
A Multi-GPU PCISPH Implementation
with Efficient Memory Transfers

Kevin Verma∗† Chong Peng∗ Kamil Szewc∗ Robert Wille†
∗ESS Engineering Software Steyr GmbH, Austria

†Institute for Integrated Circuits, Johannes Kepler University Linz, Austria
Email: {kevin.verma, chong.peng, kamil.szewc}@essteyr.com robert.wille@jku.at

Abstract—Smoothed Particle Hydrodynamics (SPH) is a
particle-based method for fluid flow modeling. One promis-
ing variant of SPH is Predictive-Corrective Incompressible
SPH (PCISPH), which employs a dedicate prediction-correction
scheme and, by this, outperforms other SPH variants by almost
one order of magnitude. However, similar to other particle-based
methods, it suffers from a huge numerical complexity. In order
to simulate real world phenomena, several millions of particles
need to be considered. To make SPH applicable to real world
engineering problems, it is hence common to exploit massive
parallelism of multi-GPU architectures. However, certain algo-
rithmic characteristics of PCISPH make it a non-trivial task to
efficiently parallelize this method on multi-GPUs. In this work,
we are, for the first time, proposing a multi-GPU implementation
for PCISPH. To this end, we are proposing a scheme which
allows to overlap the memory transfers between GPUs by actual
computations and, by this, avoids the drawbacks caused by the
mentioned algorithmic characteristics of PCISPH. Experimental
evaluations confirm the efficiency of the proposed methods.

I. INTRODUCTION

The simulation of fluid flows has increasingly become
an important task in engineering and science. It allows to
model complex scenarios, which are difficult or costly to
measure in the real world. Grid-based Computational Fluid
Dynamics (CFD, [1]) methods such as Finite Volume Meth-
ods (FVM, [2]), Finite Element Methods (FEM, [3]), or Elec-
trophoretic Deposition (EPD, [4], [5]) find many applications
in a wide range of industries. However, in the recent years,
so-called particle-based methods have gained more importance
for the simulation of fluid flows. In such methods, the fluid is
discretized by a set of particles, which completely define the
fluid and move in time and space. The advantage of particle-
based methods compared to grid-based methods is their ability
to handle free surface flows as well as flows involving complex
physics.

One of the most common particle-based methods is
Smoothed Particle Hydrodynamics (SPH), which was initially
proposed by Monaghan et al. [6]. In SPH, the governing
equations are discretized by discrete particles and a variety of
particle-based formulations are employed to calculate physical
properties such as density or velocity. One of the main
difficulties in particle-based methods is to satisfy the incom-
pressibility conditions of fluids. For that, Weakly-Compressible
SPH (WCSPH) was proposed by Becker et al. [4], which has
become one of the most popular variants of SPH. In WCSPH,
a stiff equation of state is used to model pressure. Although
by that, incompressibility is satisfied, WCSPH suffers from
a severe time step restriction. In order to enforce higher
incompressibility, smaller time steps need to be considered
during the simulation. Thus, the computational costs increase
with increasing incompressibility. The resulting computational
expenses frequently prevent WCSPH from being applied in
complex real-world scientific and engineering problems.

To address these shortcomings, Predictive-Corrective In-
compressible SPH (PCISPH) was proposed by Solenthaler et
al. [7]. In PCISPH, incompressibility is enforced by employing
a prediction-correction scheme to compute particle pressures.
In this scheme, particle positions and velocities are temporarily
forwarded in time to estimate particle densities. Based on
these estimated densities, the particle pressures are iteratively
computed such that the predicted destiny fluctuation is smaller
than a user-defined threshold. By this scheme, PCISPH allows
to use a time step significantly larger compared to WCSPH.
Eventually, this yields very accurate results while, at the same
time, outperforms other SPH variants such as WCSPH by
almost one order of magnitude [8].

However, in contrast to WCSPH, PCISPH does not provide
an obvious capability for parallelization and, by this, the
exploitation of High Performance Computing (HPC) methods
for PCISPH was rather limited thus far. This is a serious
drawback as efficient parallelization is considered essential to
further improve the scalability of corresponding approaches
and, by this, make them applicable for the simulation of
real-world phenomena in appropriate resolution, where typi-
cally millions of particles need to be considered. In fact, other
SPH methods such as WCSPH employ methods for General
Purpose Computation on Graphics Processing Units (GPGPU;
utilizing the parallelism of GPUs) and extend that further for
multi-GPU architectures [9], [10], [11].

For PCISPH, such methods could not been utilized yet
– although some attempts have been made on this in the
recent years. For example in [12], a parallel framework which
allows the execution of PCISPH on a single GPU has been
proposed. The resulting speedup was 23 on a single GPU in
comparison to a sequential CPU implementation. However,
solutions utilizing multi-GPU architectures for PCISPH have,
to the best of our knowledge, not been proposed so far.
This is likely caused by the fact that typical multi-GPU
methods can not be directly applied to PCISPH. In fact, certain
algorithmic characteristics of PCISPH (which are discussed
in detail later in Section III) make it a non-trivial task to
efficiently parallelize PCISPH for multi-GPU architectures. As
a consequence, although PCISPH clearly outperforms WCSPH
by almost one order of magnitude, it still remains limited with
respect to parallelization – significantly restricting the potential
for further improvements of PCISPH.

In this work, we try to overcome this limitation. To this
end, we analyze and discuss the algorithmic characteristics
mentioned above which prevent the exploitation of paralleliza-
tion of PCISPH on multi-GPUs. Based on this analysis, we
are then proposing a scheme which overcomes these diffi-
culties and, eventually, allows for an efficient parallelization
of PCISPH on multi-GPUs. The proposed scheme allows to

efficiently conduct memory transfers and, therefore, reduces
idle times of GPUs. Moreover, the proposed scheme can
not only be applied to PCISPH, but to all common SPH
variants (including WCSPH). Experimental evaluations with
an industrial PCISPH-based simulation tool confirm that, by
efficiently handling memory transfers, the performance can be
increased significantly.

The remainder of this paper is organized as follows: The
following section provides the background on SPH as well
as the dedicated PCISPH method. Afterwards, Section III
discusses the resulting problems that are addressed by the
proposed scheme described in Section IV. Section V provides
insights on the implementation of the proposed scheme and,
finally, Section VI summarizes the obtained results from the
experimental evaluations before the paper is concluded in
Section VII.

II. BACKGROUND

In order to keep this work self-contained, this section re-
views the basics on the SPH method in general – followed by a
review on the dedicated Predictive-Corrective Incompressible
SPH (PCISPH) scheme. We keep the descriptions brief and
focus on the issues which are relevant for this work. For a
more detailed treatment of the SPH and PCISPH methods, we
refer to [13], [14], and [7], respectively.

A. Smoothed Particle Hydrodynamics

Smoothed Particle Hydrodynamics (SPH) is a
particle-based, fully Lagrangian method for fluid-flow
modeling and simulation. This method was independently
proposed by Gingold and Monaghan [15] to simulate
astrophysical phenomena at the hydrodynamic level
(compressible flow). Nowadays, the SPH approach
is increasingly used for simulating hydro-engineering
applications – involving free-surface flows where the natural
treatment of evolving interfaces makes it an enticing approach.

The main ideas of the SPH method rely on the following
basis: The fluid to be simulated is represented in terms of
discrete particles summarized in a set J . Then, a scalar
quantity A is interpolated at position r by a weighted sum
of contributions from J , i.e.

〈A(r)〉 =
∑

j∈J
AjVjW (r − rj , 2h), (1)

where Vj is the volume of the respective particle j, rj is
the position of this particle, and Aj the field quantity at
position rj . W is a smoothing kernel with the so-called
smoothing length 2h as a width – defining that only particles
within a distance shorter than 2h will interact with a particle j.
This kernel function W is a central part of SPH simulations
and the appropriate choice of a smoothing kernel for a specific
problem is of great importance. At the same time, a kernel
must satisfy three conditions/properties, namely

1) the normalization condition∫
r

W (r − rj , 2h)dr = 1 (2)

stating that the integral over its full domain is unity,

Fig. 1: Illustration of a 2D domain for a particle j ∈ J .

Fig. 2: Virtual search grid.

2) the Delta function property

lim
h→0

W (r − rj , 2h) = δ(r − rj) (3)

stating that, if the smoothing length 2h approaches zero,
a delta distribution is applied (with δ being the Dirac
delta function), and

3) the compact support condition

W = 0 when |r − rj | > 2h (4)

ensuring that only particles within the smoothing length
2h are considered.

Example 1. Fig. 1 illustrates a 2D domain with a kernel
function W and smoothing length 2h for a particle j ∈ J .

Now, in order to update the behavior of each particle,
any SPH simulation need to frequently access neighboring
particles during one computational iteration. More precisely,
all particles which are located within the influence radius 2h
need to be accessed (cf. Eq. 1; note that 2h itself is defined
by the smoothing length). Realizing that in a naive fashion
would require the iteration through the entire fluid domain
– yielding a complexity of O(|J |2). Despite the polynomial
nature of this complexity, this is usually impractical because
of the sheer number |J | of particles to consider.

Because of that, optimizations are utilized which rely on
a so-called virtual search grid as illustrated in Fig. 2. Here,
the entire fluid domain is divided into a search grid where
each cell has the size of the influence radius 2h. By this,
it can be guaranteed that, for a considered particle j ∈ J
(exemplarily denoted by a red dot in Fig. 2), all neighboring
particles must be located within the adjacent cells. This way,
instead of iterating through the entire fluid domain, only a
subset of it (highlighted grey in Fig. 2) has to be considered
in order to determine the neighboring particles (denoted by
orange dots in Fig. 2).

The most expensive part in terms of computational time in
particle-based methods is typically to enforce the incompress-
ibility of the fluid. In SPH, the most common method to do
that is Weakly Compressible SPH (WCSPH), where pressure
is modeled by employing an equation of state. Although, by
that, incompressibility is satisfied, WCSPH suffers from the
fact that higher incompressibility requires to consider smaller
time steps during the simulation. To address this shortcom-
ing, Predictive-Corrective Incompressible SPH (PCISPH) was
proposed, which is discussed next.

B. Predictive-Corrective Incompressible SPH
Predictive-Corrective Incompressible SPH (PCISPH) was

initially proposed by Solenthaler et al. [7] to avoid the compu-
tational expenses of solving a pressure Poisson equation. By
avoiding that, PCISPH allows to use a larger time step which
typically results in an increased performance.

In PCISPH, a prediction-correction scheme is a employed,
where positions and velocities are temporarily forwarded in
time to estimate particle densities. Based on this estimated
density ρ∗(t+1), the pressure pj(t) is iteratively computed for
each particle j ∈ J such that the predicted density fluctuation
ρ∗err(t+ 1) is smaller than a user-defined threshold η.

More precisely, the predicted densities ρ∗(t + 1) are com-
puted using the SPH density summation equation similar to
Equation 1, namely

ρ∗(t+ 1) =
∑

j∈J
mjW (r∗ − r∗j , 2h), (5)

where mj is the particle mass and r∗j is the predicted particle
position. W is the smoothing kernel with the smoothing length
2h as a width. To minimize the occurring density error ρ∗err,
a correction of the current pressure is computed subsequently.
Finally, the pressure force

Fp(t) = −mi

∑
j∈J

mj

(
pi(t)

ρ∗i (t)
+
pj(t)

ρ∗j (t)

)
∇W (r∗ − r∗j , 2h)

(6)
is used to to recompute the predicted positions and velocities
for all particles j ∈ J . This procedure is repeated until it
converges, i.e. ρ∗err(t+1) < η. Although additional iterations
are required within one time step to achieve this convergence
(hereinafter referred to as inner iterations), PCISPH allows to
use a larger time step as compared to WCSPH.

Example 2. Consider the simulation of a process with a
duration of 1s, which is divided into discrete time steps.
Assuming that for this process, WCSPH needs to employ time
steps of e.g. 1e−4s, which yields 1000 discrete time steps.
For the same process however, PCISPH allows to employ a
significantly larger time step, e.g. a time step of 1e−3s, which
results in 100 discrete time steps.

Therefore, PCISPH typically outperforms the WCSPH by
almost one order of magnitude [8].

III. MOTIVATION:
PARALLELIZATION OF PCISPH ON MULTI-GPUS

Similar to the WCSPH method, the discrete particle for-
mulation of physical quantities also makes the PCISPH
method generally suitable for parallelization – e.g. using
the General Purpose Computations on Graphics Processing
Units (GPGPU) technology. However, certain characteristics
of PCISPH result in an exceeding synchronization effort

Fig. 3: Subdomain distribution for 3 GPUs.

on multi-GPU architectures. In this section, we review the
state-of-the-art for parallelization of SPH simulations on
multi-GPUs and, afterwards, discuss why PCISPH was not
able to exploit these accomplishments yet due to the syn-
chronization problems. This provides the motivation of this
work in which we aim for overcoming these problems and
eventually allow for an efficient parallelization of PCISPH on
multi-GPUs.

A. State-of-the-Art
SPH solutions utilizing the computational power of GPUs

have initially been introduced by Kolb and Cuntz [16] as
well as Harada et al. [17], where the Open Graphics Li-
brary (OpenGL) was employed. Later, SPH implementations
based on the Compute Unified Device Architecture (CUDA)
have been developed [18].

However, in order to simulate huge domains involving mil-
lions of particles, a single GPU device is usually not sufficient
anymore. In these cases, the underlying SPH implementation
needs to be distributed over several devices – yielding a
multi-GPU architecture as originally proposed by Dominguez
et al. [9]. Here, CUDA and Message Passing Interface (MPI)
have been employed to parallelize the SPH simulation with up
to 128 GPUs where each GPU covered the simulation of up
to 8 million particles. Besides that, a similar architecture has
also been utilized in the solution proposed in [10].

These SPH multi-GPU solutions employ a spatial subdi-
vision of the domain to partition the whole domain into
individual subdomains. These subdomains are distributed to
the corresponding GPUs and executed in parallel. Fig. 3 illus-
trates a subdivision into 3 subdomains. Generally, this method
yields a setup where each subdomain has two neighboring
subdomains, except for those at the perimeter of the domain,
which have only one neighbor. However, the boundaries of
each subdomain need special consideration on a multi-GPU
architecture as illustrated by the following example.

Example 3. Consider a particle j ∈ J at the perimeter of one
centered sub-domain (see Fig. 3). The neighbors of j within 2h
are not only located in cells of its own subdomain (covered
by GPU 1 in Fig. 3), but also in cells of the neighboring
subdomain (covered by GPU 0). Since the subdomains are
distributed to different GPUs, the neighbors of j are located
in a distinct device and, hence, a different memory pool. This
hinders fast neighbor access.

In order to accelerate neighbor access, each GPU should
therefore hold a copy of the data located at the edge of its
adjacent subdomains, i.e. all cells within 2h at the perimeter
of a subdomain. These edges are also referred to as halo of a
subdomain.

Algorithm 1 PCISPH

1: T ← time steps
2: Ng ← number of GPUs
3: η ← maximum allowed density error
4: for t ∈ {0, ..., T} do
5: for GPUgi ∈ {g0, . . . , gNg

} do
6: Update Boundary Particles
7: ExchangeHalo(gi, gi+1)
8: Compute F v,g,ext

9: ExchangeHalo(gi, gi+1)
10: while ρ∗err > η do
11: Update Boundary Particles
12: ExchangeHalo(gi, gi+1)
13: Predict Density ρ∗(t+ 1)
14: Predict Density Variation ρ∗err(t+ 1)
15: Compute Pressure p(i)+ = f(ρ∗err(t+ 1))
16: ExchangeHalo(gi, gi+1)
17: Pressure Correction
18: ExchangeHalo(gi, gi+1)
19: Compute Pressure Force Fp(t)
20: ExchangeHalo(gi, gi+1)

More precisely, after every particle modification, a brief
synchronization over all halos takes place. Afterwards, the
parallel computation on all subdomains can continue with the
updated values. Overall, this allows for significant speed-ups
e.g. for WCSPH due to parallelization on multiple GPUs.

B. Synchronization Problems with PCISPH
The halo exchange as reviewed above constitutes the major

bottleneck of any parallelization method for SPH. But while
e.g. WCSPH still gains significant total improvements from
that, it yields to a “showstopper” for PCISPH. This is because
PCISPH requires a much more dedicated synchronization
scheme.

In order to discuss this explicitly, let’s consider a possible
multi-GPU PCISPH implementation as shown in Algorithm 1.
Here, as discussed in Section II-B, inner iterations are used
to enforce the incompressibility by a prediction-correction
scheme to determine the particle pressures. The velocities
and positions are temporarily forwarded in time and used to
estimate the new particle densities (see Line 14). For each
particle j ∈ J , the predicted variation from the reference
density is computed and used to compute the pressure values,
which are then used for the computation of the pressure force
(see Line 15-18). This process is iterated until it converges,
i.e. until all particle density fluctuations are smaller than
a defined threshold η. Since in every iteration the particle
values are frequently updated, the halos need to be exchanged
between GPUs after every particle modification. In total, this
yields 2 + K · 4 halo exchange processes, where K refers
to the number of iterations until it converges (typically 3-5
iterations).

Overall, this yields an execution flow as sketched in Fig. 4.
The setup on the left shows a simplified multi-GPU architec-
ture with peer-to-peer memory access, where GPUs are con-
nected by PCIe. Each of the GPUs is assigned one subdomain.
For every time step t, each GPU is conducting the computa-
tions for its respective subdomain. After the computation is
completed, the halo data needs to be exchanged in order to
ensure correct particle values. During these memory transfers,

GPU0

M

GPU1

M

GPU2

M

P
C
Ie

S
w
it
ch

Memory Transfer

subdomain0

subdomain1

subdomain2

Communication

Id
le

subdomain0

subdomain1

subdomain2

t

Communication

Id
le

CPU

Fig. 4: Workflow of SPH on multi-GPU architectures.

GPU0

M

GPU1

M

GPU2

M

P
C
Ie

S
w
it
ch

Memory Transfer

halo0r

halo1l

halo2l

Communication

subdomain0 − halo0r

subdomain2 − halo2l

t

halo1r

subdomain0−
halo1l − halo1r

halo0r

halo1l

halo2l

Communication

subdomain0 − halo0r

subdomain2 − halo2l

halo1r

subdomain0−
halo1l − halo1r

CPU

Fig. 5: Proposed workflow to reduce communication time.

the GPUs are inherently rendered idle, since a synchronization
barrier is necessary after exchanging data to ensure that the
computations within subdomains is not conducted on outdated
data. This time spent on communicating between processes
further increases when the number of GPUs increases, since
the synchronization needs to be performed globally among all
GPUs to avoid race conditions.

Hence, in multi-GPU PCISPH simulations these memory
transfers result in significant loss of efficiency.

IV. PROPOSED SOLUTION: PERFORMING HALO
EXCHANGE PARALLEL TO ACTUAL COMPUTATIONS

In any SPH simulation on multi-GPU architectures, memory
needs to be exchanged between GPUs after particle data has
been modified – yielding the bottleneck discussed above. In
this work, we are proposing to overcome these synchronization
problems by conducting the required halo exchanges (and,
by this, the communication between GPUs) in parallel to
the actual computations. To this end, a revised workflow is
utilized which is illustrated in Fig. 5. Here, the computation
is essentially divided into three separate tasks:

1) First, all computations within the halo regions are con-
ducted. For the subdomains located in the perimeter of
the domain, the computations for only one halo region
need to be executed, i.e. the right halo for the leftmost
subdomain (hereinafter referred to as halor) and the left
halo for the rightmost subdomain (hereinafter referred to
as halol). For the subdomains located in the middle of
the domain, the computations for both, halol and halor,
are conducted.

2) Second, the computations for the remainder of the sub-
domains are performed. For the leftmost and rightmost
subdomains, this yields the computations within the
region subdomain − halor and subdomain − halol,
respectively. For the subdomains located in the mid-
dle of the domain, the computations within the region
subdomain− halor − halol are executed.

3) Finally, the halos between the subdomains are ex-
changed, i.e. the memory transfers are conducted. Since
the interactions within the halo regions have already
been computed, this can now be conducted in parallel
to the second task.

subdomain0 subdomain1 subdomain2

halo padding halo paddingautonomous autonomous

Fig. 6: Region division of subdomains.

Overall, this re-arrangement of tasks reduces the synchroniza-
tion problems of existing parallelization schemes for SPH.
While this also could help to improve existing SPH solutions
such as WCSPH, it particular overcomes the bottleneck of
PCISPH solutions and, eventually, allows for a more efficient
memory transfer and, hence, parallelization for this scheme.
This is confirmed by experimental evaluations summarized in
Section VI. Before, we however provide some more details on
the implementation of the proposed scheme.

V. IMPLEMENTATION

In order to implement the idea proposed above, the syn-
chronous memory transfers of existing solutions need to be
replaced by a dedicated asynchronous communication strategy.
By this, one process can execute other tasks while asyn-
chronously sending or receiving data without needing to wait
for the transfer to be completed. To allow for such asyn-
chronous memory transfers, each subdomain is first divided
into three separate regions as shown in Fig. 6, namely:

1) The halo region: Refers to the region at the perimeter
of a domain.

2) The padding region: Refers to the region within a
subdomain that is a copy of the halo of the neighboring
subdomain. By this, it is ensured that the neighboring
particles of the halo region are located in the same
memory pool to allow fast neighbor access.

3) The autonomous region of the subdomain: The region
which can be computed completely independent of
neighboring subdomains, hence the region which is
neither a halo nor a padding.

To allow overlapping of the memory transfers with the
actual computation, it needs to be ensured that the regions
which need to be exchanged between GPUs are already
computed as soon as memory is exchanged. For that purpose,
the computations are first conducted for the halo region of
each subdomain. In this regard, there are three general cases
to be considered:

1) For the leftmost subdomain, the computations for halor
needs be conducted.

2) For the rightmost subdomain, the computations for halol
needs be conducted.

3) For the subdomains located in the middle, the computa-
tions for halol and halor needs to be conducted.

Internally, in our implementation, for every subdomain the
particles are stored in a single array and are kept sorted
according to their position in the domain. This array contains
the particles of all three regions, i.e. the autonomous, the halo,
and the padding region. For the computation solely within the
halo region, respective offsets are calculated. Correspondingly,
the offset for the right halo (Ohr

) is

Ohr = NPl
+NHl

+NA, (7)

NPl
NHl

NA NPr
NHr

pbegin pbegin +Ohr

0 1 2 N-1

Fig. 7: Example of an array representation with respective
offsets, where the right halo should be computed.

where NPl
is the total number of particles in the left padding

region, NHl
the number of particles in the left halo region,

and NA the number of particles in the autonomous region.
Fig. 7 exemplary illustrates an array representation for

which the computations within the right halo region (high-
lighted in gray) should be conducted. All the particles of one
subdomain are stored within one array, instead of keeping
copies of the independent regions in distinct containers. This
ensures that: (1) no unnecessary data needs to be copied
and (2) all particles are stored in contiguous memory. This
contiguous memory representation essentially results in an
increased performance, considering that, for the computations
inside the halo region, also the neighboring particles within
the autonomous and padding region need to be accessed.

The subdomains located in the middle contain two halo
regions, one on the left and one on the right. However,
these two halo regions are completely independent of each
other, which is ensured by the maximum influence radius
for each particle (as reviewed in Section II). This allows to
launch two CUDA kernels in parallel by employing separate
CUDA streams – computing both, the left and the right halo
concurrently.

After this computation in the halo region, a synchronization
among these streams is needed, since the next step is to
exchange the halos between the subdomains. By a synchro-
nization barrier, it is ensured that computations within halo
regions are already completed.

This process of exchanging halos can now be launched
asynchronously to the rest of the computations. To overlap
these memory transfers with the computations within the
autonomous region, these two operations are launched in two
separate non-blocking CUDA streams. As a result, the memory
transfers can be conducted in parallel to the asynchronous
computations within the autonomous region.

Overall, this yields an algorithm for PCISPH as illustrated
in pseudocode in Algorithm 2.

Algorithm 2 Asynchronous Exchange of Halos for PCISPH

1: η ← maximum allowed density error
2: for t ∈ {0, ..., T} do
3: for GPUgi ∈ {g0, . . . , gNg} do
4: UpdateBoundaryParticles(Halo)
5: AsyncExchangeHalo(gi, gi+1)
6: UpdateBoundaryParticles(Autonomous)
7: ComputeForcesHalo F v,g,ext

8: AsyncExchangeHalo(gi, gi+1)
9: ComputeForcesAutonomous F v,g,ext

10: InnerIteration . see Algorithm 3

Algorithm 3 Inner Iteration for PCISPH

1: function INNERITERATION
2: while ρ∗err > η do
3: UpdateBoundaryParticles(Halo)
4: AsyncExchangeHalo(gi, gi+1)
5: UpdateBoundaryParticles(Autonomous)
6: PredictDensityHalo ρ∗(t+ 1)
7: CompPressureHalo p(i) += f(ρ∗err(t+ 1))
8: AsyncExchangeHalo(gi, gi+1)
9: PredictDensityAutonomous ρ∗(t+ 1)

10: CompPressureAutonomous p(i) += f(ρ∗err(t+1))
11: PressureCorrectionHalo
12: AsyncExchangeHalo(gi, gi+1)
13: PressureCorrectionAutonomous
14: ComputePressureForceHalo Fp(t)
15: AsyncExchangeHalo(gi, gi+1)
16: ComputePressureForceAutonomous Fp(t)

The individual functions have been divided into two separate
functions (see e.g. Line 6-8). First, the computations within the
halo regions are conducted, followed by the computations in
the autonomous region. Asynchronously to this computation,
the halos are exchanged (see e.g. Line 7). The inner iterations
are shown in Algorithm 3. Here, again the functions are
separated into halo and autonomous region. In total, the halos
need be exchanged four times in every inner iteration (see
Line 4, 8, 12, 15), which are however overlapped by actual
computations

Evaluations summarized in the next section, confirm this
improvement.

VI. EXPERIMENTAL EVALUATIONS

To evaluate the performance of the proposed scheme, we
implemented the described methods in C++ on top of an
industrial PCISPH-based simulation tool. Besides that, we
additionally compared the performance of the resulting method
to WCSPH. This is motivated by the fact that, although
PCISPH outperforms WCSPH by almost one order of magni-
tude, WCSPH still provides better parallelization capabilities.
Conducting a comparison between both SPH schemes allows
us to evaluate how close the speedup and efficiency of PCISPH
parallelization gets to the speedups and efficiency which
WCSPH takes for granted thus far. Correspondingly obtained
results are summarized in this section.

As a testcase we have used Kleefsmans established dam-
breaking test [19] considering 16 mio and 28 mio particles. All
evaluations have been conducted on GPU systems composed
of up to eight GPUs of type Nvidia GTX 1080 Ti, which
contain 3584 CUDA cores with a memory bandwidth of 484
GB/s. The source code was compiled on Ubuntu v16.04 using
gcc v4.5.3 and the CUDA Toolkit v9.1. The obtained results
are shown in Table I, where the speedup (i.e. sequential
execution time divided by the parallel execution time) and the
efficiency (i.e. speedup divided by the number of GPUs) of the
following parallel SPH methods (compared to their respective
sequential counterparts) are summarized:
• A parallel version of WCSPH (whose absolute runtime is

up to a magnitude larger than the runtime of the PCISPH
method, but which is nevertheless considered to evaluate
the speedup/efficiency possible through parallelization),

• a standard parallel version of PCISPH (which follows the
established parallelization scheme used e.g. by WCSPH

TABLE I: Results obtained by the experimental evaluation.
(a) Speedup and Efficiency using 28 million particles

Speedup Efficiency

GPUs WCSPH Standard
PCISPH

Proposed
PCISPH WCSPH Standard

PCISPH
Proposed
PCISPH

2 GPUs 1.74 1.63 1.64 0.87 0.81 0.82
4 GPUs 2.96 2.11 2.32 0.74 0.52 0.58
6 GPUs 4.03 2.4 3.00 0.67 0.40 0.50
8 GPUs 4.61 2.65 3.42 0.58 0.33 0.43

(b) Speedup and Efficiency using 16 million particles

Speedup Efficiency

GPUs WCSPH Standard
PCISPH

Proposed
PCISPH WCSPH Standard

PCISPH
Proposed
PCISPH

2 GPUs 1.77 1.54 1.56 0.89 0.77 0.78
4 GPUs 2.98 2.16 2.38 0.75 0.54 0.59
6 GPUs 3.68 2.33 2.65 0.61 0.39 0.44
8 GPUs 4.04 2.31 2.85 0.50 0.29 0.36

but yields the synchronization problems discussed in
Section III), and

• the proposed parallel version of PCISPH (which, for the
first time, addresses these problems in order to allow for
a more efficient parallelization).

The results clearly confirm the discussions conducted above.
WCSPH can indeed nicely be improved by parallelization.
But corresponding speedups and efficiencies are never reached
when the same (established) parallelization methods are em-
ployed to PCISPH. In fact, in case of e.g. 28 mio particles and
eight GPUs, the efficiency drops from 0.58 (when WCSPH
is applied) to 0.33 (when PCISPH is applied). This shows
the effect of the problems discussed in Section III. While
the alternative parallelization approach proposed in this work
is not capable of completely avoiding these drawbacks, it
significantly reduces the gap. In fact, following the proposed
parallelization scheme increases the efficiency back to 0.43 –
constituting a significant improvement. Also for all other cases,
substantial improvements can be observed. Overall, the pro-
posed parallelization scheme for PCISPH clearly outperforms
the standard parallelization scheme and, by this, provides an
alternative direction for exploiting HPC and GPGPU for this
SPH variant.

VII. CONCLUSION AND FUTURE WORK

In this work, we proposed a multi-GPU implementation
for PCISPH simulations. To this end, we first discussed the
algorithmic characteristics of PCISPH which led to severe
synchronization problems that, thus far, prevented the efficient
parallelization of PCISPH. Based on that, we developed an
alternative approach which, as confirmed by our evaluations
on top of an industrial tool, significantly reduces the gap to
parallelization efficiency which is taken for granted by other
SPH versions such as WCSPH. The main idea of the proposed
approach rests thereby on an effective decomposition of the
considered domain which allows for asynchronous memory
transfers. By this, an SPH approach (namely PCISPH) which
sequentially already outperforms other SPH approaches such
as WCSPH by almost one order of magnitude eventually can
further be improved by HPC and GPGPU parallelization –
offering new prospects for optimizations. Future work includes
a multi-node implementation as well as further study to com-
pletely close the scaling gap between WCSPH and PCISPH
on multi-GPU architectures.

ACKNOWLEDGMENT

This work has been supported by the Austrian Research
Promotion Agency (FFG) within the project Industrienahe
Dissertationen 2016 under grant no. 860194.

REFERENCES

[1] C. Chu, “Computational fluid dynamics,” in Numerical Methods for
Partial Differential Equations, 1979, pp. 149 – 175.

[2] H. K. Versteeg and W. Malalasekera, An introduction to computational
fluid dynamics: the finite volume method. Pearson Education, 2007.

[3] G. Strang and G. J. Fix, An analysis of the finite element method.
Prentice-hall Englewood Cliffs, NJ, 1973, vol. 212.

[4] L. Besra and M. Liu, “A review on fundamentals and applications of
electrophoretic deposition (epd),” Progress in Materials Science, vol. 52,
no. 1, pp. 1 – 61, 2007.

[5] K. Verma, L. Ayuso, and R. Wille, “Parallel simulation of electrophoretic
deposition for industrial automotive applications,” in International Con-
ference on High Performance Computing & Simulation, 2018, pp. 1–7.

[6] J. Monaghan, “Smoothed particle hydrodynamics and its diverse ap-
plications,” Annual Review of Fluid Mechanics, vol. 44, pp. 323–346,
2012.

[7] B. Solenthaler and R. Pajarola, “Predictive-corrective incompressible
sph,” in ACM SIGGRAPH 2009, 2009, pp. 40:1–40:6.

[8] S. Marrone, M. Antuono, A. Colagrossi, G. Colicchio, D. Le Touzé,
and G. Graziani, “δ-sph model for simulating violent impact flows,”
Computer Methods in Applied Mechanics and Engineering, vol. 200,
no. 13-16, pp. 1526–1542, 2011.

[9] J. Dominguez, A. Crespo, and B. Rogers, “New multi-gpu implemen-
tation for smoothed particle hydrodynamics on heterogeneous clusters,”
Int. J. Computer Physics Communications, vol. 184, pp. 1848–1860,
2013.

[10] E. Rustico, G. Bilotta, A. Herault, C. Negro, and G. Gallo, “Advances in
multi-gpu smoothed particle hydrodynamics simulations,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 25, 2014.

[11] K. Verma, K. Szewc, and R. Wille, “Advanced load balancing for SPH
simulations on multi-GPU architectures,” in IEEE High Performance
Extreme Computing Conference, 2017, pp. 1–7.

[12] X. Nie, L. Chen, and T. Xiang, “Real-time incompressible fluid simu-
lation on the gpu,” Int. J. of Computer Games Technology, vol. 2015,
2015.

[13] J. Monaghan, “Smoothed particle hydrodynamics,” Rep. Prog. Phys,
vol. 68, pp. 1703–1759, 2005.

[14] M. Liu and G. Liu, “Smoothed particle hydrodynamics (sph): an
overview and recent developments,” Arch. Comput. Methods Eng,
vol. 17, pp. 25–76, 2010.

[15] R. Gingoldand and J. Monaghan, “Smoothed particle hydrodynamics -
theory and application to non-spherical star,” Monthly Notices of the
Royal Astronomical Society, vol. 181, pp. 375–389, 1977.

[16] A. Kolb and N. Cuntz, “Dynamic particle coupling for gpu-based
fluid simulation,” in Int. Proc. of the 18th Symposium on Simulation
Technique, 2005, pp. 722–727.

[17] T. Harada, S. Koshizuka, and Y. Kawaguchi, “Smoothed particle hydro-
dynamics on gpus,” in Proc. 5th Int. Conf. Computer Graphics, 2007,
pp. 63–70.

[18] A. Herault, G. Bilotta, and R. Dalrymple, “Sph on gpu with cuda,” Int.
J. Hydraulic Research, vol. 48, pp. 74–79, 2010.

[19] K. M. T. Kleefsman, G. Fekken, A. E. P. Veldman, B. Iwanowski,
and B. Buchner, “A volume-of-fluid based simulation method for wave
impact problems,” Journal of Computational Physics, vol. 206, pp. 363–

393, 2005.

