
Multi-Channel and Fault-Tolerant Control Multiplexing
for Flow-Based Microfluidic Biochips

Ying Zhu1, Bing Li1, Tsung-Yi Ho2,5, Qin Wang3, Hailong Yao3, Robert Wille4, Ulf Schlichtmann1
1Chair of Electronic Design Automation, Technical University of Munich, Germany 2National Tsing Hua University, Hsinchu, Taiwan

3Tsinghua University, Beijing, China 4Institute for Integrated Circuits, Johannes Kepler University Linz, Austria
5Institute for Advanced Study, Technical University of Munich, Germany

{ying.zhu, b.li, ulf.schlichtmann}@tum.de, {ho.tsungyi, qinwangthu}@gmail.com, hailongyao@mail.tsinghua.edu.cn, robert.wille@jku.at

ABSTRACT
Continuous flow-based biochips are one of the promising platforms
used in biochemical and pharmaceutical laboratories due to their ef-
ficiency and low costs. Inside such a chip, fluid volumes of nanoliter
size are transported between devices for various operations, such as
mixing and detection. The transportation channels and corresponding
operation devices are controlled by microvalves driven by external
pressure sources. Since assigning an independent pressure source to
every microvalve would be impractical due to high costs and limited
system dimensions, states of microvalves are switched using a control
logic by time multiplexing. Existing control logic designs, however,
still switch only a single control channel per operation — leading to a
low efficiency. In this paper, we propose the first automatic synthesis
approach for a control logic that is able to switch multiple control
channels simultaneously to reduce the overall switching time of valve
states. In addition, we propose the first fault-aware design in control
logic to introduce redundant control paths to maintain the correct
function even when manufacturing defects occur. Compared with
the existing direct connection method, the proposed multi-channel
switching mechanism can reduce the switching time of valve states by
up to 64%. In addition, all control paths for fault tolerance have been
realized.

1 INTRODUCTION
In traditional biochemical laboratories, experiments are performed us-
ing cumbersome devices such as tubes and droppers. This work flow is
inconvenient and error-prone, due to human intervention required for
the experiment process. Even in the more modern system-in-a-package
experiment systems, only relatively simple experiment protocols can
be processed automatically, and complex biochemical experiments
such as exhaustive diagnosis of diseases still cannot completely avoid
human intervention.

To overcome the shortcomings of the experiment systems above,
flow-based microfluidic biochips have been investigated intensely in
the past decade [1]. In such a chip, a large number of devices, e.g.,
mixers and detectors, are constructed. These devices are connected
by microchannels to transport intermediate experiment results. The
transportation of these results is controlled by microvalves which are
tiny switches built on top of the channels. The open/closed states of
these valves are controlled by air pressure patterns generated by a
control logic. The control logic is managed by a microcontroller so that
the execution of a biochemical protocol can completely be automated.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ICCAD ’18, November 5–8, 2018, San Diego, CA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5950-4/18/11. . . $15.00
https://doi.org/10.1145/3240765.3240830

A major advantage of biochips is their large integration. Accord-
ingly, the manufacturing process of biochips has taken a road similar
to integrated circuits by etching flow channels and control channels
on a substrate [2]. Observing this similarity, the design automation
community has started to propose methods and work flows to improve
the design quality and efficiency. For example, the synthesis of biochip
architectures has been addressed in [3–5] and the routing of flow
channels in [6, 7]. Furthermore, test methods using an ATPG-based
method for defect detection in biochips after manufacturing has also
been proposed in [8].

Compared to integrated circuits, biochips, however, still have their
own specific features. Besides flow channels which are used to trans-
port fluid samples between devices, valves need to be driven by external
air pressure patterns to change their states according to the protocols
of applications. The structure of a valve is shown in Fig. 1(a), where
the control channel is built on top of the flow channel. An air pressure
through the control channel squeezes the flow channel to block the
movement of flow samples. When the air pressure in the control chan-
nel is released, the flow channel opens again for fluid transportation. In
other words, a valve works like a switch, whose state is controlled by
the air pressure in the control channel. With valves as the controlling
units, complex biochips can be constructed, as shown in Fig. 1(b).

When executing an application, the patterns of air pressure in the
control channels should be generated by a control logic, which plays
a critical role in a biochip, since it manages the overall execution of
applications. Recently, related research considering control channel
optimization has started to appear. For example, the method in [9] min-
imizes pressure-propagation delay in control channels to reduce the
response time of valves. The lengths of control channels are matched
in [10] to synchronize switching times of valves. These methods, how-
ever, mainly focus on the control channels that deliver air pressure to
valves. The control logic to generate the required pressure patterns,
however, has not sufficiently been investigated yet. Up to now, only
one method has been proposed to consider the reliability of control
logic [11], where the order of patterns that are required to control
valves is adjusted to reduce the maximum number of switching ac-
tivities in the control logic. This method, unfortunately, still does not
address the efficiency of generating the required pressure patterns.

In this paper, we examine the design of control logic and propose a
method to improve its efficiency in generating the required pressure
patterns. In addition, the resources required by the control logic are
also reduced. Our contributions are twofold. First, the basic design rules
of control logic are examined and a new concept of switching multiple
control channels simultaneously by expressing channel switching
patterns with Boolean logic is proposed for the first time. With this
concept, the efficiency of generating the required pressure patterns can
be improved by up to 64%. Second, the structure of the control logic is
determined by mapping the identified control patterns onto a general
routing grid. Since this mapping allows control channels to be routed
horizontally and vertically, it provides more flexibility in determining

(a) (b)

control layer

flow layer

flow

control
channel

substrate

channel

Figure 1: (a)Valve structure. (b) A flow-based biochip with flow
channels (green) and control channels (yellow and red) [12] (b).

new structures of control logic. To the best of our knowledge, this is
the first work to examine the design of control logic itself.

The rest of this paper is organized as follows. In Section 2, the
existing structure of control logic design is explained. In Section 3,
the basic ideas of the proposed multi-channel switching and fault-
tolerance are described. The implementation of these ideas on a general
routing grid is explained in Section 4. Simulation results are reported
in Section 5. Conclusions are drawn in Section 6.

2 CONTROL LOGIC IN FLOW-BASED BIOCHIPS
In flow-based biochips, valves at the intersections of flow and control
channels need to be switched by the patterns of air pressure generated
by the control logic.

In Fig. 2 an example of a complete biochip from [13] is shown. In
Fig. 2(a), the flow core of the biochip is located in the center, which
is enlarged in Fig. 2(b). This flow core is designed as a valve array
for its full reconfigurability. Each block in Fig. 2(b) is a valve with
a similar structure shown in Fig. 1(a) and the thin lines in Fig. 2(b)
are control channels to conduct air pressure to the valves. Compared
to the biochip in Fig. 1(b), this regular valve array can execute any
transportation and mixing operations by dynamic mapping [14] and
can easily be tested after manufacturing [15].

In controlling the valves inside the flow core, it is not practical to
assign each valve an independent pressure source, due to the cost
and the size of these mechanical devices. For example, in the design
in Fig. 2(a), 114 valves in the flow core have been implemented. For
executing applications, instead of using 114 pressure sources directly,
which would be very cumbersome and expensive, only 15 pressure
sources are used to delivery pressure patterns, including 14 control
ports and one core input.

The reduction of the number of pressure sources is implemented
by a multiplexing system, called control logic henceforth as shown
in Fig. 2(a), where the control logic and the control channels take the
major area of the biochip. At the bottom of Fig. 2(a), the core input
provides a pressure source that can be switched on or off. On the right,
the control ports create control patterns that specify which control
channel can be connected to the core input to update its pressure state.
The control logic in the middle forms a multiplexing function to con-
nect the channels to the core input according to these control patterns.
Once a control channel is connected to the core input, its pressure state
is updated to the same as that of the core input. Correspondingly, the
open/closed state of the valve in the flow core driven by this control
channel is also updated. In the following, the valves in the flow core
are called flow valves and they share the same indices as the control
channels.

The multiplexing function of the control logic to reduce the num-
ber of pressure sources is explained using Fig. 3(a). In this example,
four external ports x1, x1, x2, x2 are connected to pressure sources
to control the connection of the control channel that drive the three
valves in the flow core. In the following, these external ports are called

control
channels

control
channels

control
logic

controlports

(a)

(b)
Figure 2: Structure of a biochip from [13]. (a) The complete chip
with flow part and the control logic. (b) Enlarged flow part.

control ports. In control logic design, the pressure values of the con-
trol ports are often complementary [13, 16]. At any time, only one of
a pair of complementary ports can have a high pressure, so that the
complementary control variables xi and x i can be implemented. These
variables are used to control the valves built on top of the channels in
the control logic, called control valves as shown in Fig. 3. The chan-
nels inside the control logic are called control paths. The outputs of
the control logic represent the states of the control channels, and are
called control outputs. The states of control ports and the control
valves determine which control path is to be connected to the core
input to change the valves of the control outputs. In the following,
the states of control outputs and the states of control channels will
be used interchangeably. For example, control channel 1 driving flow
valve 1 is connected to control output 1, whose value is updated to the
value of the core input when both x1 and x2 are set to logic ‘1’.

The combinations of control valves on the control paths form con-
trol patterns for channel multiplexing. For example, three control
patterns x1x2, x1x2, and x1x2 are used in Fig. 3 to control the three
channels. At any moment, only one of these patterns can be true,
so that only one control output can be connected to the core input
for updating its pressure state. If the target pressure in the control
channel should be high, the pressure of the core input is activated;
otherwise, the core input releases the pressure in the control channel.
With this mechanism, n control ports can be used to multiplex 2n/2
control channels. If the number of control channels is between 2n/2−1
and 2n/2, some control patterns are not used, such as x1x2 in Fig. 3.
In the control logic in Fig. 3, the number of pressure sources is five,
which is larger than the number of control channels. Therefore, the
control multiplexing actually requires more pressures sources in this
case. However, as the number of control channels n increases, the
required number of pressure sources 2 ∗ ⌈log2 n⌉ + 1 rapidly decreases
compared to n.

The function of the control logic shown in Fig. 3 is to change the
pressure values in the control channels so that flow valves can be
switched to execute applications. These pressure values are called
channel states. Assume that at time t the channel states are “011”,
where ‘1’ represents that the pressure in the corresponding control

core input

x1
x 1

x2
x 2

controlports

x1x2 x1x 2

control channels

flow channels

control valves

flow valves
2

31
x 1x2

controllogic

control
channelcontrol

output

2 31

Figure 3: Control logic formultiplexing three control channels.
Control ports x1, x1, x2, and x2 are connected to external pres-
sure sources.

channel is high and ‘0’ represents the pressure is low. At the time t + 1,
assume that the states of the control channels need to be updated to
“100”. Since the Boolean control logic in Fig. 3 only allows one control
channel to be opened at a moment, the state transitions need to be
implemented using three switching operations, in which the control
variables x1 and x2 are set to “11”, “10” and “01”, respectively. In this
process, the three control channels are connected to the core input
one after the other, activated by the control patterns x1x2, x1x2, and
x1x2, respectively. Accordingly, the pressure of the core input should
be set to ‘1’, ‘0’ and ‘0’ to update the pressures in the control channels.
For convenience, the period of the states of all control channels at
time t to new states at time t + 1 is called a time slot. Within a time
slot, the states of several control channels may need to be changed
by the control logic. Therefore, the state transition from time slot t
to time slot t + 1 may be split into several time slices, each of which
represents an actuation of the control logic.

3 CONCEPTS OF MULTI-CHANNEL
SWITCHING AND FAULT-TOLERANCE IN
CONTROL LOGIC

The control logic design described above is very effective in reducing
the number of pressure sources. However, flow valves are switched one
after another in this scheme by activating control channels individually.
During the state transition from time slot t to time slot t + 1, the
execution of an application on the biochip is paused. If the number of
valves whose states should be updated is large, the execution time of
the application can be prolonged. This disadvantage above is due to
the fact that only one output can be updated at a moment. To solve
this problem, a new design scheme that allows multiple control paths
to be activated simultaneously will be introduced in the following to
improve the efficiency of control logic.

In addition, the existing control logic design is also sensitive to
manufacturing defects. If a control channel cannot be opened properly,
the corresponding flow valve cannot be switched anymore, potentially
leading to a complete chip failure. This reliability issue is addressed
in the proposed new design scheme with duplicated control paths,
which are constructed together with control paths for multiple-channel
switching to improve design efficiency.

3.1 Multi-channel switching
In Fig. 3, only three flow valves are driven by the control logic, although
the combinations of pressure sources are capable of generating four
control patterns. Consider the scenario that channel states are switched
from “011”→“100”. The control logic individually switches the second
and the third channel from ‘1’ to ‘0’. Therefore, it is possible to combine
the last two operations. Besides the three control patterns used in Fig. 3,
there is still the fourth control pattern x1x2 available, which can be
used to switch the channel 2 and 3 together, as shown in Fig. 4(a). In

core input

x1x2 x1x 2 + x 1x 2

2

31
x 1x2 + x 1x 2

core input

x1
x 1

x2
x 2

controlports

x1x2 x1x 2

2

31
x 1x2 + x 1x 2

pattern x 1x 2
multi-channel

x1
x 1

x2
x 2

cancel

cancel
merge

merge

(a) (b)
Figure 4: Control logic with multi-channel switching. (a) Addi-
tional control pattern x1x2 is used to update control channels
2 and 3 simultaneously. (b) Simplified control logic after valve
merging and canceling.

this augmented design, both channels 2 and 3 are connected to the
core input through the newly added control paths which are opened
by the pattern x1x2. Consequently, in the transition from “011”→“100”,
the number of time slices can be reduced by 1.

In Fig. 4(a), flow valve 3 is driven by two control paths. At the
bottom of these two paths, the two control valves are connected to
the same control port x2. Therefore, they can be merged to save one
valve. The two control valves at the top of these two control paths
are complementary, since they are connected to x1 and x1. Therefore,
no matter what value x1 has, at least one of the two control paths to
flow valve 3 opens on the condition that x2 is set to ‘1’. Accordingly,
the two valves at the top of the two control paths to flow valve 3
can be canceled. The merging and canceling operations can also be
applied to the control channels to flow valve 2 in the control logic.
Consequently, the control logic can be simplified as shown in Fig. 4(b),
where only one control valve is required in each of the control paths
to the control outputs 2 and 3. This merging and canceling process is
actually the simplification of the Boolean logic x1x2 + x1x2 = x1 and
x1x2 + x1x2 = x2. The + sign means that either control path can drive
the corresponding flow valve sufficiently. In Fig. 4(b) the number of
valves has been reduced from 10 to 4 compared to Fig. 4(a). Compared
to the original control logic in Fig. 3, the number of valves has also
been reduced from 6 to 4, while the multi-channel switching function
is still implemented.

In the simplified design in Fig. 4(b), the flow valves can still be
switched individually, because the individual control patterns x1x2
and x1x2 are still valid for channels 2 and 3 respectively. For example,
the control pattern x1x2 connects only the control channel 3 to the
core input, while the other two channels are still closed. Consider a
more complex scenario of channel states “011”→“100”→“001”→“110”.
The transition “100” →“001” requires two time slices for channels 1
and 3, while channel 2 does not need to be updated. The transition
“001”→“110” still requires three time slices, since the channels 1 and
2 cannot be updated simultaneously. Consequently, the number of
total time slices required by the flow valves can be calculated as the
sum of time slices in the time slots, i.e., 2+2+3=7, which is less than
the time slices 8 required in the original design in Fig. 3, where only
single-channel switching is possible.

Besides the logic simplification with respect to a single flow valve,
control valves can also be merged with respect to the core input. For
example, the three control valves connected to x1 in Fig. 4(a) can also
be merged, because these valves always open or close simultaneously
to allow or block the pressure from the core input to the next segments
of the control paths. This merging operation requires that the logic
expressions from the core input to several neighboring control valves
are equal, leading to logic simplification with respect to internal nodes
inside the control logic. In designing the control logic, this type of

x 1x2 + x 1x 2

core input

x 1

x 2

x1x2 + x 1x2 x1x 2 + x 1x 2

2

31

(a) (b)
“011” “100” “001” “110”

x1
x 1

x2
x 2

controlports

x1x2 + x 1x2 x1x 2 + x 1x 2

2

31

x2

cancel

cancel
merge

cancel

merge

multi-channel
pattern x 1x2

merge

channel state patterns:

x 1x2 + x 1x 2

core input
pattern x 1x 2
multi-channel

Figure 5: Control logic reduction by alternate multi-channel
switching. (a) Control pattern x1x2 is used to update control
channels 1 and 2 simultaneously and control channel 2 has no
individual control pattern. (b) Simplified control logic.

simplification and that with respect to individual flow valves need to
be balanced. For example, it is more beneficial to cancel the valves in
Fig. 4(a) first than merging the three valves connected to x1.

3.2 Logic reduction by alternate multi-channel
switching for given applications

In the case in Fig. 4(b), the control logic cannot be reduced anymore,
since all the spare control patterns have been used. This design still
maintains the ability to update each control channel individually, as
well as to update the states of the channels 2 and 3 simultaneously. The
maintained single-switching ability guarantees that this control logic
is capable of generating states of control channels for any applications.

If the application of the biochip is given, the state transitions be-
come known. In a sequence of transitions such as “011”→“100”→“001”
→“110”, it can be observed that the control channel in middle is always
updated together with another one, either the first or the last. This
phenomenon indicates that it is not necessary to assign channel 2 an
individual control pattern. Instead, the original control pattern x1x2 in
Fig. 4(a) can be spared to implement multi-channel switching between
channels 1 and 2, as shown in Fig. 5(a).

In Fig. 5(a), control channels 1 and 3 receive individual control
patterns x1x2 and x1x2, respectively. The control channel 2, however,
can only be switched together with either channel 1 by x1x2 or channel
3 by x1x2. This loss of generality makes this control logic design
depend on a given application. But the control logic itself can be
simplified and the switching time of valves in executing the application
can be reduced.

After the merging and canceling operations are applied to the case
in Fig. 5(a), only three control valves are left in the design, as shown
in Fig. 5(b). The logic of the control patterns can be verified from the
multi-channel control patterns as x1x2 + x1x2 = x2 for channel 1,
x1x2 + x1x2 = x1 for channel 2, and x1x2 + x1x2 = x2 for channel
3. Furthermore, the number of control ports is also reduced by one,
since x1 is not required anymore, leading to a further decrease of the
complexity of the biochip platform.

For the state transitions of the control channels “011”→“100”→
“001”→“110”, the further simplified control logic requires only 2+2+2=6
time slices, since channel 2 always shares the new value with another
channel. A special case is in the transition “100”→“001”, where the
state of channel 2 does not change. Therefore, the function is regard-
less of whether it is updated or not, similar to a don’t care in logic
design. In the design in Fig. 5(b), the pattern x1x2 takes advantage of
this phenomenon for multi-channel switching. Since the number of
control valves in the control logic has also been reduced significantly,
this comparison confirms that the newly introduced multi-channel

1 3

5
6

core input

x1

x 1

x2

x 2

x3

x 3

x 1x2x3

x 1x3

2

4

Figure 6: Fault tolerance in control logic.

switching concept can improve the execution efficiency of the control
logic and reduce the resource usage at the same time.

The example in Fig. 5(b) is not very complicated to design directly,
since there are four variables x1, x1, x2, and x2 available for control
patterns of only three channels. In fact, any three of the four variables
x1, x1, x2, and x2 can be used to form a solution of the control logic
with multi-channel switching shown in Fig. 5(b). However, in reality
the number of control channels is usually larger than the number
of control variables, so that a feasible solution with multi-channel
switching becomes not straightforward anymore. In Section 4, the
assignment of control patterns and the construction of control logic
will be solved by integer linear programming (ILP) formulation.

3.3 Fault tolerance in control logic
In Fig. 5(b), there is only one valve and one control path to a control
output. During manufacturing, there might be defects in the control
logic. If a control valve cannot be closed, the core input is always
connected to the control channel, leading to a failed flow valve in the
biochip. To tackle this problem, a control valve can be duplicated and
inserted in series to the original control valve, similar to the solution
in [17, 18]. On the other hand, if a control valve cannot be opened or
a control path is blocked, there is no path to connect the core input to
the control output to update its state. A simple strategy to solve this
problem is to duplicate all the channels and valves and insert them
in parallel to the original channels and valves. This method, however,
may lead to an unnecessarily complicated design and large resource
usage.

Figure 6 shows another example of control logic generated by the
proposed method, where the control paths along control valves to
control outputs 2 and 4 are highlighted. In this case, the control pattern
x1x2x3 activates these two outputs simultaneously, forming a multi-
channel switching pair. Furthermore, to each of these control outputs,
there are two independent paths through the control logic. If one of
these paths is blocked due to a manufacturing defect, the other path
still maintains the correct function of the control logic.

Compared with the straightforward strategy to duplicate the con-
trol logic to provide fault tolerance, the control paths in Fig. 6 share
control valves, e.g., the two valves connected to x1, leading to a reduc-
tion of resource usage. To design such a control logic with efficient
multi-channel switching and resource sharing for fault-tolerance, these
features need to be considered together in a general framework.

4 A GENERAL FRAMEWORK FOR CONTROL
MULTIPLEXING AND FAULT TOLERANCE

To generate a control logic supporting multi-channel switching and
fault tolerance, two major steps are used in the proposed method. First,
the given channel states are converted to channel switching patterns.
Then control channels that should be enabled simultaneously are
identified to reduce the total number of time slices. In the second step,
the control logic is constructed on a virtual grid to meet the multi-
channel switching and fault tolerance requirements. In addition, the
total number of control valves in the control logic is also minimized.
Both steps are formulated into integer programming problems (ILP)
in the following and solved by a solver in the proposed method.

4.1 Determining multi-channel switching
scheme from switching patterns

As discussed in Section 3.2, the number of time slice of the control
logic and the resource usage can be reduced significantly if the channel
states required for the application are considered. Therefore, the state
transitions of control channels are the input of the first step. These
states are written as a state matrix P̃ , whose rows represent the states
of all control channels at different moments. For example, for the states
of the transitions “011”→“100”→“001”→“110”, P̃ is written as

P̃ =

0 1 1
1 0 0
0 0 1
1 1 0

 Ỹ =

0 1 1
1 0 0
1 X 0
0 0 1
0 0 1
1 1 0

(1)

In a transition such as “011”→“100”, the first control channel needs
to be connected to the core input and the pressure value of the core
input should be set to ‘1’. Afterwards, the second and the third control
channels need to be connected to the core input with its pressure value
set to ‘0’. In both cases, it is the responsibility of the control logic to
connect the corresponding control channels to the core input. These
requirements to the control logic can be represented by a switch-
ing matrix Ỹ converted from the state matrix P̃ . In this matrix, the
rows represent whether the corresponding control channels need to
be updated to ‘0’ and ‘1’ alternately. Therefore, these rows are called
switching patterns. As an example, the switching matrix of P̃ in (1)
is also shown as Ỹ . In this matrix, ‘1’ represents that corresponding
control output should be connected to the core input. In the transition
“100”→“001”, when the first channel is updated to ‘0’, the second chan-
nel can be updated together with the first channel, or it can be ignored
since its state does not change. Accordingly, a don’t care ‘X’ appears. In
reality, multiple ‘1’s in a row in Ỹ may not be updated simultaneously,
in case this specific multi-channel combination is not implemented.
Accordingly, such a row needs to be split into time slices so that the
corresponding channels are updated by several operations. To reduce
the overall number of time slices, the multi-channel combinations
need to be selected carefully.

In a general case, assume that the switching matrix is written as

Ỹ =

Y0
Y1
· · ·

YM−1

 =

y0,0 y0,1 · · · y0,N−1
y1,0 y1,1 · · · y1,N−1

· · · · · ·
. . . · · ·

yM−1,0 yM−1,1 · · · yM−1,N−1

(2)

where yi, j is a constant taking one of the values ‘0’, ‘1’ or ‘X’.M is the
number of transitions in which at least a control channel should be
switched to ‘0’ or ‘1’. N is the number of control channels.

As discussed above, a row in Ỹ may contain multiple ‘1’s that cannot
be implemented by connecting the corresponding control channels
to the core input at the same time. Consequently, the corresponding
time slot of switching these control channels needs to be split into
several time slices. The objective is that the overall number of time
slices implementing the switching matrix Ỹ is reduced. To fulfill this
objective, the potential multi-channel switching combinations need to
be examined.

For N control channels, there are 2N − 1 possible combinations to
form multi-channel scheme, defined by the multiplexing matrix X̃
with N columns, as

X̃ =

X0
X1
...

X2N −2

 =

1 0 0 0 · · · 0
0 1 0 0 · · · 0

· · · · · · · · · · · ·
. . . · · ·

0 0 0 0 · · · 1
1 1 0 0 · · · 0
0 1 1 0 · · · 0

· · · · · · · · · · · ·
. . . · · ·

1 1 1 1 · · · 1

(3)

where each row represents a possible combination of control channels
to form the multi-channel switching. If an item xi, j in X̃ is ‘1’, the cor-
responding control channel is included in the multi-channel switching
combination.

Since the objective of multi-channel switching is to select proper
combinations of rows in X̃ to implement the switching matrix Ỹ , a
selection matrix T̃ of M rows and (2N − 1) columns is defined as
follows

T̃ =

t0,0 t0,1 · · · t0,2N −2
t1,0 t1,1 · · · t1,2N −2

· · · · · ·
. . . · · ·

tM−1,0 tM−1,1 · · · kM−1,2N −2

(4)

where the ith row defines which rows in X̃ are selected to implement
the switching pattern in the ith row of Ỹ in (2).

In a row in (2), if an itemyi,k is ‘1’, meaning that this control channel
must be activated once, it must be covered by at least one of the rows
in X̃ that has a ‘1’ at the corresponding column. This constraint can
be expressed as

j=2N −2∑
j=0

ti, jx j,k

≥ 1, yi,k = 1

∀i = 0, . . .M − 1, k = 0, . . .N − 1
= 0. yi,k = 0

(5)
where xi, j and yi,k are given constants. ti, j are 0-1 variables whose
values are determined by a solver.

In a control logic, the maximum number of allowed control patterns
is usually given or constrained by the number external pressure sources
as a constantQcw = 2 ⌈loд2N ⌉ and usuallyQcw ≪ 2N −1. Accordingly,
for each row in X̃ , a 0-1 variable li is defined to indicate whether the
corresponding combination is selected and the total number of selected
combinations should be no larger than Qcw , constrained as

2N −2∑
i=0

li ≤ Qcw . (6)

If the j row in X̃ is not selected so that lj = 0, all the selection variables
in the j column in T̃ must be set to 0, constrained as

ti, j ≤ lj , ∀i = 0, . . .M − 1, j = 0, . . . 2N − 2. (7)

core input control tree

nodes

edges as potential
valve locations

i

fi, j,k3

fi, j,k1

fi, j,k2 fi, j,k4

i1 fi1, j,i

fi2, j,i

fi, j = fi1, j,i + fi2, j,i

i2

edge ei

on-tree loop

off-tree loop

oj1
control output

oj2
control output

(a) (b)
Figure 7: Routing grid. (a) A control tree constructed on a rout-
ing grid. (b) Modeling variables representing flow volumes and
directions for control tree construction.

Since a row in T̃ represents which multi-channel switching combi-
nations from X̃ are selected to implement the switching patterns in the
corresponding row in Ỹ , the number of ‘1’s in this row in T̃ represents
the required number of time slices. To minimize the total number of
slices, the following optimization problem can be solved

minimize
M−1∑
i=0

2N −2∑
j=0

ti, j (8)

s .t . (5), (6), (7). (9)

After solving (8)–(9), the combinations of channels to implement
multi-channel switching are determined by the values of li . The values
of ti, j specify how the switching patterns in Ỹ can be realized by these
control patterns to reduce the overall switching time.

For an application, the number of rows in the switching matrix Ỹ
might be large, making (8)–(9) very difficult to solve. In practice, many
rows in the switching matrix Ỹ might be equal. For example, a typical
application contains many mixing operations, which use only a few
switching patterns repeatedly. In the proposed method, these rows
are merged and the number of merged rows are multiplied with ti, j
in (8) to reduce the scale of the problem. Another deployed technique
to reduce the scale of (8)–(9) is that in the multiplexing matrix, the
maximum number of channels that are allowed to switch simultane-
ously is constrained to a given number. This is acceptable because the
case that a large number of channels are updated simultaneously is
not common in reality. In the experiments, this maximum number is
set to 3.

4.2 Constructing control logic
on a general routing grid

After determining the multi-channel switching scheme, the values
of the li carry the information which control channels should be
connected to core input together. Since the states of control channels
are the same as those at the outputs of the control logic, it is then the
task of the control logic to generate correct patterns at its outputs to
drive control channels.

When multiple control outputs are updated by a control pattern, a
control path should be constructed for each of them. Since these paths
can also share segments with each other, a control tree is constructed,
as illustrated in Fig. 6. In reality, the control tree can be very complex,
even with many branches dangling in the middle of the control tree.

In the proposed method, a general routing grid is used as virtual
guide to construct control trees. Such a grid is composed of a set of
horizontal and vertical edges, and edges join other edges at nodes.

On this routing grid, a path can be viewed as a series of consecutive
connected edges. On each edge, a control valve can be built. If no valve
is built, but the edge still appears in the final control logic, it then
always connects the two nodes at its ends. If in the end an edge does
not appear in the control logic, the two nodes at the ends of this edge
are always not connected directly. An example routing grid is shown
in Fig. 7(a), where oj1 and oj2 are control outputs.

For an edge ei on the routing grid, a 0-1 variable eexisti is used to
indicate whether the edge appears in the control logic. In addition,
a 0-1 variable vexisti is used to indicate whether a control valve vi
is built on the edge ei . If a control valve appears on the control tree
to drive the control output oj , it must be switched open when oj is
activated. This open/closed state is denoted by the 0-1 variable vstatei, j .
The relation between these variables can be written as

vstatei, j ≤ vexisti ≤ eexisti , ∀ei ∈ E, c j ∈ C (10)

where E is the set of all edges on the routing grid, and C is the set of
all control patterns.

To construct a control tree in the control logic, the connection state
of an edge should be defined first. In two scenarios, an edge connects
the two nodes at its ends: 1) an edge appears in the control logic but
there is no valve built on it; 2) a valve is built on an edge that appears in
the control logic, and the valve is open due to the control port driving
it. Such an edge is called a connection edge in the following. If the
0-1 variable ci, j is used to indicate whether the edge ei connects the
nodes at its two ends when the jth control pattern applied, ci, j can be
constrained as

ci, j = eexisti −vexisti +vstatei, j . (11)

With the connection states of edges defined above, the control tree
can thus be described accordingly. To construct a control tree, the idea
is to use the concept of a flow from the core input. The flow fills the
edges it passes and only reaches the control outputs that should be
activated.

For each node ni in the routing a grid, a flow value fi, j,k is defined
with respect to control pattern c j and the kth edge that is incident to
ni directly, as shown in Fig. 7(b). If a flow enters a node, the flow value
is negative. If it leaves a node, its flow is positive. Since a node only
connects edges but cannot store a flow volume, for node ni that does
not correspond to the core input or a control output that should be
activated, the relation between the flow variables can be written as∑

ek ∈Ei
fi, j,k = 0 (12)

where Ei is the set of edges incident to node ni directly.
For each edge ei , the variable fi, j is defined to represent whether

the edge stores one unit of the flow, and is determined by the flows
entering the edge from the two nodes at its ends and could be one
only when the edge is open. The relation is expressed as

fi, j =
∑

nk ∈Ni

fk, j,i ≤ ci, j (13)

where Ni is the set of nodes at the ends of edge ei , and fk, j,i is a flow
value to ei .

To form a control tree from the core input to control output oj , the
nodes in-between must function as connecting points. A 0-1 variable
ni, j is defined to represent whether node ni is in the tree or not. For a
node in the tree, at least an edge incident to it should be filled by the
flow. The connection condition for node ni is

ni, j ≤
∑

ek ∈Ei
fk, j ≤ 4 · ni, j (14)

where Ei is the set of edges connecting to ni .

Since the core input needs to provide sufficient flow to fill the edges
in the control tree and the flow must only reach the current control
output oj , the following constraints can be established.∑

ek ∈Ei
fi, j,k > 0, ni = ncore (15)∑

ek ∈Ei
fi, j,k < 0, ni represents an opened output oj . (16)

For the outputs that are closed, the nodes representing them should
not appear on the control tree. Since an edge that is in the connection
state makes its two nodes share the same status, ni, j needs to be
constrained as

ni, j = 0, ∀ni representing a closed output (17)
ci, j − 1 ≤ nk1, j − nk2, j ≤ 1 − ci, j , ∀ei ∈ E (18)

where nk1, j and nk2, j are the two nodes of ei , and E is the set of all
edges.

The constraints above can be used to generate a control tree shown
in Fig. 7(a). These constraints do not prohibit an on-tree loop such
as that in Fig. 7(a) from happening. The existence of on-tree loops,
however, does not affect the correct function of the control logic.
The off-tree loop in Fig. 7(a) is excluded by the constraints (10)–(18).
However, these constraints are only sufficient conditions to construct
a control tree. Off-tree loops can still appear, provided that they do
not activate the current control output.

The flow value fi, j defines whether an edge is required to control
an output. If a valve appears on the edge, its connection to the control
ports needs to be determined, so that it can be switched correctly
by an external pressure source. Assume there are Np control ports.
Since a control valve can be connected to any of these Np ports, for
the control valve vi , Np 0-1 variables pi,1,pi,2, . . .pi,Np are defined.
The variable pi,k represents whether control valve vi is connected to
the kth control port. Since a control valve can only be controlled by
one port when a control valve exists on an edge, these variables are
constrained as

Np∑
k=1

pi,k = v
exist
i . (19)

For the jth control tree, corresponding to the jth control pattern,
assume the states of the control ports are denoted by 0-1 variables
sj,1, sj,2, . . . sj,Np . For the control valve vi , its state corresponding
to the jth control pattern is written as vstatei, j . Since all the valves
controlled by the same control port must have the same state in a
control pattern, the valve states can be constrained as

pi,k − 1 ≤ vstatei, j − sj,k ≤ 1 − pi,k , ∀ei ∈ E, k ∈ {1, . . .Np } (20)

where E is the set of all edges.
In a control logic, the control patterns should be different in activat-

ing different control outputs or their combinations. Therefore, when
regarded as binary numbers, the values of the control patterns are
different from each other. This condition can be specified as

Bj = 20 · sj,1 + 21 · sj,2 + · · · + 2Np−1 · sj,Np (21)
Bj1 − Bj2 ≤ −1 +My, ∀j1 , j2 (22)

Bj1 − Bj2 ≥ 1 − (1 − y)M, ∀j1 , j2 (23)

where M is a large number, y is an intermediate 0-1 variable, where
y = 1 if and only if Bj1 > Bj2 and y = 0 if and only if Bj1 < Bj2.

The constraints described in this section are very general. To imple-
ment multi-channel switching, a control tree needs to activate multiple
control outputs simultaneously. Accordingly, these active outputs can

simply be enabled by adding constraints similar to (16), so that the
control tree drives multiple control outputs at the same time.

To implement backup paths for fault tolerance, a path needs to be
identified from a control tree first. For example, in Fig. 7, the on-tree
loop does not need to be duplicated, because the direct path between
the core input and the control output is already sufficient for state
updating. To identify a path in the control tree, a model similar to that
used to identify the control tree can be deployed. In constructing the
control tree, the edges are chained one after another. To constrain a
path instead of a tree, the only change to be made is that a node in
the routing grid that represents neither the core input nor the control
output is only allowed to connect exactly two edges, in contrast to
(14), where more than two edges can be connected to a node to allow
more freedom to the patterns of control ports. For fault tolerance, two
identified control paths that are backup to each other should not share
any parts on the routing grid. This constraint can be specified as that
the edges covered by the paths should not overlap, so that the variables
indicating that an edge belonging to these paths should be 1 only for
one of the fault-tolerant paths. These constraints are similar to those
for constructing control trees discussed above, and are not discussed
in detail due to limited space.

With the constraints defined, the control logic can be constructed
by creating a control tree for each control pattern and solving the
resulting ILP problem as

minimize
|E |−1∑
i=0

vexisti (24)

s .t . (10)–(23). (25)

To improve the efficiency of the formulation (24-25), two heuristic
techniques have been applied. First, the control ports are only allowed
to control the valves in the rows and columns that are neighboring to
them in the routing grid. Second, the routing grid is partitioned into
sub-blocks and the formulation (24-25) is applied to each sub-block to
solve the problem hierarchically. In addition, pressure degradation in
control trees has also be considered, which is not explained in detail
due to space limit.

5 SIMULATION RESULTS
The proposed method was implemented in C/C++ and tested by using
2.4 GHz CPU with 32GB memory. We demonstrate the results of three
applications that are CPA (Colorimetric Protein Assay) used in RA30
chip from [4], IVD (Int-Vitro Diagnostics) applied in CPA chip from [4]
and mRNA chip from [19]. In addition, three randomly generated se-
quences of switching patterns R0, R1, and R2 are tested to demonstrate
the characteristics of the proposed method further.

The information of these test cases are shown in Table 1, where the
column #M shows the numbers of mixers used by the applications,
and #V is the number of flow valves and thus the number of control
channels. The numbers of control ports to implement the control
variables are reported in the column #P. The numbers of states of flow
valves in executing the corresponding applications are reported in the
column #F and the numbers of switching patterns corresponding to
the row of the switching matrix Ỹ in (2) are reported in the column
#Y. After merging equivalent rows of switching patterns as described
at the end of Section 4.1, the numbers of independent patterns used in
(8)–(9) are shown in the column #Y′.

As discussed previously, withoutmulti-channel switching, the ‘1’s in
a switching matrix must be updated individually. For the applications
in the experiments, the total numbers of time slices are reported in the
columnTs in Table 1. With multiple-channel switching, these numbers
are reduced significantly in most cases, as shown in the column Tm .

Table 1: Results of Multiplexing and Fault Tolerance
App. #M #V #P #F #Y #Y′ Ts Tm R #Q Vc tr
RA30 2 19 10 10221 13408 86 27025 15247 44% 17 137 1309
CPA 3 25 10 2941 1409 92 4198 1742 59% 22 179 2159
mRNA 3 37 12 5361 1403 52 4464 1597 65% 20 212 3173
R0 1 22 10 5000 6684 153 6891 6799 1% 26 274 3999
R1 2 27 10 6000 8013 244 14334 9776 32% 28 330 4040
R2 3 48 12 7000 9372 325 26058 11781 54% 51 812 10586

RA
30 CP

A
mR
NA R0 R1 R2

500

1,000

N
um

.o
fc
on

tro
lv

al
ve
s

Direct connection Proposed

Figure 8: Comparison of numbers of control valves between di-
rect connection and with multi-channel switching.

The ratio of reduction of these switching activities can reach up to
56%, as shown in the column R, while 1% in case R1 is because the
channel patterns in this case is totally random and uncorrelated which
is uncommon in real applications. The numbers of control patterns
used in the control logic are shown in the column #Q, which are larger
than the numbers of control channels in the column #V due to the
additional control patterns for multi-channel switching for cases R1,
R2 and R3, while being slightly smaller in cases RA30, CPA and mRNA
since several flow valves in these cases always activate simultaneously
with other valves so that their control patterns are shared. It can be
observed that with a limited increase of the number of control patterns,
a significant reduction of switching time slices from Ts to Tm can be
achieved. Finally, the numbers of control valves in the control logic are
reported in the column Vc and the CPU time to generate the control
logic by the proposed method is reported in the column tr (s).

To verify the efficiency of the automatically generated control logic,
the numbers of control valves are compared with the cases with direct
connection from core input to the control channels as shown in Fig. 3.
The results of this comparison is illustrated in Fig. 8. Obviously the
control logic from the proposed method requires fewer control valves.
Meanwhile the number of time slice is smaller as demonstrated in the
columns Ts and Tm in Table 1.

In determining multi-channel switching patterns, the maximum
number of control channels that can be switched together is bound to a
given number to increase the implementation efficiency. The reduction
ratios of switching time with different maximum number of channels
being switched together are shown in Fig. 9. As expected, the reduction
ratios increase as the numbers of multiple channels switching together
increase. However, a further increase from 3 to 4 does not lead to
significant performance improvement, justifying the bound set in the
proposed method.

6 CONCLUSION
In this paper, a general framework to generate control logic for flow-
based microfluidic biochips has been proposed. By introducing the
multi-channel switching scheme, the time required for switching
valves can be reduced significantly. Compared with the traditional
design with direct connections, the proposed control logic also uses
fewer control valves. Furthermore, independent backup control paths
have also been introduced to improve fault tolerance of the automati-
cally generated control logic. The proposed method is based on ILP
formulation. In the future work heuristic techniques will be introduced
to improve its scalability.

RA
30 CP

A
mR
NA R0 R1 R2

0

20

40

60

Sw
itc

hi
ng

tim
e
re
du

ct
io
n
(%
)

Max_Q = 2
Max_Q = 3
Max_Q = 4

Figure 9: Reduction of total channel switching time under dif-
ferent multiplexing distances

ACKNOWLEDGMENT
Y. Zhu, B. Li and U. Schlichtmann were supported by Deutsche Forschungs-
gemeinschaft (DFG) through TUM International Graduate School of Science
and Engineering (IGSSE). T.-Y. Ho was supported in part by the Technical
University of Munich – Institute for Advanced Study, funded by the German
Excellence Initiative and the European Union Seventh Framework Programme
under grant agreement n◦ 291763.

REFERENCES
[1] J. M. Perkel, “Microfluidics: Bringing new things to life science,” Science, vol. 322,

no. 5903, pp. 975–977, 2008.
[2] I. E. Araci and S. R. Quake, “Microfluidic very large scale integration (mVLSI)

with integrated micromechanical valves,” Lab Chip, vol. 12, pp. 2803–2806, 2012.
[3] W. H. Minhass, P. Pop, J. Madsen, and F. S. Blaga, “Architectural synthesis of

flow-based microfluidic large-scale integration biochips,” in Proc. Int. Conf. on
Compilers, Architecture, and Synthesis for Embed. Sys., 2012, pp. 181–190.

[4] C. Liu, B. Li, H. Yao, P. Pop, T.-Y. Ho, and U. Schlichtmann, “Transport or store?
Synthesizing flow-based microfluidic biochips using distributed channel stor-
age,” in Proc. Design Autom. Conf., 2017, pp. 49:1–49:6.

[5] Q. Wang, H. Zou, H. Yao, T.-Y. Ho, R. Wille, and Y. Cai, “Physical co-design of
flow and control layers for flow-based microfluidic biochips,” IEEE J. Technol.
Comput. Aided Design, vol. 37, no. 6, pp. 1157–1170, 2018.

[6] C.-X. Lin, C.-H. Liu, I.-C. Chen, D. T. Lee, and T.-Y. Ho, “An efficient bi-criteria
flow channel routing algorithm for flow-based microfluidic biochips,” in Proc.
Design Autom. Conf., 2014, pp. 141:1–141:6.

[7] A. Grimmer, Q. Wang, H. Yao, T.-Y. Ho, and R. Wille, “Close-to-optimal place-
ment and routing for continuous-flow microfluidic biochips,” in Proc. Asia and
South Pacific Des. Autom. Conf., 2017, pp. 530–535.

[8] K. Hu, F. Yu, T.-Y. Ho, and K. Chakrabarty, “Testing of flow-based microflu-
idic biochips: Fault modeling, test generation, and experimental demonstration,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 33, no. 10, pp. 1463–
1475, 2014.

[9] K. Hu, T. A. Dinh, T.-Y. Ho, and K. Chakrabarty, “Control-layer routing and
control-pin minimization for flow-based microfluidic biochips,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 36, no. 1, pp. 55–68, 2017.

[10] H. Yao, T.-Y. Ho, and Y. Cai, “PACOR: practical control-layer routing flow with
length-matching constraint for flow-based microfluidic biochips,” in Proc. De-
sign Autom. Conf., 2015, pp. 142:1–142:6.

[11] Q.Wang, S. Zuo, H. Yao, T.-Y. Ho, B. Li, U. Schlichtmann, and Y. Cai, “Hamming-
distance-based valve-switching optimization for control-layer multiplexing in
flow-based microfluidic biochips,” in Proc. Asia and South Pacific Des. Autom.
Conf., 2017, pp. 524–529.

[12] K. S. Elvira, X. C. i Solvas, R. C. R.Wootton, and A. J. deMello, “The past, present
and potential for microfluidic reactor technology in chemical synthesis,” Nature
Chemistry, no. 5, pp. 905–915, 2013.

[13] L. M. Fidalgo and S. J. Maerkl, “A software-programmable microfluidic device
for automated biology,” Lab Chip, vol. 11, pp. 1612–1619, 2011.

[14] T.-M. Tseng, B. Li, M. Li, T.-Y. Ho, and U. Schlichtmann, “Reliability-aware syn-
thesis with dynamic device mapping and fluid routing for flow-based microflu-
idic biochips,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 35,
no. 12, pp. 1981–1994, 2016.

[15] C. Liu, B. Li, B. B. Bhattacharya, K. Chakrabarty, T.-Y. Ho, and U. Schlichtmann,
“Testing microfluidic fully programmable valve arrays (FPVAs),” in Proc. Design,
Autom., and Test Europe Conf., 2017, pp. 91–96.

[16] J. Melin and S. Quake, “Microfluidic large-scale integration: the evolution of de-
sign rules for biological automation,” Annu. Rev. Biophys. Biomol. Struct., vol. 36,
pp. 213–231, 2007.

[17] I. E. Araci, P. Pop, and K. Chakrabarty, “Microfluidic very large-scale integration
for biochips: Technology, testing and fault-tolerant design,” in Proc. Int. Euro.
Test Symp., 2015, pp. 1–8.

[18] W.-L. Huang, A. Gupta, S. Roy, T.-Y. Ho, and P. Pop, “Fast architecture-level syn-
thesis of fault-tolerant flow-basedmicrofluidic biochips,” in Proc. Design, Autom.,
and Test Europe Conf., 2017, pp. 1671–1676.

[19] J. S. Marcus, W. F. Anderson, and S. R. Quake, “Microfluidic single-cell mRNA
isolation and analysis,” Analytical Chemistry, vol. 78, no. 9, pp. 3084–3089, 2006.

