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Abstract—Research on reversible circuits has gained signif-
icance due to its application in quantum computations and
many further areas such as the design of encoders. At the
same time, the use of multiple-valued logic gained impor-
tance since this reduces the number of required entities in
physical systems (e.g. in a future quantum computer). While
most research is still conducted in the Boolean domain, there
exist only few approaches which realize reversible circuits for
multiple-valued logic. Moreover, most of the previously proposed
solutions for synthesis of multiple-valued reversible circuits
are not scalable and consider ternary (i.e. 3-valued circuits)
only. Instead of overcoming these issues by developing new
synthesis approaches for multiple-valued reversible circuits from
scratch, we propose to utilize the recent accomplishments in
the design of Boolean reversible circuits and to generalize
them for multiple-valued logic. To this end, we discuss how
to generalize Quantum Multiple-valued Decision Diagram based
(QMDD-based) synthesis – a synthesis approach for Boolean
reversible circuits which has been proven to be scalable and
which has been used in several recently developed design flows.
The discussions eventually show how to bridge the development
gap between Boolean and multiple-valued logic for reversible
circuits.

I. INTRODUCTION

Recently, there has been a lot of research in reversible
circuits synthesis, since this kind of circuits is required to
model the conventional components used in quantum compu-
tations [17]. Besides that, reversible circuits have successfully
been applied in verification tasks [1] as well as in the design of
on-chip interconnects [29], [32] and encoders in general [38].

At the same time, multiple-valued reversible circuits re-
ceived interest since they allow for reducing the physical
resources needed for realizing logic functions. For instance,
ternary logic realization requires 63% fewer circuit lines
compared to an equivalent Boolean realization. Moreover,
multiple-valued quantum gates have been shown to be phys-
ically realizable using ion trap technology [16]. Furthermore,
many physical systems work in the multiple-valued domain
which implies that multiple-valued logic realizations can help
in reducing the cost of data conversion.

However, despite these advantages, only a rather limited
number of synthesis methods for multiple-valued reversible
circuits have been proposed yet (see e.g. [5], [6], [7], [8],
[9], [21], [12]). Moreover, most of them suffer from a rather
poor scalability and discuss ternary circuits only instead of
multiple-valued circuits in general. In contrast, there exist a
huge collection of scalable synthesis approaches as well as
different design flows for synthesizing reversible circuits in
the Boolean domain.

More precisely, structural approaches became popular in
which the function to be realized is represented by con-
ventional circuit descriptions (e.g. decision diagrams or gate

netlists). Then, these building blocks are mapped to their
reversible counterparts [33], [28]. Since most of them are not
reversible, new variables are required for almost all of these
mapped blocks – leading to solutions that yield reversible
circuits where the number of circuit lines is magnitudes above
the theoretical minimum (as e.g. observed in [31]).

As a complementary scheme, functional approaches have
been developed that rely on a functional description of the
function to be realized. The general flow of functional syn-
thesis approaches is composed of two distinct steps. First, the
function to be realized has to be embedded into a reversible
one by adding ancillary inputs and garbage outputs [10],
[26], [36]. After this embedding step, the resulting function
is realized by a reversible circuit. While initial approaches
were limited to a rather small number of variables [23], [13],
[11], scalable synthesis algorithms which are based on efficient
data structures like decision diagrams or Boolean satisfiability
have been proposed in the recent years [25], [24]. However, the
embedding step more and more constitutes the major issue of
the functional approaches since it adds a significant complexity
to the function to be realized (by adding inputs and outputs).

Hence, as a kind of a compromise, new design flows came
up that try to combine the advantage of both design flows while
overcoming their drawbacks. As an example, one-pass design
has recently been proposed, where embedding and synthesis
are inherently merged [37], [39]. Overall, the development
of synthesis approaches for reversible circuits in the Boolean
domain has seen impressive progress in the past years.

In this work, we aim to utilize this progress also
for the multiple-valued logic domain. More precisely, we
propose to generalize the recent accomplishments in the
design of Boolean reversible circuits for the multiple-
valued domain instead of developing new approaches from
scratch. To this end, we propose to take a closer look at
Quantum Multiple-valued Decision Diagram based (QMDD-
based) synthesis [25] – one of the most scalable functional
synthesis approaches that has recently been improved sig-
nificantly [35] and that can be used for recently developed
design flows that aim for merging the advantages of structural
and functional approaches while overcoming their issues (as
demonstrated e.g. in [37]). As the name suggests, QMDDs can
be utilized to compactly represent multiple-valued quantum
functionality (and, thus, reversible functions) – allowing for
generalizing this scalable synthesis approach for multiple-
valued logic. This way, the generalization developed in this
work may serve as basis for further generalizing concepts
from the purely Boolean world to the multiple-valued do-
main – bridging the development gap between Boolean and
multiple-valued reversible circuits.



TABLE I: Reversible ternary function

x2 x1 x′2 x′1
0 0 0 0
0 1 0 1
0 2 1 2
1 0 2 1
1 1 0 2
1 2 2 0
2 0 1 0
2 1 1 1
2 2 2 2

This paper is structured as follows. In Section II, we
review the background of multiple-valued reversible func-
tions as well as multiple-valued reversible circuits. In Sec-
tion III, we discuss the required aspects of QMDDs (neglecting
quantum-related issues). Based on that, we show how to gen-
eralize QMDD-based synthesis for multiple-valued reversible
circuits in Section IV. In Section V, we conclude the paper
and give a brief outlook of future research tasks.

II. BACKGROUND

In this section, we briefly recapitulate multiple-valued re-
versible functions as well as multiple-valued circuits.

A. Reversible Multiple-Valued Functions

We define multiple-valued functions as follows.

Definition 1. Let Sr = {0, 1, . . . , r − 1}. Then, the mapping
f : Sn

r → Sm
r describes a multiple-valued function. More

precisely, f is called an r-valued n-input m-output function
and r is called the radix of f .

In this paper, we focus on reversible multiple-valued func-
tions, i.e. functions that allow for computing the outputs from
the inputs as well as computing the inputs from the outputs.

Definition 2. An r-valued function f : Sn
r → Sm

r is reversible,
iff m = n and f forms a bijection.

Example 1. Consider the 3-valued (i.e. ternary) function f
shown by means of a truth table in Table I. The function is
reversible, since the number of inputs is equal to the number of
outputs and each output pattern occurs only once. Therefore,
the output patterns are a permutation of the input patterns.

Since a reversible function describes a permutation of the
input patterns, we also use permutation matrices to describe
reversible multiple-valued functions. A permutation matrix can
be defined as follows.

Definition 3. Let f : Sn
r → Sn

r be an r-valued reversible
function. Then, the permutation matrix M of f is a rn × rn

dimensional matrix with elements mi,j (0 ≤ i, j < rn) such
that

mi,j =

{
1 if f(j) = i,

0 otherwise.

The columns and rows of a permutation matrix represent
the inputs and outputs of a function f , respectively. If an input
is mapped to an output by f , the corresponding entry in the
permutation matrix is set to 1. Consequently, each column
and each row of the permutation matrix contains exactly one
1-entry.
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00 1 0 0 0 0 0 0 0 0
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02 0 0 0 0 1 0 0 0 0

10 0 0 0 0 0 0 1 0 0

11 0 0 0 0 0 0 0 1 0

12 0 0 1 0 0 0 0 0 0

20 0 0 0 0 0 1 0 0 0

21 0 0 0 1 0 0 0 0 0

22 0 0 0 0 0 0 0 0 1
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Fig. 1: Permutation matrix of the function of Table I

Example 1 (continued). Fig. 1 shows the permutation matrix
Pf of f . The 1-entry in the third column of the matrix
represents a mapping from input combination 02 to output
pattern 12.

B. Multiple-Valued Reversible Circuits

Reversible circuits are structurally different than conven-
tional ones. In fact, since no feedback and fanout is allowed,
these kind of circuits are composed of a set of circuit lines
that are passed through a sequence of reversible gates [4],
[22]. Since each gate is reversible, the overall circuit realizes
a reversible function.

Definition 4. Let X = {xn, xn−1, . . . x1} be a set of n circuit
lines. Then, the pair R(X,G) describes a reversible circuit,
where G = g1g2 . . . gh is a cascade of reversible gates gi.
Each reversible gate gi may change the value of certain circuit
lines.

In Boolean reversible circuits, the Toffoli gate [27] got
most established as building block, since it is reversible and
universal (i.e. any Boolean reversible function can be realized
with Toffoli gates only). The concept of a Toffoli gate can
easily be extended to any r-valued logic, where r is prime [3].
Here, the respective gates are cycle gates, negations, as well as
controlled versions of them. This gate set has been used e.g. for
ternary reversible circuit synthesis in [5], [6], [7], [8], [9], [21],
[12]. Other studies of universal multiple-valued quantum gates
(and, thus, including multiple-valued reversible gates) as well
as their realization with trapped ions are provided in [16].
From the findings discussed above, we generalize multiple-
valued reversible unary gates as follows.

Definition 5. Let X = {xn, xn−1, . . . x1} be a set
of n circuit lines. An r-valued reversible unary gate
g = U(C, t, Zr) is then composed of a set of control lines
C ⊆ {xk

i |0 ≤ k < r, xi ∈ X}, a target line t ∈ X , as
well as a permutation of r elements denoted Zr. Each
circuit line can occur at most once in the set of con-
trol lines, i.e. xk

i ∈ C ∧ xl
i ∈ C =⇒ k = l. Furthermore,

the target line must not occur in the set of control lines,
i.e. {tk|0 ≤ k < r} ∩ C = ∅. If all control lines xk

i ∈ C
evaluate to their polarity k, the value of the target lines is
changed according to permutation Zr.
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Fig. 2: 3-valued (ternary) reversible circuit

In this paper, we only use permutations describing an
addition of s modulo r (denoted by Zr(+s) in the following)
as well as permutations that swap two values s, t ∈ Sr (de-
noted Zr(s|t) in the following). For a graphical visualization
of multiple-valued circuits we adapt the representation used
in [12], [15]. More precisely, we use black cycles for control
lines (labeled with the polarity k ∈ Sr) and rectangles labeled
with the appropriate permutation to represent the target lines.

Example 2. Consider the ternary (3-valued) reversible circuit
shown in Fig. 2 that is composed of three circuit lines and
three reversible gates. Furthermore, the circuit is labeled with
the circuit lines for input x3x2x1 = 211. The first gate
g1 = U({x2

3, x
1
2}, x1, Z3(+2)) has control lines x3 and x2

with a polarity of 2 and 1, respectively, and target line x1.
Since the value of x3 and x2 matches the polarity of the re-

spective control lines, the permutation Z3(+2) =

(
0 1 2
2 0 1

)
is applied to target line x1. Consequently, its values changes
from 1 to 0. The second gate g2 = U({x0

1}, x3, Z3(0|1))
has control line x1 with polarity 0 and target line x3.
Even though the control line has assigned the matching
value, the value of x3 is not altered since the permutation

Z3(0, 1) =

(
0 1 2
1 0 2

)
is the identity for element 2. The third

gate g3 = U({x2
2}, x1, Z3(+1)) does not change the value of

target line x1 either since the value assigned to the circuit line
x2 (i.e. 1) does not match the polarity of the control line x2

2
of g3.

III. QUANTUM MULTIPLE-VALUED DECISION DIAGRAMS

In this section, we review Quantum Multiple-Valued Deci-
sion Diagrams (QMDDs, [14], [20]). They allow for a compact
representation of the unitary matrices used in quantum com-
putations. Since permutation matrices are a special form of
unitary matrices, QMDDs are also inherently suited for com-
pactly representing r-valued permutation matrices. Since all
these matrices typically include several redundancies, QMDDs
allow for a compact representation in many cases – leading
to rather scalable approaches for the simulation of quantum
computations [34], quantum circuit synthesis [19], [18], or
verification [30]. In the following, we omit quantum related
issues of QMDDs and purely focus on the concepts required
for the of synthesis of multiple-valued reversible circuits.

The general idea of QMDDs relies on a partition of the
permutation matrix over its variables. This is similar to Binary
Decision Diagrams (BDDs, [2]) that are frequently used in
conventional design. In BDDs, a function is recursively de-
composed (e.g. by Shannon decomposition) into sub-functions
over its variables xi. This decomposition is represented by a
node labeled xi. The two sub-functions are represented by two
outgoing edges pointing to another decision diagram node or a
terminal (i.e. a constant Boolean value). Even though this ends

x2

x1 x1 x1 x1

1

0 0 0

000 0000 0000000
0 00000000 00

00000

Fig. 3: QMDD representing the matrix of Fig. 1

up in an exponentially large decision diagram in most cases
(especially for random functions), BDDs allow for a rather
compact representation of most practically relevant functions
by sharing nodes that represent equal sub-functions.

QMDDs use a similar decomposition scheme for matrices.
Recall that a permutation matrix represents a mapping from
inputs (columns) to outputs (rows). In an r-valued logic there
are r2 possibilities how one input xi can be mapped to an
output x′i. In the following, we denote such a mapping from
an input to an output as a mapping of a variable xi. We further
assume that the significance of a variable xi is defined by
its index, i.e. xi+1 is more significant that xi. Consider an
r-valued permutation matrix for n variables, i.e. an rn × rn

dimensional matrix. Decomposing this matrix over its most
significant variable xn yields r2 sub-matrices of dimension
rn−1 × rn−1, i.e.

M =


M0,0 M0,1 · · · M0,r−1
M1,0 M1,1 · · · M1,r−1

...
...

. . .
...

Mr−1,0 Mr−1,1 · · · Mr−1,r−1

 .

We represent this decomposition with a decision diagram
node labeled xn (i.e. the root node of the matrix) that has r2

outgoing edges. In the following, we use the convention that
mapping from k → l (i.e. sub-matrix Ml,k) for a variable is
represented by the (l·r+k+1)th outgoing edge of a node (from
the left; also denoted as edge ek�l). We recursively proceed
with this decomposition of the sub-matrices until a 1 × 1
dimensional matrix results, which is represented by a terminal
that holds the value of the matrix entry. To gain a compact
representation, we again use shared nodes whenever equal
sub-functions occur. For a simpler graphical visualization,
we represent zero matrices (i.e. matrices composed of zeros
only) with a zero stub independent of their size.1 This way, a
decision diagram with a single terminal node labeled 1 results.

Example 3. Consider again the permutation matrix (Fig. 1)
of the 3-valued reversible function shown in Table I. The
corresponding QMDD is shown in Fig. 3. The path to the
1-terminal highlighted in bold traverses the eighth edge of the
node labeled x0 (i.e. e1�2) as well as the third edge of the
node labeled x1 (i.e. e2�0). Consequently, the path represents
a mapping for variables x0x1 from 12 to 20 and, thus, the
1-entry in the sixth column of the permutation matrix shown
in Fig. 1.

1Note that, in QMDDs, these zero matrices are realized by an edge to the
1-terminal with an edge weight of 0.



Fig. 4: General flow of the synthesis approach
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Fig. 5: Identity structure for a ternary QMDD

IV. MULTIPLE-VALUED QMDD-BASED SYNTHESIS

In this section, we show how to generalize QMDD-based
synthesis (originally proposed in [25]) to the multiple-valued
domain. While the scalability of this functional approach
was already demonstrated in [25], further accomplishments
regarding scalability and the cost of the resulting circuits
have been proposed recently in [35]. Due to these reasons,
QMDD-based synthesis is one of the most promising methods
for reversible synthesis and has also been utilized recently to
develop new design flows in this research area [37], [39].

A. General Idea of Synthesis

The general task of a functional synthesis approach for
reversible circuits is to determine a cascade of reversible
gates G = g1g2g3 . . . gh that realizes the desired function M
(e.g. represented by means of a permutation matrix). To
this end, we apply gates to M until the identity (i.e. the
identity matrix) results. Since M ◦ M−1 = I , the cascade
G realizes M−1. Since G is a sequence of reversible gates, its
inverse G−1 (which realizes M due to reversibility) can easily
be formed by reversing the gate sequence and exchanging the
gates with their inverse. The inverse of each gate exists since
they are reversible (cf. Section II).

Consequently, when using a permutation matrix to describe
the function to be synthesized, the problem reduces to diago-
nalizing the matrix. In QMDD-based synthesis, the matrix is
diagonalized variable-wise – converging towards the identity
in each step. Fig. 4 visualizes the main synthesis flow for
a ternary reversible circuit with three variables. A 1-entry
(0-entry) in the matrix is visualized with a black (white)
square.

On a QMDD-level, such a matrix-diagonalization can be
realized by a breadth-first traversal of the QMDD. Each visited
node is thereby transformed to the identity structure. In the
identity structure, only mappings of form j → j (0 ≤ j < r)
are allowed. Since we consider fully specified reversible func-
tions, the corresponding edges must not point to a zero-matrix.
In contrast, all other edges (representing a mapping j → k
with j 6= k) must point to a zero-matrix.

Example 4. Fig. 5 shows the identity structure for 3-valued
(ternary) QMDDs. The first, the fifth, and the ninth edge
(i.e. edges e0�0, e1�1, and e2�2) point to a successor node,
while the remaining edges point to a zero-matrix (represented
by a zero-stub).

How such an identity structure can be established for a
QMDD node is discussed in the following section.

B. Transforming a QMDD Node to the Identity
In this section, we discuss how to transform a QMDD node

to the identity structure shown in Fig. 5. To this end, we
assume without loss of generality that we aim for transforming
a node of the QMDD labeled xi (n ≥ i ≥ 1)2 to the identity
and that all nodes labeled with a more significant variable
already establish the identity structure.

Since we aim for realizing the identity structure for a
QMDD node by applying the reversible gates reviewed in
Section II, we first analyze how they affect the QMDD. Recall
that a QMDD represents a permutation matrix. Applying a
reversible gate (i.e. another permutation matrix) means to
change the permutation matrix. Since we apply gates from left
to right (thus, affecting the inputs), this is indeed equivalent
to swapping columns in the matrix. To establish the identity
structure, one has to move all 1-entries to the sub-matrices
representing a mapping j → j. Since these 1-entries are
represented by paths to the 1-terminal in a QMDD, we define
a 1-path as follows.

Definition 6. Let xi be the label of an r-valued QMDD node.
Then, a path from this node to the 1-terminal is called 1-path
and is represented by a set that contains one literal for each
variable xj with i ≥ j ≥ 1. Each literal is composed of
a variable xj as well as a polarity t (0 ≤ t < r) and
is denoted xt

j . The polarity of a variable xj in the path is
determined by the input of the mapping represented by the
outgoing edge ek�l of the node labeled xj , i.e. k – leading to
a literal xk

j . All other paths of a node labeled xi (i.e. those
that do not end in the 1-terminal) are called 0-paths since they
they terminate in a zero stub (the zero terminal).

From the matrix perspective, a 1-path in the QMDD as de-
fined in Definition 6 describes an input combination (column)
that contains a 1-entry. A 0-path of a QMDD node describes a
column of the (sub) matrix that is solely composed of 0-entries
(it does not contain any 1-entry).

Example 5. Consider again the QMDD shown in Fig. 3. The
1-path highlighted in bold represents the set p = {x1

2, x
2
1}

since it traverses the edges e1�2 and e2�0 of the nodes
labeled x2 and x1, respectively. For simplicity in terms of
writing we also write paths as concatenation of their elements
(sorted descendant to the variable index) in the following,
i.e. p = x1

2x
2
1.

Based on the definition of 1-paths, we further define
so-called sets of 1-paths through the edges of a QMDD node.

Definition 7. Let xi be the label of an r-valued QMDD node.
Then, we define the set of 1-paths Pk�l (0 ≤ k, l < r) through
edge ek�l of this node as set of all 1-paths of the node that
traverse edge ek�l, i.e. all 1-paths that contain a literal xk

i .
Analogously, we define the set of 0-paths P k�l of the node as
set of all 0-paths that contain a literal xk

i .

Informally spoken, the sets of 1-paths of a node labeled xi

represent the columns of the sub-matrices resulting from a
decomposition over variable xi that contain a 1-entry. Since we

2Note that a node labeled xi represents a ri × ri dimensional matrix.



consider only fully specified reversible functions, the number
of 1-paths in the union of all sets of 1-paths through all edges
is ri, i.e.

∣∣∣⋃0≤k,l<r Pk�l

∣∣∣ = ri. Furthermore, the permutation
matrix contains exactly one 1-entry in each row and in each
column. Consequently, for any fixed output value l ∈ Sl, there
exist exactly ri−1 1-entries, i.e.

∣∣∣⋃0≤k<r Pk�l

∣∣∣ = ri−1.
From this, we can further conclude that for any fixed output

value l ∈ Sr the number of 0-paths in P l�l is equal to the
number of 1-paths in all other sub-matrices with input value l,
i.e.
∣∣P l�l

∣∣ = ∣∣∣⋃k∈Sr\{l} Pk�l

∣∣∣.
Example 6. Consider the root node of the QMDD
shown in Fig. 3. The set of 0-paths through edge e0�0,
i.e. P 0�0 = {x0

2x
2
1}, has the same cardinality as

the set of 1-paths through the edges ek 6=0�0,
i.e
⋃

k∈{1,2} = P1�0 ∪ P2�0 = {x1
2x

1
1}.

Consequently, the task of establishing the identity struc-
ture for a QMDD node can be reformulated as follows.
For any l ∈ Sr, we have to swap the 0-paths in P l�l with
the 1-paths in

⋃
k∈Sr\{l} Pk�l. To achieve this, we choose

any pj ∈ P l�l and determine the most similar 1-path
p′j ∈

⋃
k∈Sr\{l} Pk�l. In this regard, the most similar path

is the path in which the number of literals that occur in pj
and p′j with a different polarity is the minimum (similar to the
Hamming distance in the Boolean case). Note that the paths pj
and p′j differ by at least one literal, since they are in different
sub-matrices of the currently considered QMDD node. Hence,
they have a different polarity for the literal xi.

To swap the two paths that were chosen, one has to adjust
them. More precisely, all literals except the one for xi have to
be adjusted. This can easily be established by the reversible
gates reviewed in Section II. In fact, for each mismatching
literal for a variable xh (neglecting the literal for variable xi,
i.e. i > h > 1) one gate is required. Assume that a the literal pj
contains literal xs

h and that p′j contains literal xt
h (with s 6= t).

Then, a gate U({xk
i }, xh, Zr(+(s− t))) is required to adjust

the polarity of variable xh. The control variable xk
i with

polarity k ensures that p′j is changed without modifying pj .
The polarities are adjusted by adding s− t (modulo r) to the
value of variable xh.

Example 6 (continued). There exists only one 0-path
p = x0

2x
2
1 in P 0�0 as well as a single 1-path p′ = x1

2x
1
1 in the

set of 1-paths P1�0 ∪ P2�0. To adjust these paths (neglecting
the variable x2), the gate U({x1

2}, x1, Z3(+1) is required. The
control line x1

2 with polarity 1 ensures that path p′ is modified
while p does not change.

After adjusting each variable of a path (neglecting the most
significant variable xi), another unary gate is required to swap
the two paths pj ∈ P l�l and p′j ∈ Pk�l. To this end, a gate
U(pi \{xl

i}, xi, Z3(l|k)) is applied. The set of control lines is
the path that shall be swapped (excluding the literal for xi).
This way, a 1-path is moved to the edge el�l while a 0-path
is moved to another edge ek�l with k 6= l.

Example 6 (continued). To swap the paths p and p′ we apply
the unary gate U = ({x2

1}, x2, Z3(0|1)). This establishes the
identity of the root node in the QMDD for output value 0 as
shown in Fig. 6. Consequently, the first edge (i.e. edge e0�0)

x2

x1 x1 x1 x1

1

000 0

000 000 00000000 000 0000 0
0 00000

Fig. 6: Establishing the identity for value 0 of the root node

x2

x1 x1

1

000 000

000 000 0
0 0000

Fig. 7: QMDD with identity mapping for the root node

points to a successor node, while all other edges that represent
a mapping from or to value 0 (i.e. edges e1�0, e2�0, e0�1,
and e0�2) point to a 0-stub.

To obtain the identity for the currently considered node, we
have to repeat the procedure discussed above for all possible
output values l ∈ Sr.

Example 6 (continued). After establishing the identity for
value 0, we have to establish the identity for value 1. This
inherently establishes the identity mapping for value 2 since we
consider ternary circuits in this example. Furthermore, since
we have already established the identity for value 0, we do not
have to consider any sets of 1-paths that realize a mapping
from or to 0 (they must be empty).

The set of 0-paths P 1�1 = {x1
2x

0
1, x

1
2x

1
1} contains two

paths as well as the set of 1-paths P2�1 = {x2
2x

0
1, x

2
2x

1
1}.

Since the paths p1 = x1
2x

0
1 and p′1 = x2

2x
0
1 as well as the

paths p2 = x1
2x

1
1 and p′2 = x2

2x
1
1 are equal (neglecting the

literal for variable x2), we do not have to adjust them. Con-
sequently, we can immediately swap them with the unary gates
U({x0

1}, x2, Z3(1|2)) and U({x1
1}, x2, Z3(1|2)), respectively.

Fig. 7 shows the resulting QMDD, that established the identity
structure for the root node.

Up to this point, we have demonstrated how to transform
a QMDD node to the identity structure shown in Fig. 5.
However, when doing this, we have to ensure that no other
nodes that have already been transformed to the identity are
modified. To this end, we have to add further control lines to
each gate that is required to transform the currently considered
node. These additional control lines represent the path from
the top of the QMDD to the currently considered node and
ensure that no other node is modified.

Example 7. Consider again the QMDD shown in Fig. 7.
The node labeled x2 already establishes the identity structure
as well as the left node labeled x1. Since we do not want
to destroy the identity structure of one of these nodes when
transforming the right node labeled x1, we have to add the
control x2

2 to each gate that is required. The polarity of the



x2 x′2
x1 x′1+1

1

2

0|1

0

1|2

1

1|2 2

0|1

Fig. 8: Ternary reversible circuit resulting from QMDD-based
synthesis

control is 2 since the edge to the right node labeled x1

is reached by the edge e2�2. Consequently, one more gate
is required to establish the identity for the whole QMDD,
i.e. U({x2

2}, x1, Z3(0|1)). The resulting circuit is shown in
Fig. 8.

V. CONCLUSIONS

In this paper, we have shown how to generalize
QMDD-based synthesis for multiple-valued reversible circuits
– serving as basis for bringing recent accomplishments of
the area of reversible circuit synthesis from the Boolean
to the multiple-valued domain. This way, a concept is pro-
vided which bridges the design gap between Boolean and
multiple-valued reversible circuits by generalizing the synthe-
sis methods rather than developing them from scratch. In this
regard, QMDD-based synthesis serves as promising approach
since its internal data-structure inherently supports a compact
representation of multiple-valued reversible functions, it is
scalable, it has been recently improved, and it can be utilized
in recently developed new design flows for reversible circuit
synthesis.
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