
Synthesis of Reversible Circuits Using
Conventional Hardware Description Languages

Zaid Alwardi∗† Robert Wille‡§ Rolf Drechsler∗§

∗Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
†Collage of Engineering, Al-Mustansiriya University, Baghdad, Iraq

‡Institute for Integrated Circuits, Johannes Kepler University Linz, A-4040 Linz, Austria
§Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany
{alwardi,drechsler}@uni-bremen.de robert.wille@jku.at

Abstract—Hardware Description Languages (HDL) facilitate
the design of complex circuits and allow for scalable synthesis.
While rather established for conventional circuits, HDL-based
design of reversible circuits is in its infancy. This motivates the
question whether conventional HDLs can also be efficiently used
for the design of reversible circuits. This work investigates this
question and provides a basis towards a design flow that requires
only little knowledge of reversible computation. This eases the
acceptance of this non-conventional paradigm amongst designers
and stakeholders.

I. INTRODUCTION

The reversible computing paradigm is receiving increasing
attention (in particular for so-called emerging technologies)
and provides the basis for several applications including but
not limited to quantum computation [1], certain aspects of
low-power design [2], the design of adiabatic circuits [3], [4],
interconnects [5], [6], encoding and decoding devices [7], or
verification [8]. Reversible circuits, by definition, can only re-
alize bijective operations, i.e., functions that map each possible
input vector to a unique output vector. Then, computations
can be made in either direction. Due to this property, many
special characteristics and restrictions apply for reversible
circuits, which makes them rely on a significantly different
computation paradigm. Already a simple standard operation
like the logical AND illustrates the differences, as it is not
possible to determine the input values when the AND output
is 0.

As a consequence, new methods for the design and synthesis
of reversible circuits have been introduced. Thus far, the
majority of them focused on the realization of reversible
circuits derived from functional descriptions provided in terms
of truth tables [9], [10], two-level descriptions [11], deci-
sion diagrams [12], [13], [14], or similar (Boolean) function
representations. Obviously, these approaches are limited by
their restricted scalability and are not competitive to the
state-of-the-art design flows available for conventional circuits
and systems.

Hardware Description Languages (HDL) are an obvious
direction to address this problem. In fact, the design of
conventional circuitry heavily relies on established HDLs
such as VHDL or Verilog. For reversible circuit design,
there are hardly any comparable design languages available.
However, a clear trend towards higher levels of abstractions

can be seen and reversible description languages have recently
been proposed [15], [16]. They employ dedicated reversible
computations with their concepts and constrains, such as,
reversible signal assignments and reversible control logic. But
since, historically, the design focused on circuits following the
conventional computing paradigm, those concepts are usually
rather unfamiliar amongst HDL-designers.

This motivates the question whether reversible circuits can
also be designed with conventional HDLs such as VHDL.
Obviously, this would break with many concepts and may lead
to drawbacks such as the need to embed non-reversible HDL
description means into reversible circuitry (causing overhead
e.g., in terms of additional circuit lines). However, a more
accessible HDL and, hence, design flow may compensate for
this. Unfortunately, rather few discussions and evaluations on
the “costs” of designing reversible circuits using conventional
HDLs have been conducted yet.

In this work, we investigate reversible circuit synthesis from
the widely used hardware description language VHDL. The
findings from the resulting observations provide the basis
towards a design flow that requires only little knowledge of
the reversible computation paradigm.

The remainder of this work is structured as follows: Sec-
tion II provides a brief review of VHDL and the basics
of reversible circuits. Afterwards, the realization of signals
declared in the VHDL code is discussed Section III. Then,
the realizations of VHDL expressions and signal assignments
are covered in Section IV. The overall interconnection of
statements and components are discussed in Section V. Im-
proving the resulting circuits is proposed in Section VI. The
findings are discussed with case studies in Section VII, by
which differences and similarities of the proposed approach is
analyzed in comparison to a dedicated reversible HDL (namely
SyReC proposed in [15]). Finally, the paper is concluded in
Section VIII.

II. PRELIMINARIES

This section provides the necessary background to keep the
paper self-contained. It includes a brief review of VHDL that
is commonly used to describe circuits as well as a brief review
of reversible circuits.

1 entity sub is
2 port (a,b: in bit; f: out bit);
3 end entity test;
4

5 architecture data_flow of test is
6 signal x: bit;
7 begin
8 S1: x <= not b;
9 S2: f <= a and x;

10

11 end architecture data_flow;

Fig. 1. Behavioral VHDL description

A. Introducing VHDL

VHDL is a hardware description language designed to allow
the description of the structure of a circuit, i.e., its decomposi-
tion into subsystems as well as their interconnections. To this
end, established programming styles and different levels of ab-
stractions are utilized. Using VHDL, circuits can be simulated,
synthesized and verified before being manufactured [17]. More
precisely, a circuit is first defined by an entity declaration,
which introduces a name for the entity and lists the ports (input
and output signals). Hence, an entity declaration describes only
the external view of the design.

The internal implementation of an entity is provided in
an architecture body of that entity. Architectures might be
provided in different fashions: A behavioral architecture body
describes the function in an abstract way in terms of process
statements. A process statement defines a sequence of opera-
tions that are to be executed when the circuit is simulated.
To this end, a wide variety of actions might be included
within a process statement, which (in some cases) restricts
the synthesizebility of the architecture.

Synthesis-oriented designers prefer an alternative model to
describe architecture implementations of entities, which is
called structural description. This model describes the circuit
in terms of a net-list of sub-circuits. More precisely, sub-
circuits are declared as components. A number of component
instances (i.e., copies) may appear in the architecture body to
represent these subsystems. A component instance includes a
port map to specify the interconnections of these component
instances within the enclosed architecture body.

Another possible description is by signal assignment state-
ments, which define the flow of data to compute signals. An ar-
chitecture body completely described using signal assignment
statements is usually referred to as a data-flow description
style. Often it is useful to describe the required system using
a mixture of processes, interconnected components, and signal
assignment statements.

In the remainder of this paper, we focus on the main
descriptions provided by VHDL for the purpose of reversible
circuit synthesis. Simulation related description details, includ-
ing process statement actions, are not covered. Also, circuits
that contain feedback are not supported, because feedback
connections are not directly allowed in the reversible circuit
paradigm.

Example 1. Fig. 1 provides an example of a data-flow VHDL
circuit. The entity sub has three single-bit ports, namely
two input ports (a,b), and one output port (f). A single-bit

1 entity main is
2 port(q,r,s: in bit; y: out bit);
3 end entity main;
4

5 architecture structural of main is
6 component sub is
7 port(a,b: in bit; f: out bit);
8 end component sub;
9 signal t: bit;

10 begin
11 L1: test port map (a => q, b => r, f => t);
12 L2: test port map (a => t, b => s, f => y);
13 end architecture structural;

Fig. 2. Structural VHDL description

wire signal (x) is declared within the architecture body. The
implementation of this system contains two signal assignment
statements. The first statement (S1) computes the wire signal x,
while the second statement (S2) computes the output signal f.
Fig. 2, on the other hand, shows a structural description of a
VHDL architecture (main), in which the entity sub, defined
in Fig. 1, is declared as a component and then instantiated
twice (statements L1 and L2). The port map associated
with each instance defines the inter-connectivity of this specific
component-instance within the main circuit.

B. Reversible Functions and Circuits

Reversible circuits realize functions f : IBn → IBn

with a unique input/output mapping, i.e., bijections. A re-
versible circuit G = g1 . . . gd is composed as a cascade
of reversible gates gi [1]. The inverse of G (representing
the function f−1 and denoted by G−1) can be obtained by
cascading g−1d g−1d−1 · · · g

−1
1 , where g−1i is the inverse gate

of gi. Since the self-inverse Toffoli gates are considered in
this paper (see below), gi = g−1i holds and, thus, G−1 can
simply be obtained by reversing the order of the gates of G.

In this paper, reversible circuits are realized by Tof-
foli gates. A Toffoli gate uniquely maps the input set of
signals (XX = {x1, x2, . . . , xj , . . . , xn}) to the output
(XX

′
= {x1, x2, . . . , xi1xi2 · · ·xik ⊕ xj , . . . , xn}). That is, a

Toffoli gate inverts the target line xj if, and only if, all control
lines are assigned the logic value 1.

By definition, reversible circuits can only realize reversible
functions. To realize non-reversible functions, additional cir-
cuit lines with constant inputs and garbage outputs are ap-
plied (see e.g., [18]) – yielding an embedding. Furthermore,
additional circuit lines are also used frequently in hierarchical
synthesis approaches (see e.g., [12], [15]).

Example 2. Fig. 3 shows a reversible circuit formed by
cascading Toffoli gates g1 and g2. The gate g1 shows an exam-
ple of embedding a non-reversible operation AND within a
reversible circuit by using a constant-input line. On the other
hand, g2 shows that a reversible XOR operation does not
need such embedding.

III. VHDL SIGNALS IN REVERSIBLE CIRCUITS

VHDL signals are represented as nodes in a conventional
circuit, where the value of this signal can be measured. Circuit
components should be properly interconnected to compute the
desired signals to drive these nodes.

0 (a AND b)

a (a XOR b)

b b
g1 g2

Fig. 3. Reversible gates realizing Boolean operations

VHDL signal types can be mapped directly to signals of the
reversible circuits. More precisely, a VHDL signal is mapped
to a reversible circuit line1.

In Fig. 1 we can see a VHDL code that declares different
types of signals. These signals are mapped to circuit lines with
different specifications. Input ports (a,b) carry input values
to the circuit. Such lines remain unchanged within the circuit.
In other words, these signals do not appear in the left hand side
of an assignment statement. Output ports (f) are constant ′0′
inputs to which the output of an expression is assigned to
(realizing a statement within the architecture body). Internal
wires (x) are similar to output ports as they have constant ′0′
inputs and are assigned in the same way as well. The difference
between outputs and wires is that they are valid only inside
the architecture body to facilitate internal computations and,
afterwards, are considered garbage outputs.

The fact that VHDL operations are not necessarily reversible
leads to inevitable implicit lines with constant inputs that
are not explicitly associated with signals but are required to
compute expressions (e.g., (a and x) in Fig. 1, statement
S2).

Up to this point, the scheme of a reversible circuit realizing
a VHDL code is composed of empty lines only without
any gates. In other words, a circuit that computes nothing.
Gates are added to process signals on circuit lines to compute
the desired outputs as described by the statements in the
architecture body.

IV. SIGNAL ASSIGNMENT STATEMENTS

A simple signal assignment (S <= E) is composed of three
parts: a target signal S, an assignment operator <=, and a right-
hand-side expression E. The statement is realized in two steps:
The first is to compute the RHS expression E, i.e., realize the
circuit GE . Then, the second step is to assign the computed
value E to the target-signal S.

A. Computing Expressions

VHDL provides a set of operations, such as Boolean,
arithmetic, comparison, and so on. The operations are applied
on operand signals to compose VHDL expressions. These
operations are not necessarily reversible. Hence, an additional
line with constant inputs is applied to make a non-reversible
function reversible [18] – leading to the implicit lines dis-
cussed in Section III. This is exactly how the reversible HDL
SyReC tackles this problem [15]. Hence, realizing an expres-
sion E which is combined with N operators will implicitly add
N constant lines to the circuit. This is considered a serious
drawback [20] (to be discussed in Section VI-A).

1For simplicity, in the following a line refers to an N -line bundle represent-
ing an N -bit signal (accordingly, a single line in figures represent an N -bit
circuit line-bundle).

0 −
0 −
0 −
0 −
0 −
0 E

c c

b b

a a

l1

l2

l3

l4

l5

l6

l1

l2

l3

l4

l5

l6

and
not

and
or

not
xor

Fig. 4. Circuits realizing expression E from Example 3

Example 3. Fig. 4 shows a reversible circuit to
compute the VHDL expression E, which is given by
(not(a and b) and c xor not(a or c)). The expression
is computed based on six Boolean operations. Hence, six
constant input lines are applied to the circuit.

B. Assignment Operation

The signal assignment operation is irreversible because
it leads to a loss of the initial value of the target signal.
Consequently, a circuit line with a constant input is inevitable
to realize such an operation. A Toffoli gate can be used to
copy the value of a line E into line S, if and only if, S is
a constant ′0′, as shown in Fig. 5(a), because ((E xor 0)=E).
The operation is a simple assignment (S <= E), by which the
expression E (covered in Section IV-A) is assigned to the target
signal S, which is known to be a constant ′0′ 2 (see Section III).

Conditional signal assignments are also provided in VHDL,
with the form (S <= Et when C else Ef), by which Et is
assigned to the target signal S only when the condition C
is evaluated to ′true′ or ′1′, while Ef is assigned other-
wise, as shown in Fig. 5(b). Here, the three expressions
(Et, Ef and C) have to be computed before applying
the assignment operation. A conditional assignment may be
extended to multiple-conditionals (e.g., see Fig. 10(b)).

0 S

E E

(a) Simple

0 S

Ef Ef

Et Et

C C

(b) Conditional
Fig. 5. Realization of signal assignment

V. INTERCONNECTING SUB-CIRCUITS

An overall circuit realization for a given VHDL code is
computed by interconnecting sub-circuits of all statements
together within one main circuit. This includes all expressions,
assignments, and instances of components.

A. Statement Cascade

A fundamental difference between conventional and re-
versible paradigms must be addressed here. In conventional
circuits, no matter which statement you synthesize first, the

2A target-signal can only be an output or a wire. Multiple assignments
means driving a node from different circuit outputs in the conventional
paradigm.

0 −
0 −

x = 0 −
f = 0 f

b b

a a

GES1
GES2

(a) Basic realization

0 0

x −
f f

b b

a a

GES1
G−1

ES1
GES2

G−1
ES2

(b) Line-aware realization

Fig. 6. Reversible circuits realizing the VHDL code from Fig. 1

result would be the same hardware because of statement con-
currency. The reversible computation paradigm, on the other
hand, is successively processing signals by cascaded gates.
Consequently, signals are successively (not concurrently) com-
puted. In this regard, the order in which the statement are
considered has an effect.

Example 4. The VHDL code in Fig. 1 contains two assign-
ment statements, each statement has an expression with one
operator on its right hand side. Consequently, two implicit
lines are expected. The resulting circuit is shown in Fig. 6(a).

B. Components
As reviewed in Section II-A, the structural style describes

systems as a set of interconnected components. Components
are entities instantiated within the architecture of another
entity. Each instance places a sub-circuit definition within
the main circuit. Fig. 2 shows a VHDL code that declares
a component and, then, instantiates it twice within the archi-
tecture body. A component sub-circuit should be determined
first, then a copy of this sub-circuit is placed within the main
circuit for each instance. The only difference is the mapping
of component signals into the main circuit signals; therefore
a port map is associated with each instance to serve as a
look-up table for this mapping. This is illustrated in Fig. 7
that shows the component interconnection of the structural
description from Fig. 2.

VI. IMPROVING THE CIRCUIT REALIZATION

Realizing expressions and other non-reversible actions im-
plicitly adds constant lines to the circuit. These lines are
accumulated throughout statements and result in circuits with
a large number of constant inputs, which is the main drawback
of all hierarchical approaches [20].

In this section, we propose some arrangements to reduce
the number of lines and/or gate costs, without compromising
the main advantage of this approach (scalability).

A. Line-aware Synthesis
According to the interconnection suggested in Section V,

implicit lines are assigned and used only once within the
architecture body – their outputs are garbage, i.e., not usable
again in the circuit. In contrast, realizing a statement with no
garbage is possible when the RHS expression is computed
in the reverse direction (re-computed). This technique has
been proposed for line-aware SyReC synthesis [21]. More
precisely, in addition to the two steps from Section IV, a third
step appends the inverse circuit G−1E to the circuit cascade

0 −

r r

q q

s s

0 y

0 −
0 −

0 −

t

s

a

b

f a

b
fGsub

Gsub

Gmain

Fig. 7. Using component circuits to synthesize the VHDL code from Fig. 2

to re-compute the garbage lines used to compute E back to
constant 0. The next statements will then reuse the same lines.
In this way, circuits can be realized with less lines.

Example 5. Fig. 6(b) shows the reversible circuit realization
for the VHDL code from Fig. 1 following this scheme. The
circuit requires only 1 implicit line instead of 2 lines as in the
circuit from Fig. 6(a).

The re-compute technique proposed here works on the register
transfer level and it trades-off lines with extra circuitry that
almost doubles the circuit cost.

B. Gate Level Complexity Reduction

A constant-input is not a signal applied to the circuit,
but it is more like a literal numeric value in the code. In
the conventional realization of VHDL codes, numbers (i.e.,
literals) do not require circuits to compute their values as they
are already given in the code. Furthermore, an operation on
a number operand can dramatically reduce the complexity of
the circuit.

In the reversible circuit paradigm, numbers are represented
as constant inputs. The use of a constant-input for each number
in the code reduces the quality of the circuit realization. On
the other hand, considering constant lines, gate complexity can
be reduced, e.g., (1) remove any control with a constant ′1′
from the gate and (2) remove any Toffoli gate with one control
line known to be constant ′0′.

Example 6. Fig. 8(a) shows the circuit of a 2-bit equality
operation (op = v), where op and v are both variables.
In the VHDL code of Fig. 10(b), we can see a special case
of this operation used as conditions, e.g., (op = 0). In this
case, one of the operands is a constant number instead of
a variable signal. Applying the complexity reduction rules as
suggested above results in Fig. 8(b), which uses less lines and
lower gate cost as well. Applying the same optimization on a
condition with a different number, such as (op = 1), results
in a different circuit (namely the one shown in Fig. 8(c)).

VII. DISCUSSION

This section discusses the proposed VHDL-based synthesis.
We consider two cases to introduce differences and similarities
between the proposed approach and the reversible-specific
HDL solution SyReC introduced in [15]. The cases are neither
meant to evaluate, nor to decide a clear winner between VHDL
and SyReC. Therefore they are chosen to be simple enough

0 (op = 0)

v.1 v.1

v.0 v.0

op.1 op.1

op.0 op.0

(a) Variable signal op = v

0 (op = 0)

op.1 op.1

op.0 op.0

(b) Constant number op =′ 0′

0 (op = 1)

op.1 op.1

op.0 op.0

(c) Constant number op =′ 1′

Fig. 8. Gate level optimization of a constant input
entity gray2binary is
port(g : in STD_LOGIC_VECTOR (3 downto 0);

b : out STD_LOGIC_VECTOR (3 downto 0));
end entity gray2binary;

architecture Behavioral of gray2binary is
begin

b(3) <= g(3);
b(2) <= g(3) xor g(2);
b(1) <= g(3) xor g(2) xor g(1);
b(0) <= g(3) xor g(2) xor g(1) xor g(0);

end behavioral;

(a) Basic description

architecture Behavioral of gray2binary is
signal w (2 downto 0);

begin
w(2) <= g(3) xor g(2);
w(1) <= w(2) xor g(1);
w(0) <= w(1) xor g(0);
b(3) <= g(3);
b(2) <= w(2);
b(0) <= w(0);

end architecture behavioral;

(b) Optimized description

module gray2binary(inout x(4))
x.2 ˆ= x.3
x.1 ˆ= x.2
x.0 ˆ= x.1

(c) SyReC description
Fig. 9. HDL descriptions of a 4-bit gray-code to binary converter

for explaining the impact of the respectively obtained synthesis
from each approach on the resulting circuits.

Between both solutions, one fundamental difference is
the definition of signal assignment, which is irreversible in
VHDL (<=) and reversible in SyReC (ˆ=, i.e., by additionally
employing, e.g., an xor-assignment which however might
require the addition of out and wire signals to realize the
intended functionality). Computing expressions, conditionals,
and components using constant inputs is similar in VHDL as
compared to SyReC.

Metrics used to measure circuit complexity in the following
cases are: (1) Gate-count; the total number of gates in the
circuit. (2) Lines; the total number of lines used to compute
the circuit. (3) Quantum-cost; the total sum of number of
elementary quantum gates used to map the gates in the circuit,
as defined in [22]. (4) Transistor-cost; estimates the effort
needed to realize all reversible gates in the circuit using CMOS
technology according to [23].

A. Case Study: Gray-code to Binary Code Conversion
Encoders and decoders are identified as typical reversible

computations [7]. In the following, a 4-bit Gray-code to
Binary-code converter is studied. Fig. 9(a) shows a VHDL
description3 of this converter. The code defines two 4-bit
vectors: (g) for the input Gray-code and (b) for the output
Binary-code. The architecture description in this code incorpo-
rates some repeated computations, e.g., (g(3) xor g(2))
is computed three times. Hence, an equivalent description
is shown in Fig. 9(b) to reduce the resulting computation
complexity (and, by this, the circuit cost). This code declares
a three-bit wire w to facilitate the computations. Despite being
described using more statements, and explicitly declaring
internal wires, this code is better realized as reversible circuits
than the first code. This is confirmed by the number shown
in Table I, in which the costs of each realization are given.
Here, (V1) provides the values of the basic realization (see
Sections IV and V) and (V2) the values of the improved
realization (see Section VI).

We additionally consider a description provided in SyReC
syntax as shown in Fig 9(c). This code conversion is reversible,
because of the one-to-one correspondence between the two
codes. Hence, the Gray-code to Binary-code converter is an
ideal example to demonstrate the merits of SyReC-based
synthesis (in its current state of development) compared to
VHDL-based synthesis introduced above. The SyReC ap-
proach performs significantly better because reversibility can
fully be exploited.

TABLE I
RESULTS FOR THE GRAY-CODE TO BINARY-CODE CONVERTER

Parameter VHDL SyReC
Fig. 9(a) Fig. 9(b) Fig. 9(c)

V1 V2 V1 V2
Gates 16 28 10 16 3

Total lines 14 11 11 9 4
Quantum cost 16 28 10 16 3
Transistor cost 128 224 80 128 24

B. Case Study: Logic Unit
Unlike the first case, the second is an irreversible 32-bit

logic unit. Here, Fig. 10(a) and Fig. 10(b) show two equivalent
codes to describe this logic-unit in SyReC4 and VHDL, re-
spectively. The output signal x0 is computed by a conditional
assignment. In the SyReC code, x0 is initialized using the
xor-operator (ˆ=), e.g., in x0 ˆ= (x1 & x2). Here, the
operation is identical to (<=) in VHDL, since x0 is an out
signal.

Table II shows the result of SyReC configured in four dif-
ferent configurations, as introduced in [15]. (S1) is configured
for basic SyReC synthesis, (S2) is configured for line-aware
synthesis, (S3) is configured for cost-aware synthesis, and (S4)
is configured for both metrics best trade-off.

On the other hand, the VHDL-code has been synthesized us-
ing the two configurations: (V1) as described in Sections IV/V
and with the improved realization (V2) as described in Sec-
tion VI. (V1) result in the lowest cost among all scenarios,
while (V2) results in a circuit with a minimal number of lines.

3This code is taken from (http://www.rfwireless-world.com).
4A SyReC benchmark (lu 238.src) in RevLib [24].

1 module lu(in op(2), out x0, inout x1, inout x2)
2 if (op = 0) then
3 x0 ˆ= (x1 & x2)
4 else
5 if (op = 1) then
6 x0 ˆ= (x1 | x2)
7 else
8 if (op = 2) then
9 x0 ˆ= (x1 ˆ x2)

10 else
11 x0 ˆ= x1
12 ˜= x0
13 fi (op = 2)
14 fi (op = 1)
15 fi (op = 0)

(a) SyReC description taken from lu 238.src

1 entity alu is
2 port(op : in unsigned (1 downto 0);
3 x1,x2: in bit_vector (31 downto 0);
4 x0 : out bit_vector (31 downto 0));
5 end entity test;
6

7 architecture data_flow of lu is
8 begin
9 x0<= (x1 and x2) when (op = 0) else

10 (x1 or x2) when (op = 1) else
11 (x1 xor x2) when (op = 2) else
12 (not x1);
13 end architecture data_flow;

(b) VHDL description

Fig. 10. HDL description of a basic 32-bit logic unit

This case shows that VHDL might compete or even overtake
SyReC, when it comes to irreversible design problems.

TABLE II
EXPERIMENTAL RESULTS OF REALIZING 32-BIT LOGIC UNIT

Parameter SyReC VHDL
S1 S2 S3 S4 V1 V2

Gates 384 612 392 622 414 671
Total lines 197 133 198 134 235 133

Quantum cost 6557 10462 2312 3894 682 1207
Transistor cost 9856 15616 6360 10288 3472 5752

These two case studies show that the efficiency of each
approach is problem-dependent. Hence, no clear winner can
be declared within the scope of this study. Yet, we may
still claim that this approach can offer, in some cases, an
advantageous alternative to realize reversible circuits. In either
case, VHDL might at least be considered as an acceptable
alternative, for being more convenient for designers with no
or little knowledge of the reversible computation paradigm.

VIII. CONCLUSIONS

In this work, we considered the conventional hardware
description language VHDL for the synthesis of reversible
circuits. A basic realization of VHDL code as well as possible
ideas to improve the circuit measures have been discussed.
The proposed approach has been discussed in comparison to a
dedicated reversible HDL approach using the SyReC language.
With these contributions, we provide an initial basis towards
a VHDL-based reversible circuit design that requires only
little knowledge of the reversible computation paradigm. The
discussion shows that, despite having no clear winner between
the two approaches, VHDL still provide the designers with
a convenient alternative, and in some cases, more efficient

design tool. In the future, we consider combining VHDL
and SyReC in one integrated reversible circuit description
environment.

ACKNOWLEDGEMENTS

This work has partially been supported by the EU COST
Action IC1405.

REFERENCES

[1] M. Nielsen and I. Chuang, Quantum Computation and Quantum Infor-
mation. Cambridge Univ. Press, 2000.

[2] A. Berut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider,
and E. Lutz, “Experimental verification of Landauer’s principle linking
information and thermodynamics,” Nature, vol. 483, pp. 187–189, 2012.

[3] A. De Vos, Reversible Computing: Fundamentals, Quantum Computing
and Applications. Weinheim: Wiley-VCH, 2010.

[4] A. Rauchenecker, T. Ostermann, and R. Wille, “Exploiting reversible
logic design for implementing adiabatic circuits,” in Int’l Conference on
Mixed Design of Integrated Circuits and Systems, 2017, pp. 264–270.

[5] R. Wille, R. Drechsler, C. Osewold, and A. G. Ortiz, “Automatic design
of low-power encoders using reversible circuit synthesis,” in Design,
Automation and Test in Europe, 2012, pp. 1036–1041.

[6] R. Wille, O. Keszocze, S. Hillmich, M. Walter, and A. G. Ortiz, “Syn-
thesis of approximate coders for on-chip interconnects using reversible
logic,” in Design, Automation and Test in Europe, 2016.

[7] A. Zulehner and R. Wille, “Taking one-to-one mappings for granted:
Advanced logic design of encoder circuits,” in Design, Automation and
Test in Europe, 2017.

[8] L. G. Amarù, P. Gaillardon, R. Wille, and G. D. Micheli, “Exploiting
inherent characteristics of reversible circuits for faster combinational
equivalence checking,” in Design, Automation and Test in Europe, 2016,
pp. 175–180.

[9] D. M. Miller, D. Maslov, and G. W. Dueck, “A transformation based
algorithm for reversible logic synthesis,” in Design Automation Conf.

[10] D. Große, R. Wille, G. W. Dueck, and R. Drechsler, “Exact multiple
control Toffoli network synthesis with SAT techniques,” IEEE Trans.
on CAD, vol. 28, no. 5, pp. 703–715, 2009.

[11] K. Fazel, M. Thornton, and J. Rice, “ESOP-based Toffoli gate cascade
generation,” in Pacific Rim Conference on Communications, Computers
and Signal Processing, 2007, pp. 206–209.

[12] R. Wille and R. Drechsler, “BDD-based synthesis of reversible logic for
large functions,” in Design Automation Conf., 2009, pp. 270–275.

[13] C.-C. Lin and N. K. Jha, “RMDDS: Reed-Muller decision diagram
synthesis of reversible logic circuits,” J. Emerg. Technol. Comput. Syst.,
vol. 10, no. 2, p. 14, 2014.

[14] R. Wille and R. Drechsler, “Effect of BDD optimization on synthesis of
reversible and quantum logic,” Electronic Notes in Theoretical Computer
Science, vol. 253, no. 6, pp. 57–70, 2010.

[15] R. Wille, E. Schönborn, M. Soeken, and R. Drechsler, “SyReC: A
hardware description language for the specification and synthesis of
reversible circuits,” INTEGRATION, the VLSI Jour., vol. 53, pp. 39–53,
2016.

[16] M. K. Thomsen, “A functional language for describing reversible logic,”
in Forum on Specification and Design Languages, 2012, pp. 135–142.

[17] P. J. Ashenden, The Designers Guide to VHDL, 2008.
[18] A. Zulehner and R. Wille, “Make it reversible: Efficient embedding of

non-reversible functions,” in Design, Automation and Test in Europe,
2017.

[19] D. Maslov and G. W. Dueck, “Reversible cascades with minimal
garbage,” IEEE Trans. on CAD, vol. 23, no. 11, pp. 1497–1509, 2004.

[20] R. Wille, M. Soeken, D. M. Miller, and R. Drechsler, “Trading off circuit
lines and gate costs in the synthesis of reversible logic,” INTEGRATION,
the VLSI Jour., vol. 47, no. 2, pp. 284–294, 2014.

[21] R. Wille, M. Soeken, E. Schönborn, and R. Drechsler, “Circuit line
minimization in the HDL-based synthesis of reversible logic,” in IEEE
Annual Symposium on VLSI, 2012, pp. 213–218.

[22] A. Barenco, C. H. Bennett, R. Cleve, D. DiVinchenzo, N. Margolus,
P. Shor, T. Sleator, J. Smolin, and H. Weinfurter, “Elementary gates
for quantum computation,” The American Physical Society, vol. 52, pp.
3457–3467, 1995.

[23] B. Desoete and A. D. Vos, “A reversible carry-look-ahead adder using
control gates,” INTEGRATION, the VLSI Jour., vol. 33, no. 1-2, pp.
89–104, 2002.

[24] R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drechsler, “RevLib:
an online resource for reversible functions and reversible circuits,” 2008,
pp. 220–225, RevLib is available at http://www.revlib.org.

