units is
required. As can be seen, for the vast majority of ratios, both
approaches require a substantial amount of storage-units. If
this amount is not available on the considered platform, the
obtained result is useless. In contrast, the approach proposed
in this work is capable of determining a mixing graph for
all ratios and for all given numbers of available storage-units
(even zero). This is a clear improvement compared to VOSPA
and FloSPA since the desired dilution can always be realized
using the method proposed in this work.

Moreover, even with respect to costs, significant improve-
ments can be observed as shown in Table II. Here, we have
generated dilution graphs for all possible target ratios in
{sample : buffer = x : 256 − x}, where 1 ≤ x ≤ 255, i.e.,
N = 4, d = 4 and listed the average number of mixing steps
(n̄m), waste segments (n̄w), and number of segments filled
with sample (n̄s) and buffer (n̄b) for a different number of
available on-chip storage-units (k) in case of the proposed
approach. For the previously proposed approaches, we list
the best results, i.e. obtained with zero storage-unit in case
of NWayMix, obtained with seven storage-units in case of
VOSPA, and obtained with six storage-units in case of FloSPA.

4Note that, due to page limitation, we do not report details on the run-time
performance. However, the run-time of the proposed approach is similar to
the run-time of FloSPA [7].
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Fig. 12: Histogram of the number of storage-units requirement
of VOSPA and FloSPA for all target ratio belong to (a)
{sample : buffer = x : 256 − x}, where 1 ≤ x ≤ 255, i.e.,
N = 4, d = 4 and (b) {sample : buffer = x : 1024−x}, where
1 ≤ x ≤ 1023, i.e., N = 4, d = 5

TABLE II: Performance of proposed dilution algorithm
Proposed approach NWayMix [7] VOSPA [5] FloSPA [7]

k n̄m n̄w n̄s n̄b #storage-unit = 0 #storage-units = 7 #storage-units = 6

0 3.68 5.39 4.22 5.18 n̄m = 3.68 n̄m = 4.13 n̄m = 3.68
1 3.68 4.19 3.51 4.67 n̄w = 8.04 n̄w = 6.70 n̄w = 3.66
2 3.68 3.80 3.40 4.40 n̄s = 6.02 n̄s = 3.34 n̄s = 3.36
3 3.68 3.71 3.38 4.32 n̄b = 6.02 n̄b = 7.36 n̄b = 4.30

≥ 4 3.68 3.66 3.36 4.30

Several issues can be observed here: First, NWayMix always
uses zero storage-unit. By this, other potential solutions are
missed out since a few storage-units are usually available on
any platform which, as shown by the numbers in Table II,
can be exploited to improve e.g. the number of input reagent-
units. Either way, even with zero storage-unit, the proposed
approach still determines better results than NWayMix. It can
also be observed from Table II that the proposed approach only
needs two (four) storage-units in order to get a comparable
performance with respect to VOSPA (FloSPA) requiring a total
of seven (six) storage-units.
B. Performance for Mixing
Finally, we have experimented with several actual mixing
ratios and the number of on-chip storage-units (k) as summa-
rized in Table III. Here, we list the considered mixing ratios
as well as the number of mixing steps (nm), waste segments
(nw), and the total number of segments filled with input
reagents (nr). It can be observed that the proposed method
can perform mixture preparation using only a few on-chip
storage-units. In fact, all ratios can be realized with at most
two storage-units – in many cases even only one is sufficient.
Moreover, it not only takes same or fewer number of on-chip
storage-units compared to genMixing but also produces the
target ratio with a samller number of mixing steps, waste, and
input segments.

TABLE III: Performance of the proposed mixing algorithm

# mixing ratio
genMixing [7] Proposed method

nm nw nr k
k = 0 k = 1 k ≥ 2

(nm, nw, nr) (nm, nw, nr) (nm, nw, nr)

1 90:90:76 5 12 16 1 (4, 8, 12) (5, 6, 10) (5, 6, 10)
2 20:14:16:14 4 9 13 1 no sol. (4, 6, 10) (4, 5, 9)
3 27:7:13:17 5 12 16 1 no sol. (4, 8, 12) (4, 8, 12)
4 68:86:56:46 6 15 19 1 no sol. (5, 9, 13) (6, 9, 13)
5 27:25:57:69:78 8 21 25 2 no sol. (7, 15, 19) (7, 13, 17)
6 30:24:55:68:79 8 21 25 2 no sol. (6, 13, 17) (6, 12, 16)
7 30:24:155:38:9 8 21 25 2 no sol. (7, 15, 19) (7, 13, 17)

8 300:499:225 7 18 22 1 (5, 4, 9) (5, 4, 9) (5, 4, 9)
9 57:28:6:6:6:3:150 9 24 28 2 no sol. (6, 10, 14) (6, 10, 14)
10 102:26:3:3:122 8 21 25 2 no sol. no sol. (7, 12, 16)
11 4:6:10:14:22:26:174 10 27 31 3 no sol. no sol. (7, 14, 18)
12 26:15:51:26:5:5:1:127 12 33 37 3 no sol. no sol. (10, 24, 28)

parameter values corresponding to FloSPA [7] are highlighted with yellow color

Note that mixture preparation using FloSPA reduces the input
reagent consumption without considering the limited availabil-
ity of on-chip storage-units. For example, in case of Mixture 3
and Mixture 4 shown in Table III, the mixing graph generated
with FloSPA may require one/two on-chip storage-units as
both solutions (for k = 1 and k ≥ 2) fill the same number
of segments with input reagents, i.e., both solutions meet the
optimization objective of minimum reagent-usage. Moreover,
for Mixtures 1-7 in Table III, the proposed method can produce
the same mixture with a smaller number of storage-units by
consuming little more input reagents compared to FloSPA.

V. CONCLUSIONS

In this work, we proposed a storage-aware sample-
preparation method for continuous-flow microfluidic biochips.
To this end, we augmented mixing graphs determined by
previously proposed sample-preparation methods eventually
providing several further options for realizing the desired input
ratio. Afterwards, Boolean satisfiabiliy solvers are utilized to
determine the option that gives the minimum reagent-usage
and, at the same time, satisfies the limitations in storage
elements. This provides significant benefits as it can be ensured
that a generated mixing graph indeed can be executed on the
biochip device (compared to previously proposed solutions
which may generate mixing graphs that require more storages
than available and, hence, are useless). Moreover, the proposed
approach explicitly allows to fully exploit the available number
of storages, e.g., in order to reduce the use of reagents.

REFERENCES
[1] Introduction to lab-on-a-chip 2015 : review, history and future. [Online].

Available: http://www.elveflow.com/microfluidic-tutorials/microfluidic-reviews-
and-tutorials/introduction-to-lab-on-a-chip-2015-review-history-and-future/

[2] C. D. Chin, V. Linder, and S. K. Sia, “Commercialization of microfluidic point-of-
care diagnostic devices,” Lab Chip, vol. 12, pp. 2118–2134, 2012.

[3] S. Roy, B. B. Bhattacharya, and K. Chakrabarty, “Optimization of dilution and
mixing of biochemical samples using digital microfluidic biochips,” IEEE Trans.
on CAD, vol. 29, no. 11, pp. 1696–1708, 2010.

[4] J.-D. Huang, C.-H. Liu, and T.-W. Chiang, “Reactant minimization during sample
preparation on digital microfluidic biochips using skewed mixing trees,” in Proc.
of ICCAD, 2012, pp. 377–383.

[5] C.-M. Huang, C.-H. Liu, and J.-D. Huang, “Volume-oriented sample preparation
for reactant minimization on flow-based microfluidic biochips with multi-segment
mixers,” in Proc. of DATE, 2015, pp. 1114–1119.

[6] C.-H. Liu, T.-W. Chiang, and J.-D. Huang, “Reactant minimization in sample
preparation on digital microfluidic biochips,” IEEE Trans. on CAD, vol. 34, no. 9,
pp. 1429–1440, 2015.

[7] S. Bhattacharjee, S. Poddar, S. Roy, J.-D. Huang, and B. B. Bhattacharya, “Dilution
and mixing algorithms for flow-based microfluidic biochips,” IEEE Trans. on CAD,
vol. 36, no. 4, pp. 614–627, 2017.

[8] S. W. Dutse and N. A. Yusof, “Microfluidics-based lab-on-chip systems in DNA-
based biosensing: An overview,” Lab Chip, vol. 11, pp. 5754–5768, 2011.

[9] P. Neuz̆i, S. Giselbrecht, K. Länge, T. J. Huang, and A. Manz, “Revisiting lab-
on-a-chip technology for drug discovery,” Nat. Rev. Drug Discovery, vol. 11, pp.
620–632, 2012.

[10] D. Mark, S. Haeberle, G. Roth, F. von Stetten, and R. Zengerle, “Microfluidic lab-
on-a-chip platforms: Requirements, characteristics and applications,” Chem. Soc.
Rev., vol. 39, pp. 1153–1182, 2010.

[11] P. Pop, I. E. Araci, and K. Chakrabarty, “Continuous-flow biochips: Technology,
physical-design methods, and testing,” IEEE Design & Test, vol. 32, no. 6, pp.
8–19, 2015.

[12] J. Melin and S. Quake, “Microfluidic large-scale integration: The evolution
of design rules for biological automation,” Annual Reviews in Biophysics and
Biomolecular Structure, vol. 36, pp. 213–231, 2007.

[13] I. E. Araci and P. Brisk, “Recent developments in microfluidic large scale
integration,” Current Opinion in Biotechnology, vol. 25, pp. 60 – 68, 2014.

[14] W. Thies, J. P. Urbanski, T. Thorsen, and S. P. Amarasinghe, “Abstraction layers
for scalable microfluidic biocomputing,” Natural Computing, vol. 7, no. 2, pp.
255–275, 2008.

[15] Y.-C. Lei, T.-H. Lin, and J.-D. Huang, “Multi-objective sample preparation algo-
rithm for microfluidic biochips supporting various mixing models,” in Proc. of
SOCC, 2016, pp. 96–101.

[16] L. M. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Proc. of TACAS,
2008, pp. 337–340, [Z3 is available at https://github.com/Z3Prover/z3].

[17] N. Bjørner, A.-D. Phan, and L. Fleckenstein, “vZ - an optimizing SMT solver,” in
Proc. of TACAS, 2015, pp. 194–199.

[18] O. Keszocze, R. Wille, T.-Y. Ho, and R. Drechsler, “Exact one-pass synthesis of
digital microfluidic biochips,” in Proc. of DAC, 2014.

[19] A. Grimmer, Q. Wang, H. Yao, T.-Y. Ho, and R. Wille, “Close-to-optimal placement
and routing for continuous-flow microfluidic biochips,” in Proc. of ASP-DAC, 2017,
pp. 530–535.


