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Abstract—Quantum computation is a promising emerging
technology which, compared to conventional computation, allows
for substantial speed-ups e.g. for integer factorization or database
search. However, since physical realizations of quantum comput-
ers are in their infancy, a significant amount of research in this
domain still relies on simulations of quantum computations on
conventional machines. This causes a significant complexity which
current state-of-the-art simulators try to tackle with a rather
straight forward array-based representation and by applying
massive hardware power. There also exist solutions based on deci-
sion diagrams (i.e. graph-based approaches) that try to tackle the
exponential complexity by exploiting redundancies in quantum
states and operations. However, these existing approaches do not
fully exploit redundancies that are actually present.

In this work, we revisit the basics of quantum computation,
investigate how corresponding quantum states and quantum
operations can be represented even more compactly, and, even-
tually, simulated in a more efficient fashion. This leads to
a new graph-based simulation approach which outperforms
state-of-the-art simulators (array-based as well as graph-based).
Experimental evaluations show that the proposed solution is
capable of simulating quantum computations for more qubits
than before, and in significantly less run-time (several magni-
tudes faster compared to previously proposed simulators). An
implementation of the proposed simulator is publicly available
online at http://iic.jku.at/eda/research/quantum_simulation.

I. INTRODUCTION

Quantum computation [18] has become a promising tech-
nology which has theoretically been proven to be superior
to conventional computation for important applications. For
example, quantum algorithms for integer factorization (Shor’s
algorithm [28]) or database search (Grover’s Search [10]) have
been proposed that lead to significant – sometimes even ex-
ponential – speedups compared to conventional computations.
With respect to physical implementations, significant progress
has been made in the recent years as well [12], [26], [6], [17],
[15]. The first publicly available quantum processor has been
made accessible by IBM through their project IBM Q [2].
Via IBM’s cloud infrastructure, the community can access a
quantum processor with 5 qubits (launched in March 2017)
and 16 qubits (launched in June 2017), respectively, to conduct
experiments. IBM further plans to increase the number of
available qubits to 50 – similar to Google’s plans to provide
a quantum chip with 49 qubits that demonstrates quantum
supremacy [5], [8].

However, thus far, quantum computation remains an
emerging technology. This requires, besides others, that re-
spective developments have to be conducted while still re-
lying on conventional technologies. In particular, this is an
issue when it comes to simulating quantum computations or
corresponding quantum algorithms. Although these quantum
computations describe approaches to solve several problems

significantly faster than a conventional technology, they still
have to be simulated on conventional machines thus far. Fur-
thermore, simulation plays an important role in the verification
of existing and future quantum computers.

This causes a significant obstacle since basic and substantial
concepts of quantum computations like superposition, entan-
glement, or measurement rely on exponentially large vector
and matrix descriptions which additionally are composed of
complex numbers. The majority of the existing methods for
the simulation of quantum computations [9], [34], [29], [11],
[14], [25], [30] address this problem using straight-forward
methods like simple 1-dimensional and 2-dimensional arrays,
respectively.1 The resulting (exponential) complexity is then
tackled by exploiting parallelism and applying massive hard-
ware power such as supercomputers composed of thousands
of nodes and more than a petabyte of distributed memory. But
even then, quantum systems of rather limited size (today’s
practical limit is below 50 qubits [25]) can be simulated –
additionally often requiring a significant amount of run-time
(e.g. up to several days). Also current roadmaps show that
also future plans rely on the use of massive hardware power,
e.g. the authors of [29] expect to simulate 48-49 qubits on a
machine with 4-10 petabytes of distributed memory.

In addition to that, simulators that utilize decision diagrams
(e.g. [33], [27], [13]) have been proposed to tackle the ex-
ponential complexity of simulating quantum computations by
exploiting redundancies. While decision diagrams have already
been successfully used to solve exponential problems in the
conventional domain (e.g. in verification [16] or synthesis [7])
significantly faster than straight-forward solutions, simula-
tors for quantum computations based on decision diagrams
(i.e. graph-based approaches) did not get established yet. In
fact, the existing methods only exploit redundancies in a
rather straight-forward fashion, which results in simulators
that outperform array-based simulators for certain applications
only.

In this work, we propose to use another type of decision
diagram for the simulation of quantum computations that
utilizes a decomposition scheme that is more natural to the
occurring matrices and vectors – allowing to exploit even more
redundancies. To this end, we revisit the basics of quantum
computations and investigate how corresponding matrices and
vectors can represented in a more efficient fashion. These
endeavors eventually lead to a significantly more compact
representation of quantum states and quantum operations than
before, which exploits more redundancies in the corresponding
description whenever possible. Furthermore, the natural de-
composition scheme allows to realize dedicated manipulation

1Consequently, these methods are also called array-based simulators.
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algorithms efficiently – leading to a new simulation method
which clearly outperforms the current state-of-the-art.

In fact, the resulting compact representation allows for the
simulation of well known quantum algorithms (such as Shor’s
Algorithm and Grover’s Search) for more qubits than before.
Finally, with respect to the run-time, a substantial drop can
be observed: Instead of several days, the proposed approach
is able to complete the simulations within hours – in many
cases even just minutes or seconds. These improvements can
be obtained with respect to array-based simulators as well as
graph-based simulators.

This paper is structured as follows: Section II revisits the
basics of quantum computation. In Section III, we investi-
gate the obstacles of simulating quantum computations and
review how the current state-of-the-art copes with these issues.
Furthermore, the main idea of the utilized decision diagram
is briefly sketched. In Sections IV and V we respectively
discuss the resulting representation for vectors and matrices
and the operations required to conduct the simulation in detail.
In Section VI, we discuss the limitations of the approach
and analyze the complexity of the required operations. Fi-
nally, the proposed solution is evaluated and compared to the
state-of-the-art in Section VII, while Section VIII concludes
the paper.

II. QUANTUM COMPUTATION

Quantum computation significantly differs from the con-
ventional computation paradigm. To make this work self-
contained and to properly introduce our solution, we first
briefly revisit the basics on how operations are conducted in
this domain. While this ought to be sufficient to comprehend
the remainder of this paper, we refer to [18] for a more detailed
treatment.

A. Quantum Bits

In conventional logic, information is represented by bits
which can be in one of two basis states 0 and 1. Similarly,
quantum computations rely on so called quantum bits (qubits)
to represent internal states. Again, there exist two basis states,
which – using the Dirac notation – are denoted |0〉 and |1〉.
However, in contrast to bits in conventional logic, qubits are
not restricted to one of these basis states, but may additionally
assume an (almost) arbitrary superposition (i.e. a linear combi-
nation) of both. More precisely, the state of a qubit is described
by |ψ〉 = α0 · |0〉+ α1 · |1〉, where the complex factors α0 and
α1 denote amplitudes which indicate how much the qubit is
related to the basis states.

The amplitudes of a quantum state |ψ〉 must satisfy the
normalization constraint |α0|2 + |α1|2 = 1. While it is not
possible to directly access the values of α0 and α1, it is
possible to obtain one of the two basis states by measuring
the qubit. More precisely, the basis state |0〉 is obtained with
probability |α0|2, while |1〉 is obtained with probability |α1|2.
The measurement collapses (i.e. destroys) the superposition.
The concepts discussed above can be generalized for quantum
systems composed of multiple qubits. Since each qubit has
exactly two basis states, a system composed of n qubits has 2n

basis states – each one represented by |{0, 1}n〉. Overall, this
accumulates in the following definition of a quantum state:

Definition 1. Consider a quantum system composed of n
qubits. Then, all possible states of the system are of form

|ψ〉 =
∑

x∈{0,1}n
αx·|x〉 , where

∑
x∈{0,1}n

|αx|2 = 1 and αx ∈ C.

The state |ψ〉 can be also represented by a column vector
ψ = [ψi] with 0 ≤ i < 2n and ψi = αx, where nat(x) = i.

Note that, to save space, vectors may be provided in their
transposed form in the following (indicated by [·]T ). That
is, the single elements are listed horizontally rather than
vertically.

Example 1. Consider a quantum system com-
posed of two qubits which is in the state
|ψ〉 = 1√

2
|00〉+ 0 · |01〉+ 0 · |10〉+ 1√

2
|11〉. This represents

a valid state, since
(

1√
2

)2
+ 02 + 02 +

(
1√
2

)2
= 1. The

corresponding state vector is

ψ =

[
1√
2
, 0, 0,

1√
2

]T
.

Measuring this system yields one of the two basis states |00〉
or |11〉 – both with probability of | 1√

2
|2 = 1

2 .

B. Quantum Operations

Quantum operations are used to manipulate the current state
of a quantum system. All of them except the measurement are
thereby inherently reversible and can be represented by unitary
matrices U , i.e. a complex square matrix whose inverse is its
conjugate transposed [18]. The size of the matrix depends on
the number of involved qubits. Important quantum operations
for a single qubit are e.g.

X =

[
0 1
1 0

]
, H =

1√
2

[
1 1
1 −1

]
, and Z =

[
1 0
0 −1

]
,

where X complements the current state of the qubit, H sets the
qubit into superposition, and Z changes the phase of the qubit,
respectively. An important operation involving two qubits is
e.g.

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ,
which performs a so-called controlled inversion. Here, one
qubit serves as control qubit. The value the other qubit (i.e. the
target qubit) is complemented if the control qubit is in base
state |1〉. Consequently, the resulting matrix is composed of
the 2×2 identity matrix in case that the control qubit is in basis
state |0〉 (left upper quadrant) and the single qubit matrix X
in case that the control qubit is in basis state |1〉. This concept
can be easily extended to support single qubit gates that are
controlled by multiple other qubits.2

2Note that the matrix grows exponentially with the number of control
qubits.
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|q0〉 = |0〉 H •

|q1〉 = |0〉

Fig. 1: Quantum circuit

To evaluate a quantum operation with respect to a given
quantum state, the corresponding matrix U has to be multiplied
with the corresponding state vector ψ. More precisely:

Definition 2. Consider a quantum system composed of n
qubits with
• a quantum operation U represented by a 2n×2n unitary

matrix U = [ui,j ] with 0 ≤ i, j < 2n and
• a system state |ψ〉 represented by a vector ψ = [ψi] with

0 ≤ i < 2n.
Then, the output state |ψ′〉 of the quantum system is defined
by a vector ψ′ = U · ψ, i.e. ψ′ = [ψ′i] with

ψ′i =

2n−1∑
k=0

ui,k · ψk, for 0 ≤ i < 2n.

Example 2. Consider a quantum system composed of two
qubits which is currently in state |ψ〉 = |11〉. Applying a
CNOT operation yields

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


︸ ︷︷ ︸

CNOT

·


0
0
0
1


︸︷︷︸
ψ

=


0 + 0 + 0 + 0
0 + 0 + 0 + 0
0 + 0 + 0 + 1
0 + 0 + 0 + 0

 =


0
0
1
0

 ≡ |10〉 .

Quantum circuits are used as proper description for a se-
quence of quantum operations. A quantum circuit [18] consists
of a set of qubits, which are vertically aligned in a circuit
diagram. The time axis is represented by a horizontal line
for each qubit and read from left to right. Boxes on the time
axis of a qubit indicate which quantum operation has to be
applied. Note that measurement as reviewed in Section II-A
and illustrated in Example 1 also counts as quantum operation
in this context.

Example 3. Consider the quantum circuit shown in
Fig. 1. The circuit contains two qubits, q0 and q1, which are
both initialized with basis state |0〉. Consequently, the initial
state is |ψ〉 = |00〉. First, a Hadamard operation is applied
to qubit q0, which is represented by a box labeled H. Then,
a CNOT operation is performed, where q0 is the control
qubit (denoted by •) and q1 is the target qubit (denoted
by ⊕). Finally, qubit q0 is measured (represented by the meter
symbol), which collapses its superposition into one of the two
basis states.

III. CONDUCTING SIMULATION

The basics reviewed in the previous section are sufficient
to simulate the execution of quantum operations. In fact, for a
given sequence of quantum operations to be simulated, corre-
sponding simulators simply have to conduct the multiplications

of each operation matrix U with the respective intermediate
quantum state |ψ〉 as reviewed in Def. 2 and illustrated in
Example 2. However, for actual quantum algorithms severe
challenges emerge which significantly restrict today’s capa-
bilities to simulate quantum computations. In the following,
these challenges are discussed – followed by a summary of
how state-of-the-art solutions currently deal with them.

A. Exponential Growth

A quantum circuit can be simulated by multiplying all
matrices describing the quantum operation (from left to right)
successively to the state vector. Therefore, all matrices have
to be of dimension 2n × 2n. Since most quantum operations
work on k < n qubits only, their matrices have to be
expanded to match the size of the state vector. To this end, an
operation matrix for the remaining n − k qubits is required.
Since they shall not be affected by the gate, a 2 × 2 identity
matrix I2 is used for this purpose. The overall 2n×2n-matrix
is eventually obtained by forming the Kronecker product of
all these matrices.

Example 4. Consider again the quantum circuit shown in
Fig. 1 with state |q0q1〉 = |00〉 as input. The first operation
of the circuit is a Hadamard operation, which is applied to
qubit q0. Since this operation shall not affect q1, we form the
Kronecker product of H and the identity matrix I2, i.e.

H⊗I2 =
1√
2

[
1 1
1 −1

]
⊗
[
1 0
0 1

]
=

1√
2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

 .
Multiplying this matrix with the state vector yields

ψ′ =
1√
2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

 ·

1
0
0
0

 =
1√
2


1
0
1
0

 .
Applying the CNOT operation yields

ψ′′ =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 · 1√
2


1
0
1
0

 =
1√
2


1
0
0
1

 .
Since both, the state vectors as well as the operation

matrices grow exponentially with respect to the number n
of qubits, a crucial obstacle becomes evident: The simulation
of quantum computations requires an exponential amount of
space. The same complexity applies for the measurement of a
quantum state, since, because of superposition, also the state
vector may contain an exponentially large number of non-zero
entries.

Now, one might think that a local consideration of qubits
during the simulation avoids this exponential blow-up: Instead
of forming a 2n × 2n-matrix using the Kronecker product, a
simple application of an operation matrix to only those qubits
which are actually affected might be sufficient. Unfortunately,
this is not possible, since entanglement, which is one of the
main concepts that make quantum computations superior to
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conventional computations, frequently occurs [18]. Two qubits
are entangled if their state cannot be described without the
other. An example illustrates the concept:

Example 4 (continued). Consider again the quantum state
|ψ′′〉 from above. If we e.g. measure q0, this qubit collapses to

the basis state |0〉 or |1〉 with a probability
∣∣∣ 1√

2

∣∣∣2 = 1
2 . But due

to the nature of |ψ′′〉, this measurement also affects q1. More
precisely, if the measurement yields e.g. the basis state |0〉
for q0, the new state vector is ψ′ = [1, 0, 0, 0]

T , i.e. also q1
collapses to the basis state |0〉 (although not explicitly mea-
sured). This happens because |ψ′′〉 represents a state in which
both qubits are entangled.

Since actual quantum computations frequently use entan-
gled states, a local consideration of qubits affected by an oper-
ation is often not possible. Instead the complete (exponential)
state vector is required.

B. State-of-the-Art Solutions

In the recent past, researchers and engineers intensely con-
sidered this problem and developed corresponding solutions
for the simulation of quantum computations. Most of them are
so-called array-based approaches, which are, however, rather
limited, since they rely on a straight-forward representation
of quantum states and operations (besides minor optimiza-
tion, mainly representations such as simple 1-dimensional
and 2-dimensional arrays are employed). Consequently, only
experimental results for quantum systems with up to 34 qubits
were reported on Desktop machines. In order to simulate
quantum systems composed of more qubits, solutions exploit-
ing massive hardware power (supercomputers composed of
thousands of nodes and more than a petabyte of distributed
memory) are applied. But even then, quantum systems with
less than 50 qubits are today’s practical limit [29], [25].

Besides that, solutions based on decision diagrams (so-
called graph-based simulators [33], [27], [13]) have been
proposed by researchers that try to exploit redundancies to gain
a more compact representation of state vectors and matrices.
One such type of decision diagrams suited for representing
quantum computation are Quantum Information Decision Dia-
grams (QuIDDs [31]), which – like Binary Decision Diagrams
(i.e. BDDs [4]) in conventional design – aim for a rather
compact representation in many cases.

Overall, the current state-of-the-art approaches (array-based
as well as graph-based ones) can be summarized as follows:
• LIQUi|〉 [34]: Microsoft’s tool suite for quantum com-

putation with an integrated simulator which relies on a
straight-forward representation and, thus, also can sim-
ulate systems with up to approximately 30 qubits only,
when used on a Desktop machine with 32 GB RAM (still
requires substantial run-times of up to several days).

• qHiPSTER [29]: A quantum high performance software
testing environment developed in Intel’s Parallel Com-
puting Lab. Here, parallel algorithms are utilized which
are executed on 1000 compute nodes with 32 TB RAM
distributed across these nodes. Even with this massive

hardware power, quantum systems of rather limited size
(not more than 40 qubits) can be simulated.

• Quantum Emulator proposed in [11]: A solution which
utilizes a higher level description of quantum compu-
tations (e.g. addition, quantum Fourier transformation,
etc.) to directly compute intermediate results instead of
applying the individual quantum operations successively.
Experimental results are provided for systems with up to
36 qubits which, again, were accomplished with massive
hardware power, i.e. a supercomputer similar to the one
used for qHiPSTER.

• QX [14]: A high-performance array-based quantum com-
puter simulation platform developed in the QuTech Com-
puter Engineering Lab at Delft University. The simulator
tries to parallelize the application of quantum gates to
improve the performance. The authors state that QX
allows for simulation of 34 fully entangled qubits on a
single node using 270 GB of memory.

• ProjectQ [30]: ProjectQ is a software framework for
quantum computing that started at the ETH Zurich. The
contained high-performance array-based simulator allows
to simulate up to approximately 30 qubits on a desktop
machine. ProjectQ additionally contains an emulator,
which can determine e.g. the result for Shor’s algo-
rithm significantly faster than the simulator by employing
conventional shortcuts (e.g. arithmetic components are
computed conventionally instead of using a quantum
circuit).

• QuIDDPro [32], [33] is a graph-based simulator based
on QuIDDs, which allows e.g. to simulate Grover’s algo-
rithm significantly faster than with array-based solutions
by exploiting certain redundancies in the occurring state
vectors and unitary matrices. However, the performance
for simulating computations such as Quantum Fourier
Transformation or Shor’s Algorithms is rather limited
since QuIDDs require a non-scalable number of decision
diagram nodes for these cases (cf. Section VII).

C. General Idea

In this work, we investigate how quantum states and quan-
tum operations can be represented more compactly so that
an efficient simulation becomes possible. To this end, we
utilize a decomposition scheme that is more natural to state
vectors and unitary matrices used in simulation of quantum
computations – allowing for a more compact representation
and for developing efficient manipulation algorithms. In fact,
some of these operations often boil down to rearranging
pointers in the decision diagram. The general idea is motivated
by the decomposition scheme of Quantum Multiple-Valued
Decision Diagrams (QMDDs [23]), which have not yet been
utilized in the context of simulating quantum computations.
They rather have been applied to efficiently solve design tasks
such as verification [35], [21] and synthesis [20], [19], [22],
[36]. In the following sections, we introduce and discuss the
proposed representations as well as the required manipulation
algorithms in detail.
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IV. REPRESENTATIONS FOR QUANTUM SIMULATION

In this section, we discuss the proposed representation
for state vectors and unitary matrices required for quantum
simulation. To this end, we describe a compact representation
for state vectors which, afterwards, is extended by a second
dimension – leading to a compact representation for quantum
operations.

A. Representation of State Vectors

As discussed in Section II-A, a system composed of n qubits
is represented by a state vector of size 2n – an exponential
representation. However, a closer look at state vectors unveils
that they are frequently composed of redundant entries which
provide ground for a more compact representation.

Example 5. Consider a quantum system with n = 3 qubits
situated in a state given by the following vector:

ψ =

[
0, 0,

1

2
, 0,

1

2
, 0,− 1√

2
, 0

]T
.

Although of exponential size (23 = 8 entries), this vector only
assumes three different values, namely 0, 1

2 , and − 1√
2

.

This redundancy can be exploited for a more compact
representation. To this end, decision diagram techniques are
employed. For conventional computations, e.g. Binary De-
cision Diagrams (BDDs, [4]) are very well known. Here, a
decomposition scheme is employed which reduces a function
to be represented into corresponding sub-functions. Since they
also usually include redundancies, equivalent sub-functions
result which can be shared – eventually yielding a much more
compact representation. In a similar fashion, the concept of
decomposition can also be applied to represent state vectors
in a more compact fashion.

More precisely, similar to decomposing a function into
sub-functions, we decompose a given state vector with its
complex entries into sub-vectors. To this end, consider a quan-
tum system with qubits q0, q1, . . . qn−1, whereby q0 represents
the most significant qubit.3 Then, the first 2n−1 entries of the
corresponding state vector represent the amplitudes for the
basis states with q0 set to |0〉; the other entries represent the
amplitudes for states with q0 set to |1〉. This decomposition
is represented in a decision diagram structure by a node
labeled q0 and two successors leading to nodes representing
the sub-vectors. The sub-vectors are recursively decomposed
further until vectors of size 1 (i.e. a complex number) results.
This eventually represents the amplitude αi for the complete
basis state and is given by a terminal node. During these
decompositions, equivalent sub-vectors can be represented by
the same nodes – allowing for sharing and, hence a reduction
of the complexity of the representation. An example illustrates
the idea.

Example 6. Consider again the quantum state from Exam-
ple 5. Applying the decompositions described above yields

3Note that, with the terminology most-significant qubit, we refer to a
position in the basis states of a quantum system, rather than to the importance
of the qubit itself.

q0

q1 q1

q2 q2

0 1
2

− 1√
2

(a) Without edge weights

q0

q1 q1

q2

1

1
2

1 1

0
1 1

−
√
2

1 0

(b) With edge weights

Fig. 2: Representation of the state vector

a decision diagram as shown in Fig. 2a. The left (right)
outgoing edge of each node labeled qi points to a node
representing the sub-vector with all amplitudes for the basis
states with qi set to |0〉 (|1〉). Following a path from the root to
the terminal yields the respective entry. For example, following
the path highlighted bold in Fig. 2a provides the amplitude
for the basis state with q0 = |1〉 (right edge), q1 = |1〉
(right edge), and q2 = |0〉 (left edge), i.e. − 1√

2
which is

exactly the amplitude for basis state |110〉 (seventh entry in
the vector from Example 5). Since some sub-vectors are equal
(e.g.

[
1
2 , 0
]T

represented by the left node labeled q2), sharing
is possible.

However, even more sharing is possible. In fact, many
entries of the state vectors differ in a common factor only
(e.g. the state vector from Example 5 has entries 1

2 and − 1√
2

which differ by the factor −
√
2 only). This is additionally

exploited in the proposed representation by denoting common
factors of amplitudes as weights to the edges of the decision
diagram. Then, the value of an amplitude for a basis state is
determined by not only following the path from the root to
the terminal, but additionally multiplying the weights of the
edges along this path. Again, an example illustrates the idea.

Example 7. Consider again the quantum state from Example 5
and the corresponding decision diagram shown in Fig. 2a. As
can be seen, the sub-trees rooting the node labeled q2 are
structurally equivalent and only differ in their terminal values.

Moreover, they represent sub-vectors
[
1
2 , 0
]T

and
[
− 1√

2
, 0
]T

which only differ in a common factor.
In the decision diagram shown in Fig 2b, both sub-trees

are merged. This is possible since the corresponding value of
the amplitudes is now determined not by the terminals, but
the weights on the respective paths. As an example, consider
again the path highlighted bold representing the amplitude for
the basis state |110〉. Since this path includes the weights 1

2 ,
1, −
√
2, and 1, an amplitude value of 1

2 ·1 · (−
√
2) ·1 = − 1√

2
results.

Note that, of course, various possibilities exist to factorize
an amplitude. Hence, we apply a normalization which assumes
the left edge to inherit a weight of 1. More precisely, the
weights wl and wr of the left and right edge are both divided
by wl and this common factor is propagated upwards to the
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parents of the node. If wl = 0, the node is normalized by
propagating wr upwards to the parents of the node.4

The resulting representation discussed above leads to the
following definition.

Definition 3. The resulting decision diagram for representing
a 2n-dimensional state vector is a directed acyclic graph
with one terminal node labeled 1 that has no successors and
represents a 1-dimensional vector with the element 1. All other
nodes are labeled qi, 0 ≤ i < n (representing a partition over
qubit qi) and have two successors. Additionally, there is an
edge pointing to the root node of the decision diagram. This
edge is called root edge. Each edge of the graph has attached
a complex number as weight. An entry of the state vector
is then determined by the product of all edge weights along
the path from the root towards the terminal. Without loss of
generality, the nodes of the decision diagram are ordered by
the significance of their label, i.e. the successor of a node
labeled qi are labeled with a less significant qubit qj . The
decision diagram is reduced, i.e. nodes where both outgoing
edges point to the same successor and have attached the same
weight (i.e. both sub-vectors are equal) are removed. Finally,
the nodes are normalized, which means that all edges-weights
are divided by the first non-zero weight. The common factor
is propagated upwards in the decision diagram.

B. Representation of Matrices

As discussed in Section II-B, quantum operations are de-
scribed by unitary matrices. Similar to state vectors, these
matrices include redundancies, which can be represented in
a more compact fashion. To this end, we extend the proposed
decomposition scheme for state vectors by a second dimension
– yielding a decomposition scheme for 2n × 2n matrices.

The entries of a unitary matrix U = [ui,j ] indicate how
much the operation U affects the mapping from a basis state |i〉
to a basis state |j〉. Considering again a quantum system
with qubits q0, q1, . . . qn−1, whereby w.l.o.g. q0 represents
the most significant qubit, the matrix U is decomposed into
four sub-matrices with dimension 2n−1 × 2n−1: All entries
in the left upper sub-matrix (right lower sub-matrix) provide
the values describing the mapping from basis states |i〉 to
|j〉 with both assuming q0 = |0〉 (q0 = |1〉). All entries
in the right upper sub-matrix (left lower sub-matrix) provide
the values describing the mapping from basis states |i〉 with
q0 = |1〉 to |j〉 with q0 = |0〉 (q0 = |0〉 to q0 = |1〉). This
decomposition is represented in a decision diagram structure
by a node labeled q0 and four successors leading to nodes
representing the sub-matrices. The sub-matrices are recursively
decomposed further until a 1 × 1 matrix (i.e. a complex
number) results. This eventually represents the value ui,j for
the corresponding mapping. Also during these decompositions,
equivalent sub-matrices are represented by the same nodes and
weights as well as a corresponding normalization scheme (as
applied for the representation of state vectors) is employed.

4Applying a fixed normalization scheme, a representation which is even
canonic (w.r.t qubit order) results. However, since canonicity is not further
relevant for the purpose of simulation, this issue is not discussed in detail in
this work.

q0

1

−1

1√
2

(a) H

q1

1

0 0

(b) I2

q0

q1

1

−1

0 0

1√
2

(c) U = H ⊗ I2

Fig. 3: Representation of matrices

Note that for a simpler graphical notation, we use zero stubs
to indicate zero matrices (i.e. matrices that contain zeros only)
and omit edge weights that are equal to one. Again, an example
illustrates the idea.

Example 8. Consider again the matrices of H , I2, and
U = H ⊗ I2 from Example 4. Fig. 3 shows the corresponding
decision diagram representations. Following the path high-
lighted bold in Fig. 3c defines the entry u0,2: a mapping from
|0〉 to |1〉 for q0 (third edge from the left) and from |0〉 to |0〉
for q1 (first edge). Consequently the path describes the entry
for a mapping from |00〉 to |10〉. Multiplying all factors on the
path (including the root edge) yields 1√

2
· 1 · 1 = 1√

2
, which

is the value of u0,2.

The concepts described above yield to the definition of a
decision diagram representing a unitary matrix as follows.

Definition 4. The resulting decision diagram for representing
a 2n × 2n-dimensional unitary matrix is a directed acyclic
graph with one terminal node labeled 1 that has no successors
and represents a 1 × 1 matrix with the element 1. All other
nodes are labeled qi, 0 ≤ i < n (representing a partition over
qubit qi) and have two successors. Additionally, there is an
edge pointing to the root node of the decision diagram. This
edge is called root edge. Each edge of the graph has attached
a complex number as weight. An entry of the unitary matrix
is then determined by the product of all edge weights along
the path from the root towards the terminal. Without loss of
generality, the nodes of the decision diagram are ordered by
the significance of their label, i.e. the successor of a node
labeled qi are labeled with a less significant qubits qj . The
decision diagram is reduced, i.e. nodes where all outgoing
edges point to the same successor and have attached the
same weight (i.e. all four sub-matrices are equal) are removed.
Finally, the nodes are normalized, which means that all edges-
weights are divided by the first non-zero weight. The common
factor is propagated upwards in the decision diagram.

V. CONDUCTING QUANTUM SIMULATIONS

With the availability of a compact representation for state
vectors and unitary matrices, it is left to provide corresponding
methods for conducting quantum operations, i.e. forming the
Kronecker product, multiplying vectors with matrices, as well
as measuring the quantum system. Since the applied decom-
position scheme is natural to vectors and matrices, we can
efficiently implement these required operations.
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qi qi qi qi

U00 U01 U10 U11 ψ0 ψ1 U00 · ψ0 U10 · ψ0 U01 · ψ1 U11 · ψ1

× +=

Fig. 4: Multiplication of a unitary matrix and a state-vector

A. Kronecker Product

As discussed in Section III, forming the Kronecker product
of two matrices is essential to construct 2n × 2n unitary ma-
trices. Since we deal with square matrices whose dimensions
are powers of 2 when simulating quantum computations, the
Kronecker product is defined as

A⊗B =

 a0,0 ·B · · · a0,2k−1 ·B
...

. . .
...

a2k−1,0 ·B · · · a2k−1,2k−1 ·B

 .
This means that each element ai,j of A has to be replaced

by ai,j · B. While this constituted an expensive task using
array-based realizations of A and B, it is very cheap to form
the Kronecker product of two matrices given in the proposed
decision diagram. This has also already been observed in [24].

Since ai,j is given as product of the edge weights from A’s
root node to the terminal and we can easily determine ai,j ·B
by adjusting the weight of the edge pointing to B’s root node.
All that has to be done to determine A ⊗ B is replacing A’s
terminal with the root node of B. Additionally, the weight of
A’s root edge has to be multiplied by the weight of B’s root
edge.

Example 9. Recall the matrices considered in Fig 3c. The
Kronecker product U = H ⊗ I2 was efficiently constructed
by taking the decision diagram representation of H (shown in
Fig. 3a) and replacing its terminal node with the root node
of the decision diagram representing I2 (shown in Fig. 3b).
Since the root edge of I2 has weight 1, the value of the root
node of U is equal to the weight of A’s root edge.

Note that forming the Kronecker product is not that simple
when using other types of decision diagrams like QuIDDs.
Here, the complex entries of the matrices are stored in different
terminals rather than in edge weights. Consequently, forming
the Kronecker product of two matrices A and B represented
by QuIDDs requires – among others – to multiply all terminals
of A with those of B.

B. Multiplying Unitary Matrices

The vector/matrix-multiplication as defined in Def. 2 can
also be decomposed with respect to the most significant qubit
leading to

ψ′i =

2n−1∑
k=0

ui,k · ψk =

2n−1−1∑
k=0

ui,k · ψk +
2n−1∑
k=2n−1

ui,k · ψk,

qi qi qi

ψ0 ψ1 φ0 φ1 ψ0 + φ0 ψ1 + φ1

+ =

Fig. 5: Addition of state-vectors

or, using the matrix notation,

U · ψ =

[
U00 U01

U10 U11

]
·
[
ψ0

ψ1

]
=

[
U00 · ψ0

U10 · ψ0

]
+

[
U01 · ψ1

U11 · ψ1

]
.

This means, that we have to recursively determine5 the four
sub-products U00 ·ψ0, U01 ·ψ1, U10 ·ψ0, and U11 ·ψ1. As shown
in Fig. 4, these sub-products are then combined with a decision
diagram node to two intermediate state vectors. Finally, these
intermediate state vectors have to be added. This addition can
be recursively decomposed in a similar fashion, namely

ψ + φ =

[
ψ0

ψ1

]
+

[
φ0
φ1

]
=

[
ψ0 + φ0
ψ1 + φ1

]
.

The recursively determined sub-sums ψ0+φ0 and ψ1+φ1 are
composed by a decision diagram node as shown in Fig. 5.

Moreover, all these decompositions into sub-products and
sub-sums do not change the decision diagram structure.
Hence, the complexity of them remains bounded by the
number of nodes of the original representations. Furthermore,
redundancies can again be exploited by caching sub-products
and sub-sums.

C. Measurement

Measurement can also be conducted efficiently on the
decision diagram structure. To this end, consider w.l.o.g. that
qubit q0 (which is represented by the root node of the
corresponding decision diagram) of the state vector should
be measured (this can easily be accomplished by applying a
SWAP operation or by re-arranging the nodes and edges of
the decision diagram). Then, the left (right) successor of the
root node represents the sub-vector containing the amplitudes

5The decompositions of multiplication and addition are recursively applied
until 1 × 1 matrices or 1-dimensional vectors result. Since those eventu-
ally represent just complex numbers, their multiplication and/or addition is
straight-forward.
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qi

p = pleft · w2
l + pright · w2

r

wl wr

pleft pright

Fig. 6: Probability of a decision diagram node

of all states with q0 = |0〉 (q0 = |1〉), i.e. states that are of
form |0q1q2 . . .〉 (|1q1q2 . . .〉). The probability for collapsing
qubit q0 to one of the two basis states is defined as follows.

Definition 5. Consider a quantum system composed of n
qubits q0, q1, · · · qn−1. Then, the probability measuring (and,
thus, collapsing to) basis state |0〉 (basis state |1〉) for qubit q0
is the sum of the squared magnitudes of the complex entries
in the corresponding sub-vector, i.e.

P (q0 → |0〉) =
∑

x∈0{0,1}n−1

|αx|2

P (q0 → |1〉) =
∑

x∈1{0,1}n−1

|αx|2 .

Example 10. Consider again the quantum state discussed in
Example 5. The probabilities for measuring q0 = |0〉 and
q0 = |1〉 are:

P (q0 → |0〉) = |0|2 + |0|2 +
∣∣∣∣12
∣∣∣∣2 + |0|2 =

1

4

P (q0 → |1〉) =
∣∣∣∣12
∣∣∣∣2 + |0|2 + ∣∣∣∣− 1√

2

∣∣∣∣2 + |0|2= 3

4

Therefore, the qubit q0 is collapsed into basis state |0〉 (basis
state |1〉) with a probability of 0.25 (0.75).

Consequently, we have to determine the summed probabil-
ities for the decision diagram nodes. Again, the calculation of
these probabilities can recursively be decomposed since∑
x∈0{0,1}n−1

|αx|2 =
∑

x∈00{0,1}n−2

|αx|2 +
∑

x∈01{0,1}n−2

|αx|2 .

This means we have to recursively determine the summed
probabilities pleft and pright of the sub-vectors. As Fig. 6
shows, the summed probability of the current decision diagram
node is then determined by the sum of the probabilities of
the sub-vectors. Before these probabilities are added, they are
multiplied with the squared weight of the respective edges.

Note that, in the proposed decision diagram representation,
the amplitudes αx of the 2n basis states are determined by a
product of n + 1 edge weights, i.e. αx =

∏n
i=0 wx,i. Since

|α · β| = |α| · |β| holds for all complex numbers α, β ∈ C,
|αx|2 can be determined on the decision diagram, i.e.

|αx|2 =

∣∣∣∣∣
n∏
i=0

wx,i

∣∣∣∣∣
2

=

n∏
i=0

|wx,i|2 .

q0

q1

q2

1

1
2

0

1

1 −
√
2

1 0

(a) Measure q0 = |1〉

q0

q1

q2

1

1√
3

0

1

1 −
√
2

1 0

(b) Normalize amplitudes

Fig. 7: Measurement of qubit q0

Finally, the weight on the edges to the left and the right
successor of the root node (as well as the weight of the root
edge) have to be considered to obtain the correct probabilities
P (q0 → |0〉) and P (q0 → |1〉). An example illustrates the
idea.

Example 10. The decision diagram shown in Fig 2b repre-
sents the quantum state ψ (cf. Example 5). The probability of
the node labeled q2 can be determined by 12+02 = 1. Based
on that, the probabilities of the two nodes labeled q1 can be
determined. These are 02 · 1+ 12 · 1 = 1 for the left node and
11 · 1 +

∣∣−√2∣∣2 · 1 = 3 for the right node. From these nodes,
we can determine the probabilities for collapsing q0 to basis
state |0〉 or |1〉 by

P (q0 → |0〉) =
(
1

2

)2

· 12 · 1 =
1

4

P (q0 → |1〉) =
(
1

2

)2

· 12 · 3 =
3

4

.

Having the probabilities for collapsing q0 to basis state |0〉
and |1〉 allows to sample the new value for q0. If we obtain
basis state |0〉 (basis |1〉), the amplitudes for all basis states
with q0 = |1〉 (q0 = |0〉) drop to zero. In the decision diagram,
we perform this collapse by changing the right (left) outgoing
edge of the root node to point to the terminal and attach weight
zero. Finally, the remaining (non-zero) amplitudes in the state
vector must be modified in order to fulfill the normalization
constraint (cf. Section II-A). To this end, all amplitudes are
divided by

√
P (q0 → |0〉) (

√
P (q0 → |1〉)). This can easily

be conducted on the decision diagram structure by modifying
the weight of the root edge.

Example 10 (continued). Assume we measure basis
state |1〉 for qubit q0. Fig. 7a shows the resulting decision
diagram. To fulfill the normalization constraint, we divide the
weight of the edge to the root node by

√
3
4 – eventually

resulting in the decision diagram shown in Fig. 7b.

Measuring all qubits can be conducted in a similar fashion.
In fact, we repeat the procedure discussed above sequentially
for all qubits q0, q1, · · · qn−1. Assume that qubit qi shall be
measured, and that all qubits qj where j < i are already
measured. Then, there exists only one node labeled qi, which
is the root node of the sub-vector to be measured.
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VI. DISCUSSION

In this section, we discuss the complexity of the proposed
approach with respect to existing array-based and graph-based
solutions. This allows to get an intuition why the proposed
approach can significantly outperform them in many cases.
We distinguish thereby between a discussion about the repre-
sentation of vectors and matrices as well as a discussion about
the respective operations.

A. Representation of Vectors and Matrices

While array-based approaches always have to deal with
2n-dimensional state vectors and 2n × 2n-dimensional matri-
ces, graph-based approaches often allow for a significantly
more compact representation in many practically relevant
cases. This is similar to BDDs in conventional design, which
have an exponential size for most Boolean functions (espe-
cially random ones), but allow rather compact representation
for many functions of interest. As already mentioned in
Section IV-A, introducing edge weights and a normalization
scheme allows to exploit more redundancies than previous
graph-based solutions – leading to an even more compact
representation.

Nevertheless, in the worst case (i.e. if no redundancies
in the state vector can be exploited), a full binary tree
with |v| = 1 +

∑n−1
i=0 2i = 2n nodes results. Furthermore,

2 · (2n− 1)+ 1 = 2n+1− 1 complex edge weights have to be
stored – approximately twice as many complex numbers than
used in array-based solutions and when using e.g. QuIDDs to
represent the state-vector. That is, in the absolute worst case,
the proposed representation is twice as large as array-based
and graph-based solutions. This additional overhead, however,
allows to exploit much more redundancies and, hence, to even-
tually gain more compact representations. This is confirmed by
our experimental evaluation, which clearly shows that the peak
node count of the proposed approach is significantly below that
exponential upper bound.

In general, the worst-case memory complexity for 2n × 2n

matrices is analogous to the memory complexity for state-
vectors – a full quad-tree has |v| = 1+

∑n−1
i=0 4i = 1+ 4n−1

3
nodes. However, elementary quantum operations considered
in this work (cf. Section II-B) that are composed of a single
target qubit and an arbitrary number of control qubits only
require a linear (in the number of qubits) number of nodes
(cf. Section V-A).

B. Conducting Operations

Matrix operations are also less complex for graph-based
solutions compared to array-based ones, which always suf-
fer from an exponential complexity (since the exponentional
matrix and the vector have to be traversed several times).
However, there are also differences between the individual
graph-based solutions.

As discussed in Section V-A, the Kronecker product of two
matrices can easily be determined on the proposed type of
decision diagrams by exchanging the terminal of one matrix
with the root node of the other matrix. Consequently, forming
the Kronecker product has complexity of O(|v|). In contrast,
this is more complex when using e.g. QuIDDs, where it is

required – among others – to multiply all terminal values of
the two matrices with each other.

Also matrix vector multiplication can be performed sig-
nificantly faster for graph-based solutions. The complexity
of a matrix multiplication has an upper bound defined by
the product of the number of nodes needed to represent the
state-vector and the number of nodes needed to represent the
matrix. Since we only consider matrices where the number of
nodes grows linearly with the number of qubits, the overall
complexity is O(n · |v|).

Also measuring all qubits of a state vector has complex-
ity O(|v|). This is, because each node has to be traversed
only once. Afterwards, each qubit can be measured in O(1),
starting at the top of the decision diagram – resulting in an
overall complexity of O(|v|+ n).

Overall, this clearly shows that graph-based solutions offer
more efficient representation and manipulation of state vectors
in many cases. Although graph-based approaches suffer from
overhead caused by the decision diagram structure (and ad-
ditional complex numbers), these approaches can outperform
array-based solutions by exploiting redundancies. Since the
proposed graph-based approach exploits even more redun-
dancies than e.g. QuIDDPro, we also observe a significant
performance improvement compared to this representative.
This is confirmed by our empirical evaluation summarized in
the next section.

VII. EXPERIMENTAL RESULTS

We evaluated the scalability of the proposed approach
and compared it to the state-of-the-art. To this end, we
implemented the simulator in C++6 on top of the QMDD
package provided by [23], which we extended and modified
to realize the concepts introduced above. As state-of-the-
art, we considered the publicly available implementations of
the recently proposed array-based simulators LIQUi|〉 [34],
QX [14] and the simulator of ProjectQ [30]7, as well as the
graph-based simulator QuIDDPro [33]. All simulations have
been conducted on a regular Desktop computer, i.e. a 64-bit
machine with 4 cores (8 threads) running at a clock frequency
of 3.8 GHz and 32 GB of memory running Linux 4.4.8 Besides
that, we additionally considered the best results published for
other simulators (cf. Section III-B) that have been taken from
the respective papers.

As benchmarks, well-known quantum algorithms consid-
ered by previous work have been used. More precisely,
quantum systems generating entangled states, conducting
Quantum Fourier Transformation (QFT; cf. [18]), executing
Grover’s Algorithm for database search [10], and executing
Shor’s Factorization Algorithm [28] (using the realization

6The implementation is publicly available at
http://iic.jku.at/eda/research/quantum_simulation

7Note that ProjectQ also provides an emulator, where high level operations
are applied directly. However, in order to allow for a fair evaluation, we only
compared the simulators against each other and not a simulator against an
emulator.

8The proposed approach as well as QuIDDPro use a single core while the
simulators LIQUi|〉, QX, and the simulator of ProjectQ use multiple threads.
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proposed by Beauregard [3] that requires 2n + 3 qubits to
factor an n-bit integer) have been considered. Note that, for all
benchmarks except QFT, the initial assignments of the inputs
are fixed. For QFT, we randomly chose one of the basis states
as initial input assignment.

In order to not run into numerical issues when normalizing
the decision diagrams (which requires many divisions), we
used the GNU MPFR library [1] to increase the precision of
the floating point numbers and checked at each measurement
whether the probabilities for measuring one of the basis states
sum up to 1 (except a tiny ε). In fact, using a precision of 200
bits was enough the avoid numerical errors for all considered
benchmarks.

Table I summarizes the results. The columns #Qubits and
#Ops list the number of involved qubits and the number
of quantum operations to be conducted, respectively. In the
remaining columns, we list the simulation time (i.e. the
entire runtime from initialization to termination) and peak
memory when using LIQUi|〉, QX, ProjectQ, QuIDDPro, as
well as the proposed approach. For the graph-based simulators
(i.e. QuIDDPro as well as the proposed one), we also list
the peak node count during simulation, which gives a more
accurate measurement of scalability than the actual memory
consumption. Besides that, Table I also provides a compar-
ison to other state-of-the-art simulation approaches. That is,
whenever results from them are provided in the literature, the
respectively best result for a considered quantum algorithm is
summarized in the bottom of that part.

Note that some restrictions apply for certain state-of-the-art
simulators: In fact, the publicly available version of LIQUi|〉
allows to simulate circuits composed of at most 23 qubits
only. Using QX, we were able to simulate up to 29 qubits
on our machine – trying to allocate 30 or more qubits
failed (due to limited memory). Furthermore, QX does not
allow to simulate Beauregard’s realization of Shor’s algorithm
for integer factorization, because of missing features in the
circuit description language (since QX is still in its infancy).
We have accordingly marked all these cases by n.a. (not
applicable) in Table I. Furthermore, the current release of
QuIDDPro (version 3.8) also contains an improved simulator
called QuIDDProLite (to be activated with the command
line option -cs) that runs on average four times faster than
QuIDDPro. However, this improved version can only simulate
stand-alone quantum circuits and, hence, is not applicable
for simulating Beauregard’s implementation of Shor’s algo-
rithm (which also requires non-quantum control structures).
Consequently, we list the runtime of QuIDDPro for Shor’s
algorithm and the runtime of QuIDDProLite for the other
benchmarks (i.e. always the best result of both QuIDDPro
versions are reported). Since QuIDDProLite does not offer the
capability to dump the peak node count, we list the number of
nodes obtained when using QuIDDPro for simulation. In the
cases where this simulation does not succeed within the given
timeout of five hours, we again label the corresponding entry
by n.a. (not applicable).

As can be seen, the simulation of quantum systems gen-
erating entangled states and conducting QFT shows a linear
behavior on our simulator. While this allows for a rather

unlimited scalability using the solution proposed in this work,
Microsoft’s simulator LIQUi|〉, QX, as well as ProjectQ show
exponential behavior. Even massive hardware power such as
employed by Intel’s simulator qHiPSTER [29] (running on
a machine with 1000 nodes and 32 terabytes of memory) or
the quantum emulator of [11] (running on a similar machine)
manages to conduct QFT for a maximum of 40 qubits only
(and additionally requires hundreds of seconds, while the
approach proposed in this work terminates in a fraction of
a second).

The graph-based simulator QuIDDPro [33] is capable to
efficiently conduct entanglements (similar to the proposed
approach, only a linear amount of nodes is required). But
also here, an exponential behavior can be observed when
conducting QFT. This is caused by the fact that the state vector
contains exponentially many different entries which cannot be
handled efficiently by QuIDDPro. In contrast, the proposed
solution can exploit further redundancies here (namely sub-
vectors which are multiples of each other as discussed in
Section IV) – resulting in a linear number of decision diagram
nodes for QFT.

The simulation of Grover’s Algorithm and Shor’s Algorithm
constitutes a more challenging task. But even here, the pro-
posed representation remains rather compact. For example,
in case of simulating Shor’s Algorithm with 37 qubits, only
slightly more than 20 000 nodes are required. In fact, the
significantly larger number of operations is more challenging
here. Nevertheless, the proposed approach still manages to
simulate both algorithms significantly more efficient and for
more qubits than the state-of-the-art. While e.g. Microsoft’s
simulator LIQUi|〉 is capable of conducting Shor’s Algorithm
for at most 31 qubits in more than 30 days (on a similar
machine; cf. [34]), the simulation approach proposed in this
work completes this task within in less than a minute.

Also the previously proposed graph-based solution
QuIDDPro can not reach this efficiency. While QuIDDPro
allows for a rather compact representation when simulating
Grover’s Algorithm, it requires a substantial amount of
runtime. This is caused by the fact that the required
operations cannot be conducted as efficiently as with the
proposed solution (since the decomposition scheme is not
that natural to matrices and state-vectors as discussed in
Section VI). Hence, the proposed solution clearly outperforms
QuIDDPro (which is optimized for Grover’s Algorithm and
has mainly been evaluated on that in the literature). For
Shor’s Algorithm, we can observe similar limitations for
QuIDDPro than for array-based solutions (in fact, LIQUi|〉 is
performing even better than QuIDDPro in this case). Again,
the solution proposed in this work can handle all these cases
much faster and for more qubits than before.

Overall, the proposed simulation approach clearly outper-
forms the current state-of-the-art in terms of runtime as well
as in terms of memory (only up to 260 MB were required).
Additionally, the proposed solution is able to simulate quantum
computations for more qubits. Besides that, all these accom-
plishments can be achieved on a single core of a regular
Desktop machine, i.e. without massive hardware power or the
utilization of supercomputers.
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TABLE I: Experimental results

LIQUi|〉 [34] QX [14] ProjectQ [30] QuIDDPro [33] Proposed approach
Computation #Qubits #Ops Time [s] Mem [MB] Time [s] Mem [MB] Time [s] Mem [MB] Time [s] Mem [MB] #Nodes Time [s] Mem [MB] #Nodes

Entanglement 22 22 3.53 193.33 0.42 200.47 1.08 152.41 0.04 14.93 45 <0.01 48.02 43
23 23 4.09 248.25 0.80 396.94 0.49 248.01 0.04 14.92 47 <0.01 48.03 45
24 24 n.a. 1.61 790.23 0.64 444.69 0.04 14.93 49 <0.01 48.00 47
26 26 n.a. 6.82 3149.66 2.74 1624.56 0.04 14.93 53 <0.01 48.02 51
28 28 n.a. 30.53 12586.87 4.91 6342.95 0.04 14.93 57 <0.01 48.14 55
29 29 n.a. 63.02 25169.79 9.12 12634.67 0.04 14.92 59 <0.01 48.24 57
30 30 n.a. n.a. 17.76 25217.66 0.04 14.93 61 <0.01 48.14 59
31 31 n.a. n.a. MO 0.04 14.93 63 <0.01 48.11 61

100 100 n.a. n.a. MO 0.14 15.98 201 <0.01 49.32 199
• Reported for QX [14]: max. 34 qubits using less than 270 GB of memory

QFT 18 171 3.02 192.91 0.27 16.56 0.87 57.82 24.21 192.77 65535 0.01 48.47 18
20 210 4.35 188.67 1.59 53.49 0.50 75.82 2263.38 1210.34 2097151 0.01 48.56 20
21 231 6.46 192.83 3.63 102.75 0.66 100.75 10208.06 2511.26 4194303 0.01 48.78 21
22 253 11.38 191.00 8.06 201.01 1.06 150.30 MO 0.01 48.92 22
23 276 22.43 312.41 15.06 397.50 1.55 250.18 MO 0.01 49.13 23
24 300 n.a. 31.66 790.77 3.27 445.04 MO 0.01 49.19 24
26 351 n.a. 139.23 3150.14 12.84 1624.81 MO 0.02 49.36 26
29 435 n.a. 1270.03 25170.21 109.19 12638.54 MO 0.02 49.95 29
30 465 n.a. n.a. 25217.39 234.27 MO 0.02 50.00 30
31 496 n.a. n.a. MO MO 0.03 50.53 31
64 2080 n.a. n.a. MO MO 0.09 68.00 64

• Reported for qHiPSTER (Intel, cf. [29]): max. 40 qubits on a supercomputer (in approx. 1000 s).
• Reported for Quantum emulator from [11]: max. 36 qubits on a supercomputer (in approx. 10 s).

Grover 16 11600 97.78 195.11 55.90 57.28 6.65 51.88 6.93 16.29 39 0.14 50.54 130
18 26082 770.26 193.42 583.45 144.41 16.37 58.12 23.49 17.24 44 0.33 50.78 148
20 57940 8494.59 198.22 6394.54 382.51 77.95 77.17 85.86 19.05 39 0.78 50.80 166
21 86037 >18000.00 >18000.00 229.45 101.27 168.07 20.60 n.a. 0.97 50.91 175
24 278040 n.a. >18000.00 5362.00 447.11 1272.36 31.78 n.a. 3.11 51.14 202
25 409625 n.a. >18000.00 15765.00 843.85 2598.08 40.55 n.a. 5.55 51.14 211
26 602394 n.a. >18000.00 >18000.00 5076.64 52.95 n.a. 8.24 51.26 220
27 884763 n.a. >18000.00 >18000.00 >18000.00 14.65 51.26 238
30 2780430 n.a. n.a. >18000.00 >18000.00 37.23 51.32 256
40 118632840 n.a. n.a. >18000.00 >18000.00 1239.96 52.01 346

Shor 13 12640 76.75 65.88 n.a. 0.40 47.56 1665.28 92.03 16375 0.21 52.65 40
15 23083 298.59 62.72 n.a. 9.30 51.43 16236.14 365.22 65535 0.54 55.09 72
17 38847 343.83 128.81 n.a. 19.25 55.10 >18000.00 0.76 57.63 66
19 61510 1232.83 85.01 n.a. 47.48 70.91 >18000.00 1.07 60.56 156
21 92700 7888.00 147.03 n.a. 187.14 115.74 >18000.00 10.98 64.88 519
23 134490 >18000.00 n.a. 947.72 283.88 >18000.00 3.35 67.30 151
25 188784 n.a. n.a. 4827.00 860.96 >18000.00 17.91 75.17 653
27 258060 n.a. n.a. >18000.00 >18000.00 74.52 83.34 949
31 451577 n.a. n.a. MO >18000.00 44.60 97.91 305
33 581272 n.a. n.a. MO >18000.00 1019.55 156.12 6517
37 922385 n.a. n.a. MO >18000.00 5585.64 259.96 20917

• Reported for LIQUi|〉 (Microsoft, cf. [34]): max. 31 qubits (in more than 30 days).
Time denotes the actual runtime and not the CPU seconds (which would be even higher for [34], [14], [30] since they use parallelization to speed-up simulation).

VIII. CONCLUSIONS

This work introduces a new graph-based approach for
the simulation of quantum computations that clearly outper-
form previous graph-based or array-based solutions. To this
end, we revisited the basics of quantum computation and
developed a simulation approach which exploits redundan-
cies in the respective quantum state and operation descrip-
tions. The resulting simulator (which is publicly available
at http://iic.jku.at/eda/research/quantum_simulation) is capable
of (1) simulating quantum computations for more qubits than
before, (2) in significantly less run-time (in hours or, in many
cases, just minutes or seconds rather than several days), and
(3) on a regular Desktop machine.
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