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Abstract—Reversible circuits found great interest in the past
as an alternative computation paradigm which can be beneficial
e.g. for encoder circuits, low power design, adiabatic circuits,
verification, and much more. Besides that, reversible circuits
provide the basis for many components of quantum circuits,
which by themselves emerged as a very promising computing
technology that, particularly these days, gains more and more
relevance. All that led to a steadily increasing demand for meth-
ods that efficiently and correctly design such circuits. Decision
diagrams play an important role in the design of conventional
circuitry. In the meantime, also their benefits for the design of the
newly emerging reversible and quantum circuits become evident.
In this overview paper, we review and illustrate past work on
decision diagrams for such circuits and sketch corresponding
design methods relying on them. By this, we demonstrate how
broadly decision diagrams can be employed in this area and what
benefits they yield for these emerging technologies.

I. INTRODUCTION

While the vast majority of circuits and systems rely on
a conventional computation paradigm, alternative schemes of
computations may provide potential for further technologies
and/or applications. Reversible circuits are a corresponding
example as they have been shown to be beneficial e.g. for
coding/encoding [42], low-power design [4], [5], [14], adia-
batic circuits [3], [25], verification [2], or on-chip intercon-
nects [36], [38]. In all these applications, the main property
of reversible logic, namely that corresponding circuits only
realize bijections which map a given input pattern to a unique
output pattern and, by this, allow for computations in both
directions is exploited.

Besides that and related to reversible logic, the domain of
quantum circuits [19] received steadily increasing attention.
Here, qubits rather than conventional bits are utilized which
allow for exploiting quantum-physical phenomena such as
superposition and entanglement. This provides the basis for
quantum parallelism, i.e. the ability to conduct operations on
an exponential number of basis states concurrently, and, by
this, plenty of applications in domains such as quantum chem-
istry, machine learning, cryptography, search, or simulation

exist where conventional systems reach their limits [12], [18],
[28]. Particular in the recent past, this domain gained more
and more relevance with companies such as Google, IBM,
Microsoft, etc. getting more and more involved. Since all quan-
tum computations are inherently reversible in nature, reversible
and quantum circuits employ many similarities which is why
many accomplishments in the domain of reversible circuits
also can be employed in the domain of quantum circuits.

This broad variety of applications eventually led to a
steadily increasing demand for methods that efficiently and
correctly design such circuits. Accordingly, this area has been
intensely considered by researchers worldwide in the past
years (for overviews of the respective work we refer to [10],
[26]).

In this overview paper, we put a particular emphasis on cor-
responding methods which rely on decision diagrams. In fact,
decision diagrams such as Binary Decision Diagrams (BDDs,
[6]), Kronecker Functional Decision Diagrams (KFDDs, [8]),
or Binary Moment Diagrams (BMDs, [7]) played an important
role in the design of conventional circuitry and have been
applied for numerous design tasks in this domain (see e.g. [9],
[15]). And although the concepts of reversible and partic-
ularly quantum circuits are fundamentally different to that,
some decision diagram solutions have already been proposed
and proven useful for design automation in these emerging
domains.

More precisely, the most prominent proposals comprise the
Quantum Decision Diagram (QDD, [1]), the Quantum Infor-
mation Decision Diagram (QuIDD, [31]), the X-decomposition
Quantum Decision Diagram (XQDD, [34]) as well as the
Quantum Multiple-Valued Decision Diagram (QMDD, [24]).
These decision diagrams have been used in various applica-
tions such as synthesis (see e.g. [1], [30]), simulation (see
e.g. [11], [33], [39]), and verification (see e.g. [32], [34], [37])
of reversible and quantum circuits.1

1For a comprehensive overview of these diagrams we refer to [20, Chap. 3].



In the following, we will review and illustrate selected pre-
vious work on decision diagrams for reversible and quantum
circuits as well as corresponding design methods relying on
them. To this end, we will focus on decision diagrams identical
or similar to the QMDD whose concepts are briefly motivated
and reviewed in the following section. Afterwards, Section III
illustrates how QMDDs can be utilized for typical design
tasks such as synthesis, verification, and simulation. During
all that, we will not provide a comprehensive description, but
aim to sketch the main ideas while referring to the respective
original work for a more detailed treatment. By this, we
exemplarily demonstrate how broadly decision diagrams are
already employed in this area and what benefits they yield for
these emerging technologies. References are provided to equip
the interested reader with more comprehensive descriptions
and implementations.

II. DECISION DIAGRAMS

FOR REVERSIBLE AND QUANTUM LOGIC

We start this work by providing a motivation for decision
diagrams in reversible and quantum logic. Similar to conven-
tional logic, reversible and quantum function representations
suffer from an exponential complexity which is aimed to be
coped by decision diagrams. This is discussed in more detail
next. After that, an intuition of the main concepts of the
decision diagrams considered in this paper is provided.

A. Motivation

Reversible and quantum circuits obviously realize reversible
and quantum functions. For details on the background for
both, we refer to the respective literature such as [19] and
focus on their function representation in the following. In
fact, reversible and quantum functions can be represented by
matrices defined as follows:

Definition 1. A reversible Boolean function f : Bn → Bn
defines an input/output mapping where the number of inputs
is equal to the number of outputs and where each input pattern
is mapped to a unique output pattern. This can be described
using a permutation matrix describing a permutation π of the
set {0, . . . , 2n−1}, i.e. a 2n×2n matrix P = [pi,j ]2n×2n with
pi,j = 1 if i = π(j) and 0 otherwise, for all 0 ≤ i, j < 2n.
Each column (row) of the matrix represents one possible input
pattern (output pattern) of the function. If pi,j = 1, then the
input pattern corresponding to column j maps to the output
pattern corresponding to row i.

Example 1. Fig. 1a shows a permutation matrix describing
a reversible function that maps e.g. input pattern 00 to the
output pattern 10 (denoted by the 1-entry in the first column
of the matrix).

Quantum functions are similar, but work on so-called qubits
rather than conventional (i.e. Boolean) bits. A qubit can
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Fig. 1: Representation for reversible and quantum Functions

represent two basis states 0 and 1 as well as superpositions of
the two. More formally:

Definition 2. A qubit is a two-level quantum system, described
by a two-dimensional complex Hilbert space. The two orthog-
onal basis states |0〉 ≡

(
1
0

)
and |1〉 ≡

(
0
1

)
are used to represent

the Boolean values 0 and 1. The state of a qubit may be written
as |x〉 = α|0〉 + β|1〉, where the amplitudes α and β are
complex numbers with |α|2 + |β|2 = 1.

The quantum state of a single qubit is denoted by the
vector

(
α
β

)
. The state of a quantum system with n > 1

qubits can be represented by a complex-valued vector of
length 2n, called the state vector. According to the postulates
of quantum mechanics, the evolution of a quantum system can
be described by a series of transformation operations satisfying
the following:

Definition 3. A quantum operation over n qubits can be
represented by a unitary transformation matrix, i.e. a 2n× 2n

matrix U = [ui,j ]2n×2n with

• each entry ui,j assuming a complex value and
• the inverse U−1 of U being the conjugate transpose

matrix (adjoint matrix) U† of U (i.e. U−1 = U†).

Every quantum operation is reversible since the matrix
defining any quantum operation is invertible. At the end of the
computation, a qubit can be measured causing it to collapse to
a basis state. Then, depending on the current state of the qubit,
either a 0 (with probability of |α|2) or a 1 (with probability
of |β|2) results. The state of the qubit is destroyed by the act
of measuring it.

Example 2. Consider the quantum operation H defined
by the unitary matrix shown in Fig. 1b which is the
well-known Hadamard operation [19]. Applying H to the
input state |x〉 =

(
1
0

)
, i.e. computing H × |x〉, yields a new

quantum state |x′〉 = 1√
2

(
1
1

)
. For |x′〉, α = β = 1√

2
.

Measuring this qubit would either lead to a Boolean 0 or
a Boolean 1 with a probability of | 1√

2
|2 = 0.5 each. This

computation represents one of the simplest quantum circuits—
a single-qubit random number generator.
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B. Compact Representation of Matrices

The core idea for obtaining compact representations of the
permutation and transformation matrices occurring in the study
of reversible and quantum functions is to identify redundancies
in the matrices and to represent recurring patterns, i.e. identical
or similar sub-matrices, by shared structures.

To this end, a matrix of dimension 2n × 2n is partitioned
into four sub-matrices of dimension 2n−1 × 2n−1 as follows:

M =

[
M00 M01

M10 M11

]
The partitioning process can recursively be applied to each
of the sub-matrices and to each of the subsequent levels of
sub-matrices until one reaches the terminal case where each
sub-matrix is a single matrix entry.

Now, the core idea of QMDDs [24] is to represent
this matrix decomposition in terms of a Directed Acyclic
Graph (DAG) and to represent identical sub-matrices by
shared nodes. As QMDDs additionally allow to annotate edge
weights, this also allows to use shared nodes for structurally
equivalent matrices that only differ by a scalar factor.

Example 3. Fig. 2b shows the QMDD for the transformation
matrix from Fig. 2a. Here, the single root node (labeled q0)
represents the whole matrix and has four outgoing edges
to nodes representing the top-left, top-right, bottom-left, and
bottom-right sub-matrix (from left to right). This decomposi-
tion is repeated at each partitioning level until the terminal
node (representing a single matrix entry) is reached. Note that
a single node at the q1 level is sufficient in our case, since
the first three 2×2 sub-matrices are identical and the bottom-
right matrix differs only by the scalar factor −1. During the
construction of the QMDD, this scalar factor is identified and
annotated to the corresponding edge. Similarly, the common
multiplier 1√

2
is extracted and annotated to the root edge.

Moreover, efficient algorithms have been presented for
applying operations like matrix addition or multiplication
directly on the QMDD data-structure. Overall, QMDDs allow
for both, a compact representation as well as an efficient
manipulation of permutation/transformation matrices. As a

x3 x′
3

x2 x′
2

x1 x′
1

1

1

1

g1

1

0

1

g2

0

0

1

g3

0

0

1

g4

0

0

1

Fig. 3: Reversible circuit

consequence, they have been used in a broad variety of
applications in the design of reversible and quantum circuits.
This will be discussed in more detail in the following.

III. APPLICATION IN THE

DESIGN OF REVERSIBLE AND QUANTUM CIRCUITS

This section illustrates how decision diagrams such as the
one reviewed above can be utilized for typical design tasks
such as synthesis, verification, and simulation. To this end, we
first sketch the premise of the respective design task followed
by an illustration of how decision diagrams help in this regard.

A. Synthesis

Synthesis constitutes the task of realizing a reversible or
quantum circuit for a given function. This obviously is one of
the most important steps in the design of circuits and system
as it provides the user with first realizations of the desired
function. To this end, a circuit model including a gate library
(realizing the respective reversible or quantum operations) is
used. In terms of reversible circuits, the commonly used gate
library is formed by generalized Toffoli gates.

Definition 4. A Toffoli gate gi = TOF(Ci, ti) is composed
of a set Ci ⊆ {x+j |xj ∈ X} ∪ {x

−
j |xj ∈ X} of positive and

negative control lines (where X denotes the set of all circuit
lines) and a target line ti ∈ X with {t−i , t

+
i } ∩ Ci = ∅.

Furthermore, a line must not occur both as positive and as
negative control line in a gate, i.e. {x+j , x

−
j }∩Ci 6= {x

+
j , x

−
j }.

Then, the value of the target line ti is inverted by gate gi iff all
positive (negative) control lines are assigned one (zero). All
other lines are passed through the gate unaltered. A cascade
of such gates G = g1g2 . . . gl forms a reversible circuit.

Example 4. Fig. 3 shows a reversible circuit composed of
three circuit lines and four Toffoli gates. Furthermore, the
circuit lines are annotated with their respective value when
applying input combination x3x2x1 = 111. The first gate g1
inverts the value of target line x2, because the positive control
line x+3 is assigned 1. Gate g2 inverts the value of target
line x3, because the control lines x−2 and x+1 are assigned 0
and 1, respectively. The remaining two gates do not alter the
value on any circuit lines, because the control lines are not
assigned accordingly.
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Fig. 4: Effects of applying Toffoli gates to QMDDs

Several approaches have been proposed which conduct syn-
thesis by applying such gates until the represented functional-
ity evaluates to the identity function (typical representatives of
such a scheme are transformation-based synthesis [17], [27] as
well as approaches based on Reed-Muller expansion [13] or
Reed-Muller Spectra [16]). More precisely, assume the func-
tion to be synthesized is described by a matrix M . Then, since
all reversible and quantum operations are inherently reversible,
an inverse M−1 exists and their product M · M−1 = I

yields the identity matrix. Consequently, if a cascade G of
gates is determined which transforms M to the identity, a
circuit realizing M−1 results. Reversing G (easily possible
by reversing the gate order and replacing each gate with its
inverse) yields a circuit that realizes M . However, methods
relying on such a scheme (such as [13], [16], [17], [27]) suffer
from the exponential complexity of the function description.

Since decision diagrams often allow for a compact repre-
sentation of the function to be synthesized, they provide a
suitable solution to this problem. Moreover, since they addi-
tionally offer efficient capabilities for function manipulation,
corresponding transformations can easily be conducted.

Example 5. Consider the root node of the QMDD shown in
Fig. 4a. To establish the identity for this node (the top-right
and the bottom-left sub-matrix are zero matrices), we apply
the gate TOF(∅, x2). This simply exchanges the first (third)
and the second (fourth) edge of the root node of the QMDD.
The resulting QMDD is shown in Fig. 4b. To establish the
identity for the right-most x1-node, we again need to apply a
Toffoli gate with target line x1. To ensure that the other node
labeled x1 is not modified either (this node already represents
the identity), we add a positive control line x+2 to the gate
(i.e. TOF({x+2 }, x1)). This way, only the nodes are affected
that can be reached through the fourth edge of the root node
(i.e. the node labeled x2)—eventually resulting in the QMDD
representing the identity shown in Fig. 4c.

Approaches such as proposed in [30] and further improved
in [40] successfully realize these concepts and allow for an
efficient (and scalable) synthesis of reversible circuits using
decision diagrams.

1
1

1

1(a) (b) (c)

Fig. 5: Proposed global synthesis scheme.

However, in terms of quantum circuits, additionally
quantum-mechanical effects (represented by the unitary ma-
trix) have to be considered when determining a gate sequence
yielding the identity matrix. Although significantly more com-
plicated, similar approaches can be employed here as well.
More precisely, the matrix is transformed in three steps (as
also illustrated in Fig. 5):

(a) Eliminate superposition, i.e. apply quantum gates so that
all multiple non-zero matrix entries in each column are
combined to a single non-zero entry.

(b) Move to diagonal, i.e. apply quantum gates which move
the remaining non-zero entries to the diagonal of the
matrix.

(c) Remove phase shifts, i.e. apply quantum gates which
transform the diagonal entries to 1—eventually yielding
the identity matrix.

Also these steps can accordingly be conducted using decision
diagrams as discussed in [21], [23].

Finally, note that all above-mentioned approaches require a
reversible description of the function to be synthesized in order
to work properly. However, it is often the case that (Boolean)
functions are to be realized which are originally described
in a non-reversible way, i.e. output patterns are not unique.
Then, a so-called embedding is to be conducted in the first
place. To this end, corresponding extensions (e.g. in terms
of additional primary outputs; called garbage outputs) are
employed on the function which allow to explicitly distinguish
non-unique output patterns—making the function reversible.
Since also here, a function in its entirety has to be considered,
decision diagrams as a means for compact representation have
successfully been utilized for this purpose (see e.g. [41]).
Moreover, they even have been employed to completely get rid
of this extra step and, instead, do a one-pass synthesis scheme
which combines embedding and synthesis (see e.g. [43], [44]).

B. Verification

Verification means the task of checking whether two struc-
turally different function descriptions are functionally equiva-
lent or not. Typical use cases include e.g. the situation in which
a designer wants to confirm whether the generated circuit
indeed realizes the desired function or whether an optimization
conducted on a circuit did not change its functionality. Those
are, in general, exponentially hard problems.
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For tasks like these, decision diagrams have already received
a well-known reputation for conventional circuits since the cor-
responding representations are inherently canonic (assuming a
fixed variable order) [6]. Luckily, for the decision diagrams
considered here, the same property exists. In fact, as proven
in [24], the representation illustrated in Section II-B is canonic.
Accordingly, two reversible or quantum functions can easily
be verified by simply generating the decision diagram in the
same fashion and comparing them (this has e.g. been evaluated
in [24], [37]).

Example 6. Consider the two quantum circuits shown in
Fig. 6. To determine whether these two circuits are equivalent,
we construct a QMDD describing the functionality for each
circuit. Since both circuits lead to the same QMDD (also
shown in Fig. 6), their equivalence is proven.

Moreover, this technique can be generalized for
multiple-valued reversible and quantum functionality as
demonstrated in [22].

C. Simulation

Simulation constitutes the task of determining the output
state for a given input state applied to a reversible or quantum
circuit. For reversible circuits, simulation is rather trivial as
basically only Boolean values are applied on the inputs which
can easily be evaluated considering reversible gates such as
Toffoli gates. Fig. 3 nicely shows this: the input pattern can
easily be propagated from left to right by checking whether all
control lines of a gate are set to the appropriate value (i.e. 1
for positive and 0 for negative controls) and flipping the target
line accordingly, while, at the same time, all remaining values
are passed through the gate unaltered.

In case of quantum circuits, however, a substantially harder
problem results.2 In fact, in this case, the respective input state
has to be provided in terms of a state vector so that it can be
evaluated with respect to a unitary matrix representing the
quantum operation to be simulated. The simulation step itself
can then be conducted by a matrix-vector multiplication.

2This also does not come with a surprise since, if simulating quantum
circuits would be trivial on a conventional machine, there would be no need
for a quantum circuit in the first place.

Example 7. Consider a quantum system composed of two
qubits which is currently in state |x〉 = |00〉. Applying an
H-operation to the first qubit (as defined by the matrix shown
in Fig. 2a) yields a new state vector determined by

|x′〉 = 1√
2


1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1

×

1

0

0

0

 =
1√
2


1

0

1

0

 .

Also here, decision diagrams as reviewed above in Sec-
tion II-B can help as they already provide a compact represen-
tation for unitary matrices. However, additionally a representa-
tion of state vectors is required. Moreover, the quantum opera-
tions to be simulated (and, accordingly, methods to manipulate
matrices and vectors) as well as the (non-reversible) measure-
ment step needs to be supported. To this end, corresponding
solutions using decision diagrams have recently been proposed
in [39]. Eventually, this led to substantial improvements with
respect to currently available simulators such as LIQUi|〉 [35]
from Microsoft or qHiPSTER [29] from Intel. In fact, while
e.g. LIQUi|〉 is capable of simulating Shor’s Algorithm (a well-
known quantum method for factorization [28]) for at most 31
qubits in more than 30 days, the simulation approach based
on decision diagrams completes this task within a minute—
showing an impressive display of the capabilities of these data-
structures.

IV. CONCLUSIONS

In this work, we provided an overview of decision diagrams
for reversible and quantum circuits as well as their potential
for the design of these emerging technologies. While already
established in conventional circuit design for many decades,
decisions diagrams for the area considered here are still not
that common. However, with the approaches and the potential
from the recent past as discussed in this work as well as
alternative diagram types such as QDDs, QuIDDs, or XQDDs,
a case can be made that decision diagrams might become
similarly important for reversible and quantum circuit design
as they have done for the design of conventional circuits and
systems.
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