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Abstract. Research on synthesis of reversible circuits has found sub-
stantial consideration in the past. Corresponding methods can be catego-
rized into functional approaches (which often require a prior embedding
step) and structural ones (which are often based on mapping). While
functional approaches are less scalable and yield circuits with signifi-
cantly larger costs, structural approaches typically yield circuits where
the number of circuit lines is magnitudes above the minimum. Recently,
also the idea of a one-pass design flow has been proposed, which aims
to overcome the contradictory shortcomings of both approaches by com-
bining the embedding and the synthesis step of the functional design
flow. While this yields further opportunities for a more efficient synthe-
sis, the actually available degree of freedom has not fully been explored
yet—not to mention fully exploited. In this work-in-progress-report, we
are discussing this issue and explore in detail the potential offered by
the one-pass design flow. To this end, we consider the implementation
of this flow using QMDD-based synthesis as a representative. The con-
ducted investigations provide a more detailed understanding of this re-
cently proposed flow and demonstrate its potential to be exploited in
future work.

1 Introduction: QMDD-based One-pass Design

The general idea of one-pass design of reversible logic as proposed in [8] is to
inherently conduct the embedding during functional synthesis. This way, a cer-
tain degree of freedom can be exploited and also the representation may remain
more compact. In this work-in-progress-report, we focus on the solution, which
yields circuits, where the number of circuit lines is the minimum (denoted as
exact solution in [8]). Furthermore, we use QMDD-based synthesis (originally
proposed in [4] and recently improved in [6]) as a representative implementation
due to its benefits with respect to scalability (despite that, the one-pass design
flow can also be realized using any other functional synthesis approach). In this
section, we provide a rough overview of the resulting synthesis methodology
which is sufficient to follow the discussions conducted in this work-in-progress
report (we refer to [8] for a more detailed description). Based on that, the next
section eventually describes and illustrates the proposed ideas on how to exploit
the degree of freedom provided by this design flow.

In QMDD-based synthesis, a (non-)reversible function f : Bn → Bm is repre-
sented by means of a 2max(n,m) × 2max(n,m) dimensional permutation matrix (a
function matrix in the non-reversible case), which is composed of zeros and ones
only. Within this matrix, a 1-entry indicates that an input (column) is mapped
to an output (row).
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Fig. 1: Representations for a Boolean function

Example 1 Consider the non-reversible function f shown in Fig. 1a. The cor-
responding function matrix is provided by means of Fig. 1b. The 1-entry in the
fourth column of the matrix indicates that f maps input 11 to output 01.

To gain a more compact representation of a function matrix M , Quantum
Multiple-valued Decision Diagrams (QMDDs [3]) are utilized. The general idea
of QMDDs is to decompose M variable-wise into sub-matrices.1 Considering
the most significant variable, there are four possible mappings, from 0 to 0
(i.e. the top-left sub-matrix), from 1 to 0 (i.e. the top-right sub-matrix), from
0 to 1 (i.e. the bottom-left sub-matrix), and from 1 to 1 (i.e. the bottom-right
sub-matrix). These four mappings provide the basis for a decomposition which is
represented by a decision diagram node with four successors (denoting—from left
to right—the four sub-matrices outlined above). The decomposition is applied
recursively until a single value is reached (represented by a so-called terminal).
Since some of the sub-matrices occur frequently, sharing is possible—resulting
in a rather compact (non-exponential in most practically relevant cases) rep-
resentation. For a more detailed description of QMDDs and how to efficiently
construct them, we refer to [3].

Example 1 (continued) Fig. 1c shows the QMDD-representation of the ma-
trix shown in Fig. 1b. The path highlighted in bold represents the mapping from
x2x1 = 11 to 10, since it traverses the second edge of the node labeled x2 (rep-
resenting the mapping from 1 to 0) and the fourth edge of the node labeled x1

(representing a mapping from 1 to 1). Note that zero matrices (i.e. matrices
composed of zeros only) are visualized by stubs in order to increase readability.

Having a compact function representation (by using QMDDs) allows for a
scalable synthesis. By following the exact one-pass design flow (i.e. the flow that
yield a circuit where the number of circuit lines is the minimum, cf. [8]), we first
determine how many additional variables (i.e. garbage outputs and ancillary
inputs) are required.2 From that we can conclude how many placeholders have
to be added such that the function can be realized in a reversible fashion.

From a matrix perspective, it is rather simple to insert placeholders. In fact,
assuming that k variables are added to a matrix M , all that has to be done
is forming the Kronecker product M ⊗ G, where G is a 2k × 2k matrix with a
single 1-entry in its top-left corner. By this, a matrix results where each column
that represents an input with any of the ancillary inputs set to 1, contains only
1 In the following we denote a mapping from input xi to output x′i by a variable xi.
2 How this can be done efficiently is e.g. discussed in [7].



0-entries—encoding that we actually don’t care about the output and ensuring
that synthesis can (almost) be conducted as usual.

Using QMDDs, the matrix G can easily be constructed, since it only contains
a single decision diagram node for each additional variable where all edges except
the first end in a 0-stub. Moreover, forming the Kronecker product can be formed
efficiently by exchanging the terminal node of M with the root node of G.

Example 1 (continued) Since the most frequently occurring output pat-
tern (i.e. 01) occurs twice, a single additional variable g1 is required. The matrix
G as well as the resulting QMDD after forming the Kronecker product are shown
in Fig. 2.
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Fig. 2: Insert placeholders
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Fig. 3: Identity structure

After extending the function matrix with placeholders, QMDD-based syn-
thesis can (almost) be conducted as usual. The key idea here is to traverse the
QMDD in breadth-first manner and thereby transform each visited node to the
identity structure shown in Fig. 3 (in which only mappings from 0 to 0 and from
1 to 1 occur). This can easily be accomplished by applying reversible gates. By
this, the function to be realized is transformed towards the identity variable by
variable.

More precisely, transforming a single QMDD-node to the identity requires
the consideration of its successors. To this end, we determine all paths from
the currently considered node to the 1-terminal (representing a 1-entry in the
matrix) through the respective outgoing edges—resulting in the so-called sets
of 1-paths P1, P2, P3, and P4. Each path represents an input combination and,
thus, contains one literal for each edge it traverses (excluding the edge leaving
the currently considered node). Furthermore, we additionally, determine the sets
of 0-paths (i.e. paths ending in a 0-stub) through each outgoing edge, i.e. P 1,
P 2, P 3, and P 4.

Example 2 Consider the root node of the QMDD shown on the right-hand
side of Fig. 2. The corresponding sets of 1-paths are P1 = {x1g1, x1g1},
P2 = {x1g1}, P3 = ∅, and P4 = {x1g1}. Moreover the sets of 0-paths are
P 1 = {x1g1, x1g1}, P 2 = {x1g1, x1g1, x1g1}, P 3 = {x1g1, x1g1, x1g1, x1g1}, and
P 4 = {x1g1, x1g1, x1g1}.

The goal is now to determine a sequence of reversible gates, which swaps
the 1-paths in P2 with 0-paths from P 1 while, at the same time, swapping the



1-paths from P3 with 0-paths from P 4.3 This eventually establishes the desired
identity structure and, by this, realizes the function in terms of a reversible
circuit. The correspondingly required sequence of reversible gates can easily be
determined as described in [4] and [8]. However, note that for each gate of the
sequence we additionally have to add control lines that represent the path from
the root node to the currently considered node in order to avoid that other nodes
(that might already establish the identity structure) are affected. Finally, note
that the breadth-first traversal is only performed for variables holding a primary
output, since the actual value of the garbage outputs does not matter as long as
the resulting function is reversible. However, reversibility is always guaranteed
since only reversible gates are applied to the circuit during synthesis.

2 The Available Degree of Freedom

The previous section reviewed a direct implementation of the one-pass design
flow using QMDD-based synthesis. While this already yields substantial improve-
ments with respect to scalability and costs of the resulting circuit (as evaluated
in [8]), a significant degree of freedom has not been exploited yet. This is mainly
because how to exploit the available degree of freedom in order to achieve the
best results regarding these metrics is a complex task since often local optimiza-
tions may have global effects. In order to understand them better, this section
provides an exploration of the available degree of freedom which serves as basis
for future optimizations in the one-pass design flow. In the following, we conduct
the explorations with respect to the exploitation of redundancies in paths as well
as in nodes.

2.1 Exploiting Redundancies in Paths of QMDDs

Usually, there exist several paths from the root node to the currently considered
node. The sequence of reversible gates (together with their according additional
control lines) that has been determined in order to transform the currently con-
sidered node towards the identity structure has to be replicated once for each of
these paths—significantly increasing the circuit’s costs. In order to reduce the
number of repetitions (i.e. the number of paths) and the number of additionally
required control lines (i.e. the number of literals in a path), one can form the
Exclusive Sum of Products (ESoP) of all paths and apply optimizations such
as proposed in [2].4 This avoids redundancies (in particular sequences of almost
identical gates which mainly cancel each other out) and significantly reduces the
costs.

The one-pass design flow allows for some degree of freedom that can ad-
ditionally be exploited here. In fact, the first or the fourth outgoing edge of
a QMDD node might point to a 0-stub after establishing the identity struc-
ture (since some columns do not contain a 1-entry). Since a 0-stub represents a
zero-matrix—indicating that we actually do not care about the outputs for all
inputs—there are certain paths that can be considered as don’t care in the ESoP
minimization algorithms (e.g. in those proposed in [1, 5]).
3 Note that this is always possible since the additionally inserted variables ensure that∣∣P 1

∣∣ ≥ |P2| and
∣∣P 4

∣∣ ≥ |P3|.
4 Note that this is possible if all occurring gates are self-inverse (which is e.g. the case
for Toffoli or Fredkin gates).



Example 3 Consider the QMDD shown in Fig. 4 and assume that the node
highlighted in blue is currently considered. This node is reached from the root
node by the path p1 = x3x2. Furthermore, note that the path x3x2 terminates in
a 0-stub. Since applying any operation to this path does not affect the function
represented by this QMDD, we can use the path as don’t care condition when
optimizing the ESoP. In this case, adding this path to the ESoP allows to reduce
the ESOP to x3x2 ⊕ x3x2 = x2, which has one literal less than the original path
to the currently considered node. In contrast, when considering the other node
labeled x1, it is not beneficial to include the don’t care path in the ESoP, which
can already be minimized to x3x2 ⊕ x3x2 = x2.
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Fig. 4: Exploiting redundancies in paths

However, one shall take the sequence of gates into account that are required
to transform the currently considered node to the identity, since this sequence
also determines whether to optimize the number of products or the number of
literals in the individual products during ESoP-minimization.

2.2 Exploiting Redundancies in Nodes of QMDDs
Note that, in QMDD-based synthesis, the sequence of reversible gates that is
required in order to transform the currently considered node to the identity is
uniquely determined by the sets of 1-paths (and the sets of 0-paths). Moreover,
as stated in [6], there might exist different QMDD nodes with equal sets of
1-paths and 0-paths, which allows to consider them jointly when transforming
them to the identity. Since the cardinalities of the sets of 1-paths and 0-paths
always match (i.e. |P2| =

∣∣P 1

∣∣) for reversible functions, it is clear which nodes
can be considered jointly.

In contrast, when using QMDD-based one-pass design, the cardinalities are
related by a inequalities |P2| ≤

∣∣P 1

∣∣ and |P3| ≤
∣∣P 4

∣∣. Consequently, one can
consider two QMDD nodes jointly, whenever the following criteria are met:

(P2 ∪ P ′
2) ∩ (P4 ∪ P ′

4) = ∅
(P3 ∪ P ′

3) ∩ (P1 ∪ P ′
1) = ∅

|P2 ∪ P ′
2| ≤

∣∣∣P 1 ∩ P
′
1

∣∣∣
|P3 ∪ P ′

3| ≤
∣∣∣P 4 ∩ P

′
4

∣∣∣



However, determining whether it is a good choice to consider two nodes
jointly is a complex task. In fact, considering nodes jointly typically requires a
more complex sequence of gates to transform the nodes to the identity (since
more 1-paths have to be considered). Moreover, considering several nodes jointly
means that also the ESoP of all paths from the root node to the respective nodes
has to be formed (cf. Section 2.1)—often leading to a more complex “minimized”
ESoP. Hence, it might be cheaper in certain cases to treat two QMDD nodes
separately—requiring dedicated heuristics to choose which nodes shall be con-
sidered jointly.

3 Conclusion

Within this work-in-progress-report, we explored the available degree of freedom
in QMDD-based one-pass design of reversible logic. By this, we provide a better
understanding on how this new design flow can fully be exploited and, by this,
provide the basis for future work on how to further improve the one-pass design
flow. In fact, initial tests provided in [8] already confirmed that this flow may
yield reversible circuits which are significantly cheaper and can be realized in
significantly less runtime. The next steps now of course involve implementing
the proposed ideas to fully exploit the available degree of freedom as well as
conducting thorough evaluations on the resulting methods.
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