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Abstract—In the past years, quantum computers more and
more have evolved from an academic idea to an upcoming reality.
IBM’s project IBM Q can be seen as evidence of this progress.
Launched in March 2017 with the goal to provide access to
quantum computers for a broad audience, this allowed users
to conduct quantum experiments on a 5-qubit and, since June
2017, also on a 16-qubit quantum computer (called IBM QX2 and
IBM QX3, respectively). Revised versions of these 5-qubit and
16-qubit quantum computers (named IBM QX4 and IBM QX5,
respectively) are available since September 2017. In order to use
these, the desired quantum functionality (e.g. provided in terms
of a quantum circuit) has to be properly mapped so that the
underlying physical constraints are satisfied – a complex task.
This demands solutions to automatically and efficiently conduct
this mapping process.

In this paper, we propose a methodology which addresses
this problem, i.e. maps the given quantum functionality to a
realization which satisfies all constraints given by the architecture
and, at the same time, keeps the overhead in terms of additionally
required quantum gates minimal. The proposed methodology is
generic, can easily be configured for similar future architectures,
and is fully integrated into IBM’s SDK. Experimental evaluations
show that the proposed approach clearly outperforms IBM’s
own mapping solution. In fact, for many quantum circuits, the
proposed approach determines a mapping to the IBM archi-
tecture within minutes, while IBM’s solution suffers from long
runtimes and runs into a timeout of 1 hour in several cases. As an
additional benefit, the proposed approach yields mapped circuits
with smaller costs (i.e. fewer additional gates are required).
All implementations of the proposed methodology is publicly
available at http://iic.jku.at/eda/research/ibm_qx_mapping.

I. INTRODUCTION

Quantum computers and quantum algorithms have received
lots of interests in the past – of course, mainly motivated
by their ability to solve certain tasks significantly faster than
classical algorithms [1]–[4]. These quantum algorithms are
described by so-called quantum circuits, a sequence of gates
that are applied to the qubits of a quantum computer. While
theoretical algorithms have already been developed in the
last century (e.g. [2]–[4]), physical realizations have been
considered “dreams of the future” for a long time. This
changed in recent years in which quantum computers more and
more evolved from an academic idea to an upcoming reality.

IBM’s project IBM Q [5], which launched in March 2017
with the goal to provide access to a quantum computer to
the broad audience, can be seen as evidence of this progress.
Initially, they started with the 5 qubit quantum processor
IBM QX2, on which anyone could run experiments through
cloud access. In June 2017, IBM added a 16 qubit quantum
processor named IBM QX3 to their cloud [6] and, thus,

more than tripled the number of available qubits within a
few months. Since then, IBM has been working intensely on
improving their quantum computers – leading to 5-qubit and
16-qubit quantum computers (named IBM QX4 and IBM QX5,
respectively) which were added to the cloud in September
2017.

The rapid progress in the number of available qubits is still
going on. While IBM has already manufactured a 20-qubit
quantum computer which is available for their partners and
members of the IBM Q network, as well as a prototype of a
50-qubit processor, other well-known companies like Google
have also announced the intent to manufacture quantum chips
with 49 qubits (using architectures as described in [7]) in the
near future to show quantum supremacy [8], [9].

However, in order to use these physical realizations, the
desired quantum functionality to be executed has to properly
be mapped so that the underlying physical constraints are
satisfied. This constitutes a complex task. One issue is that
the desired functionality (usually described by higher level
components) has to be decomposed into elementary opera-
tions supported by the IBM QX architectures. Furthermore,
there exist physical limitations, namely that certain quantum
operations can only be applied to selected physical qubits of
the IBM QX architectures. Consequently, the logical qubits of a
quantum circuit have to be mapped to the physical qubits of the
quantum computer such that all operations can be conducted.
Since it is usually not possible to determine a mapping such
that all constraints are satisfied throughout the whole circuit,
this mapping may change over time. To this end, additional
gates, e.g. realizing SWAP operations, are inserted in order to
“move” the logical qubits to other physical ones. They affect
the reliability of the circuit (each further gate increases the
potential for errors during the quantum computation) as well
as the execution time of the quantum algorithm. Hence, their
number should be kept as small as possible.

While there exist several methods to address the first issue,
i.e. how to efficiently map higher level components to elemen-
tary operations (see [10]–[13]), there is hardly any work on
how to efficiently satisfy the additional constraints for these
new and real architectures. Although there are similarities
with recent work on nearest neighbor optimization of quantum
circuits as proposed in [14]–[20], they are not applicable since
simplistic architectures with 1-dimensional or 2-dimensional
layouts are assumed in that work which have significantly less
restrictions. Even IBM’s own solution, which is provided by
means of the Python SDK QISKit [21] fails in many cases
since the random search employed there does not cope with
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the underlying complexity and cannot generate a result in
acceptable time.

The above motivates a solution that is as efficient as circuit
designers e.g. in the classical domain, take for granted today.
In this work1, we propose a corresponding methodology. To
this end, a multi-step approach is introduced which utilizes
a depth-based partitioning and A∗ as underlying search algo-
rithm as well as further optimizations such as a look-ahead
scheme and the ability to determine the initial mapping of
the qubits throughout the mapping process (instead of fixing
the initial mapping at the beginning of the algorithm). The
resulting methodology is generic, i.e. it can directly be applied
to all existing QX architectures as well as similar upcoming
architectures which may come in the future (and architec-
tures whose constraints can be formulated in a similar way).
Finally, we integrated the methodology into IBM’s Python
SDK QISKit – allowing for a more realistic performance
evaluation since post-mapping optimizations provided by IBM
are additionally considered.

Experimental evaluations confirmed the benefits and al-
lowed for an explicit analysis of the effects of the respective
optimizations incorporated into the proposed methodology.
The results clearly show that the methodology is able to cope
with the complexity of satisfying the constraints discussed
above. Using this solution, QX-compatible mappings for many
quantum circuits can be determined within minutes, while
IBM’s own solution suffers from long runtimes and runs into
a timeout of 1 hour in these cases. Moreover, as an additional
benefit, realizations with smaller costs (i.e. fewer additional
gates) are obtained. All implementations are publicly avail-
able at http://iic.jku.at/eda/research/ibm_qx_mapping and, as
mentioned above, have been integrated into IBM’s own SDK
– resulting in an advanced and integrated mapping scheme for
the QX architectures provided by IBM.

This paper is structured as follows. In Section II, we review
quantum circuits as well as the IBM QX architectures. In
Section III, we discuss the process to map a given quantum
circuit to the IBM QX architectures. How to particularly cope
with the problem of satisfying the additional constraints is
covered in Section IV. In Section V, the performance of the
proposed mapping scheme is analyzed and compared to the
performance of the solution provided by IBM. Section VI
concludes the paper.

II. BACKGROUND

In this section, we briefly review the basics of quantum
circuits and the IBM QX architectures.

A. Quantum Circuits

Classical computations and circuits use bits as information
units. In contrast, quantum circuits perform their computations
on qubits [1]. These qubits can not only be in one of the two
basis states |0〉 or |1〉, but also in a superposition of both –
allowing for the representation of all possible 2n basis states
of n qubits concurrently. This so-called quantum parallelism

1A preliminary version of this work is available at [22].
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Fig. 1: Circuit diagram of a quantum circuit

serves as basis for algorithms that are significantly faster on
quantum computers than on classical machines.

To this end, the qubits of a quantum circuit are manipulated
by quantum operations represented by so-called quantum
gates. These operations can either operate on a single qubit,
or on multiple ones. For multi-qubit gates, we distinguish
target qubits and control qubits. The value of the target
qubits is modified in the case that the control qubits are
set to basis state |1〉. The Clifford+T library [10], which
is composed of the single-qubit gates H (Hadamard gate)
and T (Phase shift by π/4), as well as the two-qubit gate
CNOT (controlled NOT), represents a universal set of quantum
operations (i.e. all quantum computations can be implemented
by a circuit composed of gates from this library).

To describe quantum circuits, high level quantum languages
(e.g. Scaffold [23] or Quipper [24]), quantum assembly lan-
guages (e.g. OpenQASM 2.0 developed by IBM [25]), or
circuit diagrams are employed. In the following, we use the
latter to describe quantum circuits (but the proposed approach
has also been applied using the other descriptions as well).
In a circuit diagram, qubits are represented by horizontal
lines, which are passed through quantum gates. In contrast to
classical circuits, this however does not describe a connection
of wires with a physical gate, but defines (from left to right)
in which order the quantum gates are applied to the qubits.

Example 1. Fig. 1 shows the circuit diagram of a quantum
circuit. The quantum circuit is composed of three qubits and
five gates. The single-qubit gates H and T are represented by
boxes labeled with H and T, respectively, while the control
and target qubit of the CNOT gate are represented by •
and ⊕, respectively. First, a Hadamard operation is applied to
qubit q0. Then, a CNOT operation with target q1 and control
qubit q0 is conducted – followed by a T-gate that is applied
to q2. Finally, two more CNOTs are applied.

B. IBM’s QX Architectures

In this work, we consider how to efficiently map a quantum
circuit to the IBM QX architectures provided by the project
IBM Q [5]. IBM provides a Python SDK named QISKit [21]
that allows a designer to describe quantum circuits, to simulate
them, and to execute them on the real device (a so-called
backend) in their cloud. The first backend composed of 5
qubits and called IBM QX2 was launched in March 2017. In
June 2017, IBM launched a second one called IBM QX3 which
is composed of 16 physical qubits that are connected with
coplanar waveguide bus resonators [6]. Quantum operations
are conducted by applying microwave pulses to the qubits.
In September 2017, IBM launched revised versions of their
5-qubit and 16-qubit backends named IBM QX4 and IBM QX5,
respectively.
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Fig. 2: Coupling map of the IBM QX architectures [6]

The IBM QX architectures support the elementary single
qubit operation U(θ, φ, λ) = Rz(φ)Ry(θ)Rz(λ) (i.e. an Euler
decomposition) that is composed by two rotations around the
z-axis and one rotations around the y-axis, as well as the
CNOT operation. By adjusting the parameters θ, φ, and λ,
single-qubit operations of other gate libraries like the H or
the T gate (cf. Section II-A) can be realized (among others
like rotations).

However, there are significant restrictions which have to
be satisfied when running quantum algorithms on these ar-
chitectures. In fact, the user first has to decompose all
non-elementary quantum operations (e.g. Toffoli gate, SWAP
gate, or Fredkin gate) to the elementary operations U(θ, φ, λ)
and CNOT . Moreover, two-qubit gates, i.e. CNOT gates, can-
not arbitrarily be placed in the architecture but are restricted
to dedicated pairs of qubits only. Even within these pairs, it is
firmly defined which qubit is supposed to work as target and
which qubit is supposed to work as control. These restrictions
are given by the so-called coupling-map illustrated in Fig. 2,
which sketches the layout of the currently available IBM QX
architectures. The circles indicate physical qubits (denoted
by Qi) and arrows indicate the possible CNOT applications,
i.e. an arrow pointing from physical qubit Qi to qubit Qj
defines that a CNOT with control qubit Qi and target qubit Qj
can be applied. In the following, these restrictions are called
CNOT-constraints and need to be satisfied in order to execute
a quantum circuit on an QX architecture.

III. MAPPING OF QUANTUM CIRCUITS
TO THE IBM QX ARCHITECTURES

Mapping quantum circuits to the IBM QX architectures
requires the consideration of two major issues. On the one
hand, all gates of the given quantum circuit to be mapped
have to be decomposed to elementary operations supported
by the hardware, i.e. CNOTs and parameterized U gates. On
the other hand, the n logical qubits q0, q1, . . . qn−1 of that
quantum circuit have to be mapped to the m physical qubits

Q0, Q1, . . . Qm−1 (m = 5 for QX2 and QX4, whereas m = 16
for QX3 and QX5) of the IBM QX architecture. Each logical
qubit has to be represented by a physical one, such that all
CNOT-constraints are satisfied. In this section, we describe
how these two issues can be handled in an automatic fashion,
what problems occur during this process, and how they can
be addressed.

A. Decomposing Quantum Circuits to Elementary Operations

Considering the first issue, IBM has developed the quantum
assembly language OpenQASM [25] that supports specifi-
cation of quantum circuits. Besides elementary gates, the
language allows the definition of complex gates that are
composed from the elementary operations CNOT and U .
These gates can then be nested to define even more complex
gates. Consequently, as long as a decomposition of the gates
used in a description of the desired quantum functionality are
provided by the circuit designer, the nested structures are just
flattened during the mapping process.

In case the desired quantum functionality is not provided
in OpenQASM, decomposition or synthesis approaches such
as those proposed in [10]–[13] and [26]–[28], respectively
can be applied which determine (e.g. depth optimal) realiza-
tions of quantum functionality for specific libraries like Clif-
ford+T [10] or NCV [29]. They typically use search algorithms
or a matrix representation of the quantum functionality. For
the Clifford+T library, Matsumoto and Amano developed a
normal form for single qubit operations [12], which allows for
a unique and T-depth optimal decomposition (approximation)
of arbitrary single qubit gates (e.g. rotations) into a sequence
of Clifford+T gates (up to a certain error ε). Several such
automated methods are available in Quipper (a functional pro-
gramming language for quantum computing [24]), the ScaffCC
compiler for the Scaffold language [23], [30], and RevKit [31].
Since IBM provides the decomposition for commonly used
gates like the Clifford+T gates, (controlled) rotations, or
Toffoli gates to their gate library, these approaches can be
utilized.

Example 2. One commonly used operation is the SWAP
operation, which exchanges the states of two qubits. Since the
SWAP operation is not part of the gate library of IBM’s QX
architectures, it has to be decomposed into single-qubit gates
and CNOTs as shown in Fig. 3. Assume that logical qubits q0
and q1 are initially mapped to the physical qubits Q0 and Q1

of QX2, and that their values are to be swapped. As a first
decomposition step, we realize the SWAP operation with three
CNOTs. If we additionally consider the CNOT-constraints, we
have to flip the direction of the CNOT in the middle. To this
end, we apply Hadamard operations before and after this
CNOT. These Hadamard operations then have to be realized
by the gate U(π/2, 0, π) = H .

Hence, decomposing the desired quantum functionality to
the elementary gate library is already well covered by corre-
sponding related work. Unfortunately, this is not the case for
the second issue, which is discussed next.
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Fig. 3: Decomposition of SWAP gates

B. Satisfying CNOT-constraints

Recall that, in order to satisfy the CNOT-constraints as
defined in Section II-B, the n logical qubits q0, q1, . . . qn−1 of
the quantum circuit to be realized have to be mapped to the m
physical qubits Q0, Q1, . . . Qm−1 (m = 5 for QX2 and QX4,
whereas m = 16 for QX3 and QX5) of the IBM QX architec-
ture. Usually, there exists no mapping solution that satisfies all
CNOT-constrains throughout the whole circuit (this is already
impossible if CNOT gates are applied to qubit pairs (qh, qi),
(qh, qj), (qh, qk), and (qh, ql) with h 6= i 6= j 6= k 6= l).
That is, whatever initial mapping might be imposed at the
beginning, it may have to be changed during the execution
of a quantum circuit (namely exactly when a gate is to be
executed which violates a CNOT-constraint). To this end,
H and SWAP gates can be applied to change the direction
of a CNOT gate and to change the mapping of the logical
qubits, respectively. In other words, these gates can be used to
“move” around the logical qubits on the actual hardware until
the CNOT-constraints are satisfied. An example illustrates the
idea.

Example 3. Consider the quantum circuit composed of 5
CNOT gates shown in Fig. 4a and assume that the logical
qubits q0, q1, q2, q3, q4, and q5 are respectively mapped to
the physical qubits Q0, Q1, Q2, Q3, Q14, and Q15 of the
IBM QX3 architecture shown in Fig. 2c. The first gate can
directly be applied, because the CNOT-constraint is satisfied.
For the second gate, the direction has to be changed because
a CNOT with control qubit Q0 and target Q1 is valid, but not
vice versa. This can be accomplished by inserting Hadamard
gates as shown in Fig. 4b. For the third gate, we have to
change the mapping. To this end, we insert SWAP operations
SWAP (Q1, Q2) and SWAP (Q2, Q3) to move logical qubit
q1 towards logical qubit q4 (see Fig. 4b). Afterwards, q1 and
q4 are mapped to the physical qubits Q3 and Q14, respectively,
which allows us to apply the desired CNOT gate. Following
this procedure for the remaining qubits eventually results in
the circuit shown in Fig. 4b.

However, inserting the additional gates in order to satisfy
the CNOT-constraints drastically increases the number of
operations – a significant drawback which affects the reliability
of the quantum circuit since each gate has a certain error rate.
Since each SWAP operation is composed of 7 elementary gates
(cf. Fig. 3), particularly their number shall be kept as small as
possible. Besides that, the circuit depth shall be kept as small
as it is related to the time required to execute the quantum
circuit. Since a SWAP operation has a depth of 5, this also
motivates the search for alternative solutions which realize

a CNOT-constraint-compliant mapping with as few SWAP
operations as possible.

Example 4. Consider again the given quantum circuit from
Fig. 4a as well as its mapping derived in Example 3 and
shown in Fig. 4b. This circuit is composed of 51 elementary
operations and has a depth of 36. In contrast, the same
quantum circuit can be realized with only 23 elementary
operations and depth of 10 as shown in Fig. 4c (g2 and g3
can be applied concurrently) – a significant reduction.

Determining proper mappings has similarities with recent
work on nearest neighbor optimization of quantum circuits
proposed in [14]–[20].2 In that work, SWAP gates have also
been applied to move qubits together in order to satisfy a phys-
ical constraint. However, these works consider simpler and
artificial architectures with 1-dimensional or 2-dimensional
layouts where any two-qubit gate can be applied to adjacent
qubits. The CNOT-constraints to be satisfied for the IBM QX
architectures are much stricter with respect to what physical
qubits may interact with each other and also what physical
qubit may act as control and as target qubit. Furthermore, the
parallel execution of gates (which is possible in the QX archi-
tectures) is not considered by these approaches. Besides that,
there exists a recent approach that utilizes temporal planning to
compile quantum circuits to real architectures [32]. However,
this approach is rather specialized to Quantum Alternating
Operator Ansatz (QAOA [33]) circuits for solving the MaxCut
problem and target the architectures proposed by Rigetti
(cf. [34]). As a consequence, none of the approaches discussed
above is directly applicable for the problem considered here.

As a further alternative, IBM provides a solution within
its SDK [21]. This algorithm randomly searches (guided by
heuristics) for mappings of the qubits at a certain point of
time. These mappings are then realized by adding SWAP
gates to the circuit. But this random search is hardly feasible
for many quantum circuits and, hence, is not as efficient as
circuit designers, e.g. in the conventional domain, take for
granted today. In fact, in many cases the provided method
is not capable of determining a CNOT-constraint-compliant
mapping within 1 hour (cf. Section V) – an issue which will
become more serious when further architectures with more
qubits are introduced.

Overall, automatically and efficiently mapping quantum
circuits to the IBM QX architectures particularily boils down to
the question how to efficiently determine a mapping of logical
qubits to physical qubits which satisfy the CNOT-constraints.
How this problem can be addressed is covered in the next
section.

IV. EFFICIENTLY SATISFYING CNOT-CONSTRAINTS

In this section, we propose an efficient method for map-
ping a given quantum circuit (which has already been
decomposed into a sequence of elementary gates as de-
scribed in Section III-A) to the IBM QX architectures.

2These approaches utilize satisfiability solvers, search algorithms, or dedi-
cated data structures to tackle the underlying complexity.
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Fig. 4: Mapping of a quantum circuit to the IBM QX3 architecture

The main objective is to minimize the number of elemen-
tary gates which are added in order to make the mapping
CNOT-constraint-compliant. Two main steps are employed:
First, the given circuit is partitioned into layers which can be
realized in a CNOT-constraint-compliant fashion. Afterwards,
for each of these layers, a particular compliant mapping is
determined which requires as few additional gates as possible.
In the following subsections, both steps are described in detail.
Afterwards, further optimizations are proposed to reduce the
costs of the resulting circuit.

A. Partitioning the Circuit Into Layers

As mentioned above, the mapping from logical qubits to
physical ones may change over time in order to satisfy all
CNOT-constraints, i.e. the mapping may have to change before
a CNOT can be applied. Since each change of the mapping
requires additional SWAP operations, we aim for conducting
these changes as rarely as possible. To this end, we combine
gates that can be applied concurrently into so-called layers
(i.e. sets of gates). A layer li contains only gates that act on
distinct sets of qubits. Furthermore, this allows us to determine
a mapping such that the CNOT-constraints for all gates gj ∈ li
are satisfied at the same time. We form the layers in a greedy
fashion, i.e. we add a gate to the layer li where i is as small as
possible. In the circuit diagram representation, this means to
move all gates to the left as far as possible without changing
the order of gates that share a common qubit. Note that the
depth of a circuit is equal to the number of layers of a circuit.

Example 5. Consider again the quantum circuit shown in
Fig. 4a. The gates of the circuit can be partitioned into three
layers l0 = {g0, g1}, l1 = {g2, g3}, and l2 = {g4} (indicated
by the dashed lines in Fig. 4a).

To satisfy all CNOT constraints, we have to map the logical
qubits of each layer li to physical ones. Since the resulting
mapping for layer li does not necessarily have to be equal
to the mapping determined for the previous layer li−1, we
additionally need to insert SWAP operations that permute
the logical qubits from the mapping for layer li−1 to the
desired mapping for layer li. In the following, we call this
sequence of SWAP operations permutation layer πi. The
mapped circuit is then an interleaved sequence of the layers li
of the original circuit, and the according permutation layers πi,
i.e. l0π1l1π2l2 . . ..

B. Determining Compliant Mappings for the Layers

For each layer li, we now determine all mappings
σij : {q0, q1, . . . qn−1} → {Q0, Q1, . . . Qm−1} describing to
which physical qubit a logical qubit is mapped. The start-
ing point is an initial mapping which is denoted by σi0
and obtained from the previous layer li−1, i.e. σi0 = σ̂i−1

(for l0, a randomly generated initial mapping that satisfies all
CNOT constraints for the gates g ∈ l0 is used). Now, this
initial mapping σi0 should be changed to the desired mapping
which is denoted by σ̂i, is CNOT-constraint-compliant for all
gates g ∈ li, and can be established from σi0 with minimum
costs, i.e. the minimum number of additionally required ele-
mentary operations. In the worst case, determining σ̂i requires
the consideration of m!/(m − n)! possibilities (where m
and n are the number of physical qubits and logical qubits,
respectively) – an exponential complexity. We cope with this
complexity by applying an A∗ search algorithm.

The A∗ algorithm [35] is a state-space search algorithm.
To this end, (sub-)solutions of the considered problem are
represented by state nodes. Nodes that represent a solution
are called goal nodes (multiple goal nodes may exist). The
main idea is to determine the cheapest path (i.e. the path
with the lowest cost) from the root node to a goal node.
Since the search space is typically exponential, sophisticated
mechanisms are employed in order to keep considering as few
paths as possible.

All state-space search algorithms are similar in the way
they start with a root node (representing an initial partial
solution) which is iteratively expanded towards the goal node
(i.e. the desired complete solution). How to choose the node
to be expanded next depends on the actual search algorithm.
For A∗ search, we determine the cost of each leaf-node of
the search space. Then, the node with the lowest cost is
chosen to be expanded next. To this end, we determine the
cost f(x) = g(x) + h(x) of a node x. The first part (g(x))
describes the cost of the current sub-solution (i.e. the cost of
the path from the root to x). The second part describes the
remaining cost (i.e. the cost from x to a goal node), which is
estimated by a heuristic function h(x). Since the node with
the lowest cost is expanded, some parts of the search space
(those that lead to expensive solutions) are never expanded.

Example 6. Consider the tree shown in Fig. 5. This tree
represents the part of the search space that has already been
explored for a certain search problem. The nodes that are
candidates to be expanded in the next iteration of the A∗
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Fig. 5: A∗ search algorithm

algorithm are highlighted in blue. For all these nodes, we
determine the cost f(x) = g(x)+h(x). This sum is composed
by the cost of the path from the root to the node x (i.e. the
sum of the cost annotated at the respective edges) and the
estimated cost of the path from node x to a goal node (provided
in red). Consider the node labeled E. This node has cost
f(E) = (40+60)+200 = 300. The other candidates labeled
B, C, and F have cost f(B) = 580, f(C) = 360, and
f(F ) = 320, respectively. Since the node labeled E has the
fewest expected cost, it is expanded next.

Obviously, the heuristic cost should be as accurate as
possible, to expand as few nodes as possible. If h(x) always
provides the correct minimal remaining cost, only the nodes
along the cheapest path from the root node to a goal node
would be expanded. But since the minimal costs are usually
not known (otherwise, the search problem would be trivial
to solve), estimations are employed. However, to ensure an
optimal solution, h(x) has to be admissible, i.e. h(x) must
not overestimate the cost of the cheapest path from x to a
goal node. This ensures that no goal node is expanded (which
terminates the search algorithm) until all nodes that have the
potential to lead to a cheaper solution are expanded.

Example 6 (continued). Consider again the node labeled E.
If h(x) is admissible, the true cost of each path from this node
to a goal node is greater than or equal to 200.

To use the A∗ algorithm for our search problem, an expan-
sion strategy for a state (i.e. a mapping σij) as well as an admis-
sible heuristic function h(x) to estimate the distance of a state
to a goal state (i.e. the mapping σ̂i) are required. Given a map-
ping σij , we can determine all possible successor mappings σih
by employing all possible combinations of SWAP gates that
can be applied concurrently.3 The fixed costs of all these
successor states σih is then f(σih) = f(σij) + 7 ·#SWAPS
since each SWAP gate is composed of 7 elementary operations
(3 CNOTs and 4 Hadamard operations). Note that we can
restrict the expansion strategy to SWAP operations that affect
at least one qubit that occurs in a CNOT gate g ∈ li on
layer li. This is justified by the fact that only these qubits
influence whether or not the resulting successor mapping is
CNOT-constraint-compliant.

Example 7. Consider again the quantum circuit shown in
Fig. 4a and assume we are searching for a mapping for

3Note that we apply multiple SWAP gates concurrently in order to minimize
the circuit depth as second criterion (if two solutions require the same number
of additional operations).

layer l1 = {g2, g3}. In the previous layer l0, the logical
qubits q1, q3, q4, and q5 have been mapped to the physical
qubits Q0, Q3, Q14, and Q15, respectively (i.e. σ̂0). This initial
mapping σ1

0 = σ̂0 does not satisfy the CNOT-constraints for
the gates in l1. Since we only consider four qubits in the
CNOTs of l1, σi0 has only 51 successors σij .

As mentioned above, to obtain an optimal mapping (i.e. the
mapping with the fewest additionally required elementary
operations that satisfies all CNOT-constraints), we need a
heuristic function that does not overestimate the real cost
(i.e. the minimum number of additionally inserted elementary
operations) for reaching σ̂i from σij .

The real minimum costs for an individual CNOT gate g ∈ li
can easily be determined given σij . First, we determine the
physical qubits Qs and Qt to which the control and tar-
get qubit of g are mapped (which is given by σij). Using
the coupling map of the architecture (cf. Fig. 2), we then
determine the shortest path (following the arrows in the
coupling map4) p̂ from Qs to Qt. The costs of the CNOT
gate h(g, σij) = (|p̂| − 1) · 7 are then determined by the length
of this shortest path |p̂|. In fact, (|p̂|−1) SWAP operations are
required to move the control and target qubits of g towards
each other. If none of the arrows of the path p̂ on the coupling
map (representing that a CNOT can be applied) points into the
desired direction, we have to increase the true minimum costs
further by 4, since 2 Hadamard operations are required before
and after the CNOT to change its direction.

The heuristic costs of a mapping σij can be determined
from the real costs of each CNOT gate g ∈ li in layer li.
Simply summing them up might overestimate the true cost,
because one SWAP operation might reduce the distance of
the control and target qubits for more than one CNOT of
layer li. Since this would prevent us from determining the
optimal solution σ̂i, we instead determine the heuristic costs
of a state σij as h(σij) = maxg∈li h(g, σ

i
j), i.e. the maximum

of the true costs of the CNOTs in layer li.

Example 7 (continued). The logical qubits q1 and q4
are mapped to the physical qubits σ1

0(q1) = Q1 and
σ1
0(q4) = Q14, respectively. Since the shortest path on the cou-

pling map is p̂ = Q1 → Q2 → Q3 → Q14 (cf. Fig. 2), the true
minimum costs for g2 is h(g2, σ1

0) = 2 · 7 = 14. Analogously,
the costs of g3 can be determined to be h(g3, σ1

0) = 7 – re-
sulting in overall heuristic costs of h(σ1

0) = max(14, 7) = 14
for the initial mapping. Following the A* algorithm outlined
above, we eventually determine a mapping σ̂1 that maps
the logical qubits q0, q1, q2, q3, q4, and q5 to the physical
qubits Q0, Q2, Q1, Q4, Q3, and Q5 by inserting two SWAP
operations (as depicted in Fig. 6). Applying the algorithm
also for mapping layer l2, the circuit shown in Fig. 6 results.
This circuit is composed of 37 elementary operations and has
depth 15.

4The direction of the arrow does not matter since a SWAP can be applied
beween two physical qubits iff a CNOT can be applied.
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Q0 ← q0 q0

Q1 ← q1 q1

Q2 ← q2 q2

Q3 ← q3 q3

Q14 ← q4 q4

Q15 ← q5 q5

H

H

H

H
q2

q1

q4

q3

q1

q2

q3

q4

l0 l1 l2

g0 g1 g2,g3 g4

Fig. 6: Circuit resulting from locally optimal mappings

C. Optimizations

A∗ allows us to efficiently determine an optimal mapping
(by means of additionally required operations) for each layer.
However, the algorithm proposed in Section IV-B considers
only a single layer when determining σ̂i for layer li.

One way to optimize the proposed solution is to employ a
look-ahead scheme which incorporates information from the
following layers to the cost function. To this end, we only have
to change the heuristics to estimate the costs for reaching a
mapping that satisfies all CNOT-constraints from the current
one. In Section IV-B, we used the maximum of the costs for
each CNOT gate in layer li to estimate the true remaining
cost. For the look-ahead scheme, we additionally determine
an estimate for layer li+1. The overall heuristic that guides
the search algorithm towards a solution is then the sum of
both estimates.

To incorporate the look-ahead scheme, we change the
heuristics discussed in Section IV-B. Instead of taking the
maximum of the CNOTs in the current layer, we sum up the
costs of all CNOTs in two layers (the current and the look-
ahead layer), i.e. h(σij) =

∑
g∈li∪li+1

h(g, σij). As discussed
above, this might lead to an over-estimation of the true
remaining costs for reaching a goal state and, thus, the solution
is not guaranteed to be locally optimal. However, this is not
desired anyways, since we want to allow locally sub-optimal
solutions in order to find cheaper mappings for the following
layers – resulting in smaller overall circuits.

Example 8. Consider again the quantum circuit shown in
Fig. 4a and assume that the logical qubits q0, q1, q2, q3,
q4, and q5 are mapped to the physical qubits Q0, Q1, Q2,
Q3, Q14, and Q15, respectively. Using the look-ahead scheme
discussed above will not determine the locally optimal solution
with costs of 14 for layer l1 (as discussed in Example 7), but a
mapping σ̂1 that satisfies all CNOT-constraints with costs of 22
(as show in Fig. 7). The additional costs of 8 result since, after
applying two SWAP gates (cf. Fig. 7), the directions of both
CNOTs of layer l1 have to change. However, this mapping also
satisfies all CNOT-constraints for layer l2, which means that
the remaining CNOT g4 can be applied without adding further
SWAPs. The resulting circuit is composed of a total of 31
elementary operations and has depth of 12 (as shown in Fig. 7;
gates g2 and g3 can be applied concurrently). Consequently,
the look-ahead scheme results in a cheaper mapping than the

Q0 ← q0 q1

Q1 ← q1 q0

Q2 ← q2 q2

Q3 ← q3 q3

Q14 ← q4 q5

Q15 ← q5 q4

H

H

H

H

q1

q0

q5

q4

H

H

H

H

H

H

H

H

l0 l1 l2

g0 g1 g2 g3 g4

Fig. 7: Circuit generated when using the look-ahead scheme

“pure” methodology proposed in Section IV-B and yielding
the circuit shown in Fig. 6.5

Besides the look-ahead scheme, we can further improve
the methodology by not starting with a random mapping for
layer l0. Instead, we propose to use partial mappings σij and
to start with an empty mapping σ0

0 (i.e. none of the logical
qubits is mapped to a physical one). Then, before we start to
search a mapping for layer l1, we check whether the qubits
that occur in the CNOTs g ∈ li have already been mapped
for one of the former layers. If not, we can freely chose one
of the “free” physical qubits (i.e. a physical qubit no logical
qubit is mapped to). Obviously, we choose the physical qubit
so that the cost for finding σ̂i is as small as possible.

This scheme gives us the freedom to evolve the initial
mapping throughout the mapping process, rather than starting
with an initial mapping that might be non-beneficial with
respect to the overall number of elementary operations.

Example 9. Optimizing the methodology with a partial map-
ping that is initially empty results in the circuit already shown
before in Fig. 4c. This circuit is composed of 23 elementary
operations and has depth 10 (gates g2 and g3 can be applied
concurrently).

V. EXPERIMENTAL EVALUATION

Taking all considerations and methods discussed above into
account led to the development of a mapping methodology
which decomposes arbitrary quantum functionality into ele-
mentary quantum gates supported by the QX architectures and,
afterwards, maps them so that all CNOT-constraints are satis-
fied. As mentioned above, IBM’s Python SDK QISKit already
implements most of these steps, but lacks an efficient method-
ology for mapping the circuits such that all CNOT-constraints
are satisfied. To overcome this issue, we have implemented
the mapping methodology presented in this paper in C++ and
integrated it into QISKit. The adapted version of QISKit as
well as a standalone version of the methodology are publicly
available at http://iic.jku.at/eda/research/ibm_qx_mapping.

In this section, we compare the efficiency of the re-
sulting scheme to the original design flow implemented
in QISKit [21]. To this end, several functions taken from
RevLib [36] as well as quantum algorithms written in Quip-
per [24] or the Scaffold language [23] (and pre-compiled

5Note that the graphical representation seems to be larger in Fig. 7.
However, this is caused by the fact that the SWAP operations are not
decomposed (cf. Fig 3) in order to maintain readability.
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by the ScaffoldCC compiler [30]) have been considered as
benchmarks and mapped to the most recent 16-qubit archi-
tecture available (i.e. QX5).6 Besides that, benchmarks that
are relevant for existing quantum algorithms such as quantum
ripple-carry adders (based on the realization proposed in [37]
and denoted adder) and small versions of Shor’s algorithm
(based on the realization proposed in [38] and denoted shor)
have been considered. All evaluations have been conducted
on a 4.2 GHz machine with 4 cores (2 hardware threads each)
and 32 GB RAM.

A. Effect of the Optimizations

In a first series of evaluations, we evaluate the improvements
gained by the optimizations discussed in Section IV-C. The
corresponding numbers are listed in Table I. For each bench-
mark, we provide the name, the number of logical qubits n,
the number of gates g, as well as the depth of the circuit d,
before mapping the circuit to the IBM QX5 architecture. In
the remainder of the table, we list the results provided by
the proposed methodology, i.e. the number of gates g and
the depth of the circuit d after mapping it to the IBM QX5
architecture as well as the time required to determine that
mapping (in CPU seconds).

Three different settings of the methodology are thereby
considered. As baseline serves the approach proposed in Sec-
tion IV that uses an A∗ algorithm to determine locally optimal
mappings for each layer of the circuit (denoted Baseline in
the following). Furthermore, we list the numbers when en-
riching the baseline with a look-ahead scheme as discussed in
Section IV-C (denoted Look-Ahead in the following). Finally,
we also list the resulting numbers for the fully optimized
methodology that uses a look-ahead scheme and additionally
allows for evolving the mapping throughout the mapping
process as discussed in Section IV-C (denoted Fully-Optimized
in the following). The timeout was set to one hour.

Table I clearly shows the improvements that can be gained
by applying the optimizations discussed in Section IV-C. On
average, the number of gates of the mapped circuit decreases
by 16.1% when applying a look-ahead scheme as discussed in
Section IV-C. For the depth of the circuit, we obtain similar
improvements. Here, the number of layers reduces on average
by 13.4%. However, using the look-ahead scheme causes the
mapping algorithm to time out in nine cases (instead of five
cases for baseline) – leading to a less scalable solution. If
we additionally allow to evolve the initial mapping of logical
qubits to physical qubits throughout the mapping process
instead of starting with a random mapping, we can overcome
this scalability issue while obtaining mappings of similar
quality. In fact, the average improvement regarding the number
of gates and the depth of the circuits slightly increase to 19.7%
and 14.1%, respectively (compared to Baseline).

Overall, the optimizations discussed in Section IV-C not
only increase the scalability of the mapping algorithm outlined
in Section IV-B, but – as a positive side effect – also reduce
the size of the resulting circuit.

6We used all benchmarks that required at most 16 qubits since only these
can be mapped to QX5.

B. Comparison to the State of the Art

In a second series of evaluation, we compare the proposed
mapping methodology to the solution provided by IBM via
QISKit. A fair comparison of both mapping solution is guar-
anteed since we incorporated the mapping algorithm discussed
in this paper into QISKit. Hence, the same decomposition
schemes as well as the same post-mapping optimizations are
applied in both cases.

Table II lists the respectively obtained results. For each
benchmark, we again list the name, the number of logical
qubits n, the number of gates g, and the depth d of the quantum
circuit before mapping it to the IBM QX5 architecture. In the
remaining columns, we list the number of gates, the depth,
and the runtime t (in CPU seconds) for IBM’s solution as
well as for the solution proposed in this work. Since IBM’s
mapping algorithm searches for mappings that satisfy all
CNOT-constraints randomly (guided by certain heuristics), we
conducted the mapping procedure 5 times for each benchmark
and list the obtained minimum, the average (denoted by
subscripts min and avg , respectively), as well as the standard
deviation σ for each of the listed metrics. The timeout for
searching a single mapping was again set to one hour.

The results clearly show that the proposed solution can
efficiently tackle the considered mapping problem – in partic-
ular compared to the method available thus far. While IBM’s
solution runs into the timeout of one hour in 10 out of 60
cases, the proposed algorithm determines a mapping for each
circuit within the given time limit. Besides that, the approach
is frequently magnitudes faster compared to IBM’s solution.

Besides efficiency, the proposed methodology for mapping
a quantum circuit to the IBM QX architectures also yields
circuits with significantly fewer gates than the results de-
termined by IBM’s solution. In fact, the solution proposed
in Section IV results on average in circuits with 24.0%
fewer gates and 18.3% fewer depth on average compared
to the minimum observed when runnings IBM’s algorithm
several times. Compared to the average results yield by IBM’s
solution, we obtain improvements of 27.5% and 22.0% for gate
count and circuit depth, respectively.

VI. CONCLUSIONS

In this paper, we proposed an advanced and integrated
methodology that efficiently maps a given quantum circuit
to IBM’s QX architectures. To this end, the desired quantum
functionality is first decomposed into the supported elementary
quantum gates. Afterwards, CNOT-constraints imposed by the
architecture are satisfied. Particular the later step caused a
non-trivial task for which an efficient solution based on a
depth-based partitioning, an A∗ search algorithm, a look-
ahead scheme, as well as a dedicated initialization of the
mapping has been proposed. The resulting approach eventually
allows us to efficiently map quantum circuits to real quantum
hardware and has been integrated into IBM’s SDK QISKit. The
efficiency has been confirmed by experimental evaluations.
The proposed approach was able to determine a mapping
for quantum circuits within seconds in most cases whereas
IBM’s solution requires more than one hour to determine a
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TABLE I Effect of the Optimizations

Baseline Look-Ahead Fully-Optimized
Name n g d g d t g d t g d t
adder_10 10 142 99 444 251 1.22 355 209 1.08 292 172 1.20
hwb9 10 207 775 116 199 743 973 403 199 1 662.82 653 249 374 954 1 437.33 655 220 375 105 1 422.33
ising_model_10 10 480 70 235 41 4.63 235 41 4.58 251 47 4.14
max46 10 27 126 14 257 – – TO 86 049 46 692 185.19 84 914 46 270 185.82
mini_alu 10 173 69 710 301 2.38 587 261 1.32 474 225 1.25
qft_10 10 200 63 685 227 1.23 445 135 1.54 447 170 1.25
rd73 10 230 92 952 405 1.83 916 374 1.57 656 301 1.52
sqn 10 10 223 5 458 37 781 19 461 80.15 32 099 17 785 72.25 32 095 17 801 68.97
sym9 10 21 504 12 087 78 388 43 269 172.95 67 290 38 982 147.99 66 637 38 849 145.37
sys6-v0 10 215 75 962 383 1.96 794 301 1.50 613 250 1.36
urf3 10 125 362 70 702 517 104 271 754 1 045.85 439 268 239 099 888.77 440 509 239 702 873.84
9symml 11 34 881 19 235 133 813 70 088 296.80 114 179 63 659 255.02 116 508 64 279 254.25
dc1 11 1 914 1 038 8 310 4 277 16.22 6 024 3 359 13.07 5 946 3 378 12.38
life 11 22 445 12 511 86 075 45 499 358.56 73 020 41 137 161.90 74 632 41 767 166.95
shor_11 11 49 295 30 520 125 825 70 115 325.13 109 574 60 721 317.81 106 322 58 943 322.78
sym9 11 34 881 19 235 133 813 70 088 292.40 114 179 63 659 249.49 116 508 64 279 251.42
urf4 11 512 064 264 330 1 926 128 980 191 4 257.19 1 653 689 888 594 3 481.55 1 650 845 878 249 3 534.79
wim 11 986 514 3 632 1 914 7.60 3 176 1 712 6.54 2 985 1 711 6.30
z4 11 3 073 1 644 12 041 6 332 24.91 10 002 5 486 20.71 9 717 5 335 20.92
adder_12 12 177 123 631 336 1.76 483 249 1.64 372 226 1.32
cm152a 12 1 221 684 4 254 2 226 9.13 4 039 2 271 8.23 3 738 2 155 8.02
cycle10_2 12 6 050 3 386 23 991 12 405 49.62 19 513 10 950 45.82 19 857 11 141 42.26
rd84 12 13 658 7 261 52 508 26 668 157.72 45 509 24 421 107.69 45 497 24 473 99.89
sqrt8 12 3 009 1 659 11 921 6 224 26.64 10 166 5 642 21.35 9 744 5 501 19.66
sym10 12 64 283 35 572 251 731 130 657 535.84 214 881 118 780 500.05 215 569 118 753 501.02
sym9 12 328 127 1 436 608 2.54 1 240 532 2.27 955 425 2.08
adr4 13 3 439 1 839 13 475 6 829 29.53 11 245 6 120 23.84 11 301 6 205 23.17
dist 13 38 046 19 694 147 115 72 929 323.20 125 342 66 590 334.67 125 867 66 318 291.90
gse_10 13 390 180 245 614 863 511 533 279 2 441.38 576 399 401 121 2 263.71 520 010 376 695 2 237.10
ising_model_13 13 633 71 313 41 6.08 313 41 6.09 329 47 5.11
plus63mod4096 13 128 744 72 246 529 896 270 734 1 203.45 434 900 242 815 1 006.16 439 981 243 861 1 086.48
radd 13 3 213 1 781 11 790 6 387 25.35 10 868 6 088 23.67 10 441 5 872 22.00
rd53 13 275 124 1 367 619 2.53 1 044 457 1.97 942 469 1.93
root 13 17 159 8 835 67 941 32 854 327.20 56 654 29 846 120.01 57 874 30 068 120.82
shor_13 13 98 109 59 350 259 511 140 923 656.43 229 752 121 093 783.74 224 556 118 536 640.55
squar5 13 1 993 1 049 7 948 4 069 16.35 6 453 3 470 13.29 6 267 3 448 12.96
410184 14 211 104 914 441 1.82 708 337 1.42 758 366 1.48
adder_14 14 212 147 – – TO – – TO 437 268 1.47
clip 14 33 827 17 879 135 455 67 312 322.36 – – TO 114 336 60 882 327.55
cm42a 14 1 776 940 6 473 3 394 13.93 5 572 3 076 11.16 5 431 3 013 11.95
cm85a 14 11 414 6 374 46 300 23 662 185.98 37 927 21 215 464.90 37 746 21 189 242.80
plus127mod8192 14 330 777 185 853 – – TO – – TO 1 132 251 626 451 2 481.95
plus63mod8192 14 187 112 105 142 773 514 395 379 1 628.19 637 137 355 040 1 364.63 640 204 354 076 1 443.33
pm1 14 1 776 940 6 473 3 394 13.62 5 572 3 076 11.14 5 431 3 013 11.10
sao2 14 38 577 19 563 155 351 74 524 330.62 – – TO 131 002 66 975 283.90
sym6 14 270 135 1 101 547 2.33 1 136 526 2.05 852 456 1.84
co14 15 17 936 8 570 80 399 34 658 331.89 62 348 29 831 176.55 63 826 30 366 133.71
dc2 15 9 462 5 242 36 968 19 306 83.96 31 722 17 559 95.81 30 680 17 269 72.53
ham15 15 8 763 4 819 32 175 17 379 79.80 27 861 15 668 61.70 28 310 15 891 68.75
misex1 15 4 813 2 676 17 833 9 621 38.63 15 260 8 810 33.18 15 185 8 729 33.11
rd84 15 343 110 1 593 553 3.30 1 337 441 2.81 971 353 2.23
square_root 15 7 630 3 847 – – TO – – TO 25 212 13 205 55.35
urf6 15 171 840 93 645 684 701 353 581 1 456.37 – – TO 580 295 313 011 1 436.16
adder_16 16 247 171 – – TO – – TO 515 319 1.72
alu2 16 28 492 15 176 118 919 58 105 244.83 – – TO 98 166 51 817 454.93
cnt3-5 16 485 209 1 957 887 3.89 1 488 725 2.98 1 376 669 3.00
example2 16 28 492 15 176 118 919 58 105 246.00 – – TO 98 166 51 817 449.08
inc 16 10 619 5 863 41 042 21 614 86.91 34 742 19 431 74.13 34 375 19 176 72.85
ising_model_16 16 786 71 391 41 6.88 391 41 6.86 426 48 6.47
qft_16 16 512 105 2 193 589 69.04 1 299 281 8.62 1 341 404 16.43

n: the number of qubits g: the number of quantum gates (elementary operations) d: depth of the quantum circuits t: runtime of the algorithm
Baseline: the approach described in Sec. IV-B Look-Ahead: the approach described in Sec. IV-B enriched with the look-ahead scheme discussed in Sec. IV-C
Fully-Optimized: the approach described in Sec. IV-B enriched with all optimizations discussed in Sec. IV-C

solution for several cases. As a further positive side effect,
the mapped circuits have significantly fewer gates and smaller
circuit depth, which positively influences the reliability and the
runtime of the circuit. The resulting methodology is generic,
i.e. it can be directly applied to all existing QX architectures
as well as similar architectures which may come in the future.
All implementations are publicly available at http://iic.jku.at/
eda/research/ibm_qx_mapping.
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TABLE II Mapping to the IBM QX5 architecture

IBM’s solution Proposed approach
Name n g d gmin gavg σg dmin davg σd tmin tavg σt g d t
adder_10 10 142 99 382 421.00 29.37 203 223.80 16.85 5.75 6.71 0.72 292 172 1.20
hwb9 10 207 775 116 199 – – – – – – TO – – 655 220 375 105 1 422.33
ising_model_10 10 480 70 347 401.40 79.37 73 89.60 21.46 6.23 7.07 0.99 251 47 4.14
max46 10 27 126 14 257 105 651 106 357.80 453.99 53 397 53 664.20 138.67 1 652.31 1 672.40 16.15 84 914 46 270 185.82
mini_alu 10 173 69 707 736.00 19.37 290 303.40 10.78 9.82 10.32 0.42 474 225 1.25
qft_10 10 200 63 670 755.00 98.89 210 241.40 30.16 9.49 10.90 2.35 447 170 1.25
rd73 10 230 92 930 1 035.00 70.69 393 424.20 26.18 12.74 14.88 1.46 656 301 1.52
sqn 10 10 223 5 458 39 175 39 563.60 301.56 20 329 20 415.40 75.50 627.32 633.67 5.51 32 095 17 801 68.97
sym9 10 21 504 12 087 80 867 81 893.00 638.00 43 707 44 128.40 342.23 1 314.22 1 321.35 5.48 66 637 38 849 145.37
sys6-v0 10 215 75 853 945.80 51.52 329 346.20 12.22 11.29 12.80 1.17 613 250 1.36
urf3 10 125 362 70 702 – – – – – – TO – – 440 509 239 702 873.84
9symml 11 34 881 19 235 143 042 144 299.20 798.04 73 363 73 821.00 496.98 2 233.67 2 257.31 18.51 116 508 64 279 254.25
dc1 11 1 914 1 038 7 283 7 356.40 73.48 3 859 3 890.60 28.10 113.8 116.75 2.83 5 946 3 378 12.38
life 11 22 445 12 511 91 724 92 470.20 599.36 47 471 47 860.80 382.84 1 446.67 1 454.98 5.38 74 632 41 767 166.95
shor_11 11 49 295 30 520 124 160 125 245.00 775.01 67 962 68 367.40 317.02 2 149.13 2 160.12 6.96 106 322 58 943 322.78
sym9 11 34 881 19 235 142 431 143 685.00 751.22 72 959 73 595.40 450.98 2 237.2 2 261.74 13.68 116 508 64 279 251.42
urf4 11 512 064 264 330 – – – – – – TO – – 1 650 845 878 249 3 534.79
wim 11 986 514 3 834 3 897.20 46.70 1 947 1 988.60 26.04 59.01 59.88 1.04 2 985 1 711 6.30
z4 11 3 073 1 644 11 905 12 148.20 134.51 6 024 6 190.80 87.10 188.53 192.41 3.74 9 717 5 335 20.92
adder_12 12 177 123 579 636.00 68.67 279 307.00 26.10 8.81 10.28 1.14 372 226 1.32
cm152a 12 1 221 684 4 761 4 928.20 100.23 2 501 2 581.20 64.31 74.61 76.53 1.18 3 738 2 155 8.02
cycle10_2 12 6 050 3 386 25 362 25 666.60 301.28 13 125 13 224.00 80.01 392.12 394.36 2.43 19 857 11 141 42.26
rd84 12 13 658 7 261 56 134 56 865.60 425.85 28 172 28 393.40 126.79 860.9 874.21 10.25 45 497 24 473 99.89
sqrt8 12 3 009 1 659 12 541 12 678.20 127.15 6 398 6 457.60 52.37 194.8 197.02 1.36 9 744 5 501 19.66
sym10 12 64 283 35 572 – – – – – – TO – – 215 569 118 753 501.02
sym9 12 328 127 1 411 1 512.20 83.10 582 598.60 18.13 20.09 21.59 1.98 955 425 2.08
adr4 13 3 439 1 839 13 638 13 958.80 172.30 6 991 7 075.40 57.82 210.34 217.16 3.95 11 301 6 205 23.17
dist 13 38 046 19 694 158 516 159 655.00 1 268.06 77 027 77 739.40 631.57 2 412.78 2 445.98 18.58 125 867 66 318 291.90
gse_10 13 390 180 245 614 – – – – – – TO – – 520 010 376 695 2 237.10
ising_model_13 13 633 71 439 573.80 101.73 82 138.20 44.62 7.87 9.53 1.37 329 47 5.11
plus63mod4096 13 128 744 72 246 – – – – – – TO – – 439 981 243 861 1 086.48
radd 13 3 213 1 781 12 674 13 263.00 331.68 6 716 6 907.00 124.21 206.15 211.40 4.83 10 441 5 872 22.00
rd53 13 275 124 1 223 1 295.20 53.56 518 543.80 20.07 16.65 17.89 0.75 942 469 1.93
root 13 17 159 8 835 71 721 72 252.80 304.63 34 798 35 009.00 205.73 1 094.63 1 099.08 5.15 57 874 30 068 120.82
shor_13 13 98 109 59 350 – – – – – – TO – – 224 556 118 536 640.55
squar5 13 1 993 1 049 8 111 8 300.00 201.58 4 073 4 132.20 59.48 124.09 125.77 1.47 6 267 3 448 12.96
410184 14 211 104 864 928.20 40.30 393 408.80 17.65 13.36 13.91 0.43 758 366 1.48
adder_14 14 212 147 659 745.20 114.49 332 373.20 51.39 9.76 11.55 1.49 437 268 1.47
clip 14 33 827 17 879 144 737 145 459.00 496.53 70 732 71 177.00 291.36 2 197.11 2 212.02 12.55 114 336 60 882 327.55
cm42a 14 1 776 940 6 623 6 830.20 170.16 3 480 3 538.20 52.18 104.23 109.00 2.47 5 431 3 013 11.95
cm85a 14 11 414 6 374 47 908 48 885.40 673.07 24 798 25 101.40 253.09 742.46 757.59 10.50 37 746 21 189 242.80
plus127mod8192 14 330 777 185 853 – – – – – – TO – – 1 132 251 626 451 2 481.95
plus63mod8192 14 187 112 105 142 – – – – – – TO – – 640 204 354 076 1 443.33
pm1 14 1 776 940 6 488 6 809.60 190.40 3 444 3 525.80 53.01 104.21 106.31 1.69 5 431 3 013 11.10
sao2 14 38 577 19 563 163 679 164 561.40 803.87 77 525 77 771.40 228.58 2 495.54 2 509.16 15.15 131 002 66 975 283.90
sym6 14 270 135 1 092 1 246.60 96.11 514 568.00 35.64 16.05 18.61 1.81 852 456 1.84
co14 15 17 936 8 570 83 301 83 649.40 234.76 35 926 36 046.20 98.35 1 177.71 1 192.44 8.36 63 826 30 366 133.71
dc2 15 9 462 5 242 38 807 39 694.60 602.91 20 155 20 359.20 148.41 601.92 625.13 16.72 30 680 17 269 72.53
ham15 15 8 763 4 819 35 150 35 402.20 273.69 18 293 18 453.20 116.27 546.05 552.47 5.29 28 310 15 891 68.75
misex1 15 4 813 2 676 19 090 19 316.80 169.21 10 172 10 235.80 60.85 299.9 304.52 3.18 15 185 8 729 33.11
rd84 15 343 110 1 579 1 807.60 159.89 529 599.20 46.33 19.5 23.18 2.47 971 353 2.23
square_root 15 7 630 3 847 30 349 30 760.80 421.20 14 828 15 029.40 213.97 461.14 468.59 5.71 25 212 13 205 55.35
urf6 15 171 840 93 645 – – – – – – TO – – 580 295 313 011 1 436.16
adder_16 16 247 171 968 1 039.40 51.79 437 473.60 29.18 13.88 14.94 1.01 515 319 1.72
alu2 16 28 492 15 176 125 601 126 758.20 906.96 60 839 61 383.20 386.58 1 905.14 1 922.29 15.33 98 166 51 817 454.93
cnt3-5 16 485 209 1 899 2 023.00 102.11 825 863.40 34.92 27.08 29.71 2.78 1 376 669 3.00
example2 16 28 492 15 176 125 022 127 074.60 1 176.85 60 543 61 347.20 440.11 1 900.17 1 920.29 13.42 98 166 51 817 449.08
inc 16 10 619 5 863 43 097 43 561.20 442.97 22 413 22 577.00 127.65 672.39 679.82 6.28 34 375 19 176 72.85
ising_model_16 16 786 71 785 858.00 51.98 149 172.40 16.84 12.44 13.64 0.79 426 48 6.47
qft_16 16 512 105 2 056 2 219.00 128.72 521 542.60 16.27 25.6 27.10 1.76 1 341 404 16.43

n: the number of qubits g: the number of quantum gates (elementary operations) d: depth of the quantum circuits t: runtime of the algorithm
For IBM’s solution, we list the obtained minimum, the average, and the standard deviation of 5 runs (denoted by min, avg , and σ, respectively).
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