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ABSTRACT

Sample preparation is an important application for the digital
microfluidic biochips (DMFBs) platform, and many methods
have been developed to reduce the time and reagent usage
associated with on-chip sample preparation. However, errors
in fluidic operations can result in the concentration of the
resulting droplet being outside the calibration range. Current
error-recovery methods have the drawback that they need
the use of on-chip sensors and further re-execution time. In
this paper, we present two dilution-chain structures that can
generate a droplet with a desired concentration even if volume
variations occur during droplet splitting. Experimental results
show the effectiveness of the proposed method compared to
previous methods.
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1 INTRODUCTION

Digital microfluidic biochips (DMFBs) are now being used
for biochemical applications such as high-throughput DNA
sequencing, point-of-care clinical diagnostics, and immunoas-
says [4]. These devices manipulate liquid as discrete droplets
of picoliter volumes based on the principle of electrowetting-
on-dielectric under voltage-based electrode actuation [4]. DMF-
Bs have been commercially adopted for sample prepara-
tion [22] and infectious disease testing [14]. Techniques have
been developed for high-level synthesis [7, 10], module place-
ment [23], and droplet routing [2, 11].

Sample preparation plays an important role in biochemi-
cal protocols. According to [5], sample preparation accounts
for 90% of the cost and 95% of the analysis time in bio-
chemical experiments. In sample preparation, intermediate
droplets are repeatedly split and mixed with reagent and
buffer droplets until the desired target concentration is ob-
tained. A physical model underlying droplet mixing and
splitting operations is investigated in detail [4]. To date, sev-
eral sample-preparation algorithms have been developed for
DMFBs. The “bit-scanning” method (BS, [21]) guarantees
a minimum number of dilution operations and therefore the
minimum amount of time. The “dilution and mixing with
reduced wastage algorithm” (DMRW, [19]) and the “im-
proved dilution and mixing algorithm” (IDMA, [20]) utilize
droplet-sharing techniques to reduce the overall droplet usage.
On the other hand, the “reactant minimization algorithm”
(REMIA, [12]) constructs a dilution forest that minimizes
the reactant droplet usage. The work in [3] presents an opti-
mal dilution tree based on a minimum-cost maximum-flow
model. Note that all of the above algorithms use the (1:1)
mixing model (i.e., two droplets of equal size are mixed). The
algorithm in [1] extends the (1:1) mixing model to the (1:2)
mixing model, but it requires dedicated mixers, which limits
the benefits of reconfigurability that can be derived from
DMFBs.
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However, because of the inherent uncertainty associated
with fluidic operations, errors may occur even if the chip is
fully tested [13]. It has been reported that 80% of errors in
sample preparation can be attributed to volume variations
in droplets [18]. These errors are mostly caused by errors in
splitting operations. If the accumulated error is large enough
to make the resulting concentration fall outside the calibrated
range, the product droplet is deemed to be erroneous. In order
to address that, error-recovery methods have been developed
to ensure correct outcomes in on-chip sample preparation [13].
However, there are two scenarios where we can not apply such
an error-recovery method: (1) For low-cost DMFBs without
integrated sensors [8], the bioassay runs in an open-loop
manner with no sensor feedback; (2) error-recovery methods
proposed thus far require large recovery times, which can
lead to outcome-droplet invalidation. For example, fibronectin
is known to degrade within 10 s [6]; therefore, protocol re-
execution is not feasible for this reagent. These two scenario
motivates the need for a robust sample preparation method
for DMFBs. Such a method must be capable of achieving
the desired target concentrations without the need of sensors
and re-executions.

In this paper, we present a sample preparation method
that meets these objectives. In contrast to previously pro-
posed sample preparation methods, we do not attempt to
address this problem through re-executions (requiring sensors
and increasing the execution time), but we deal with volume
variations directly during the sample preparation protocol.
This is accomplished through the use of two dilution-chain
structures that can generate a droplet with concentration
in a narrow range even if there are volume variations dur-
ing droplet splitting. Based on these structures, we present
an integer linear programming (ILP) method to generate an
optimal dilution tree (with respect to an amortized droplet
cost). This approach leads to droplets with the target concen-
trations even if volume variations occur during the process.
Experimental results show the applicability and effectiveness
of the proposed method.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces a motivational example and the proposed
dilution-chain structures. Section 3 presents the problem
formulation for sample preparation. Section 4 describes the
method used to construct a dilution tree based on the t-
wo types of dilution-chain structures. Section 5 presents
experimental results and comparisons with previous methods.
Finally, Section 6 concludes the paper.

2 ERRORS IN SAMPLE
PREPARATION

In this section, we show how volume variations in splitting
operations leads to a droplet with an erroneous concentration
in a sample preparation bioassay.

We use the BS method from [21] as an example. A target
concentration is obtained by first representing the desired
concentration as a binary string. Then, a dilution graph is
constructed by scanning the binary string from right to left.
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Figure 1: Illustration of the bit-scanning method (a)
without volume variations; (b) with volume varia-
tions.

If a bit “1” is encountered, the intermediate droplet is mixed
with a 1X reagent droplet (100% concentration). Otherwise,
the intermediate droplet is mixed with a 1X buffer droplet
(0% concentration).

Example 1. Suppose the desired concentration is 241/512
(i.e., 47.07%) and the resolution is 1/512. Here, resolution is
the difference between two neighbouring concentrations (e.g.,
concentrations 241 /512 and 242/512). In order to achieve this
concentration in the BS method, we first represent the desired
concentration in terms of a binary string, i.e., (0.011110001),.
Based on that, a dilution graph is constructed as shown
in Fig. 1(a). Here, each node represents a so-called miz-
split operation, i.e. two 1X droplets are mized to form a 2X
droplet and, afterwards, the resulting (mized) droplet is split
into two child droplets of 1X again. This way, a sequence
of mix-split operations is constructed that starts with a mix-
split operation of a reagent and a buffer droplet (yielding an
intermediate droplet with concentration of 50% as shown in
the left-hand side of Fig. 1(a)). Afterwards, further miz-split
operations are employed which mix the resulting intermediate
droplet with another buffer (reagent) droplet (if the corre-
sponding position in the binary string occupies a “07 (“17)).

However, volume variations can occur in each droplet split-
ting operation. For example, if we split a parent droplet with
volume V,, times the unit volume, it is likely that that no
droplets of the same size will result, but that two child droplet-
s with volumes of V,, x 0.5(1 + z) units and V,, x 0.5(1 — )
units will be generated, respectively. Here, parameter x is
defined as the volume variation of the resulting child droplets.
According to [18], the volume variation magnitude z is within
the range [—0.07,0.07].

Example 2. Consider again the example from above and
assume that two volume errors (with x = 0.07) occur in
Node 1 and Node 2 (as illustrated in Fig. 1(b)). Node 1 will
generate two child droplets (with 88.28% concentration) with

1.07X and 0.93X volumes. If the larger of the two droplet is
selected for the next operation (i.e. for conducting the miz-
split operations in Node 2), the concentration C(2) of the
intermediate droplet in Node 2 is:

Cc@2) =

(88.28 x 1.07 4100 x 1

o7 ) x 100% = 93.94% (1)

The concentration variation is obvious here since a con-
centration of 94.14% is expected (cf. Fig. 1(a)). Further-
more, the resulting droplet is of volume 2.07X (rather than
2X). Since there is also a 7% volume variation in Node
2, the volume of the two child droplets after splitting is
2.07 x 0.5 x 0.93 = 0.96X and 2.07 x 0.5 x 1.07 = 1.11X,
respectively. In this case, if the smaller droplet is selected and
it is mized with a 1 unit-volume buffer droplet in Node 3, the
concentration C(3) of the mized droplet in Node 3 is given
by:

93.94 x 09640 x 1
0.96 +1

c(3) = ( ) x 100% = 46.01%  (2)

This is clearly off from the expected concentration which
was giwen to be 47.07%. Even considering the acceptable
resolution (which, as stated above, is 1/512 = 0.20% and
leads to a range of [46.97%, 47.17%]), this clearly would lead
to a failing sample preparation. |

It is obvious that, if volume variations occur in the exe-
cution of a sample-preparation protocol, the concentration
of the resulting droplet is affected, and the sample prepara-
tion is likely to fail. Therefore, we need to devise a special
dilution-chain structure that is able to generate the correct
concentration even in the presence of volume variations.

3 OVERVIEW OF PROPOSED
SOLUTION

In this section, we introduce the creation of a dilution graph
that addresses the problem described above. The general
idea rests on not using only one of the droplets generated
by a mix-split operation, but both of them. Moreover, by
using two dedicated dilution-chain structures, we ensure that
volume variations will eventually be cancelled out to a large
extent. By this, the resulting concentration variation gets
minimized, and we can execute a sample preparation protocol
that is robust to volume variations.

3.1 Two Dilution-Chain Structures

Fig. 2(a) and Fig. 2(b) show the proposed dedicated dilution-
chain structures (which we refer to as Type-A and Type-B,
respectively). The two leftmost nodes represent the dispensing
of buffer droplets (0% concentration) and reagent droplets
(100% concentration), respectively. The other nodes represent
mix-split operations. Such a structure offers the benefit that
both child droplets are used by a subsequent node. With a 1X
reagent droplet and two 1X buffer droplets, concentrations of
[50%, 25%, 37.5%, 31.25%, 34.375%, ...] can be generated by
the Type-A dilution-chain structure. Analogously, with two
1X reagent droplets and one 1X buffer droplet, concentrations
of [50%, 75%, 62.5%, 68.75%, 65.625%, ...] can be generated
by the Type-B dilution-chain structure.



Node 1 Node 3 Node 5

Node 2 Node 4 Node 4
(@)

Node 2 Node 4 Node 6

Node 1 Node 3 Node 5
(b)
Figure 2: Proposed dilution-chain structures: (a)
Type-Aj; (b) Type-B.
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Figure 3: Illustration of the (a) Type-A, and (b)

Type-B dilution-chain structures with volume vari-
ations.

3.2 Stability of Volumes and
Concentrations

Fig. 3 illustrates the Type-A and Type-B dilution-chain
structures with volume variations. The volume variation at
Node i of a dilution-chain structure is referred to as ;. If the
volume of the parent droplet at Node 4 is V;, the volumes of
its two child droplets are V; x %(1 + ;) and V; X %(1 — ),
respectively. According to [4], the value range of z; is [-0.07,
0.07]. For example, in Fig. 3(a), the volume of the parent

Table 1: Lower and upper bound gaps (percentage
values).

Type-A Structure Type-B Structure

Ay ALy N/ AT,
Node 1 | 0.9067% | 0.0000% | 0.8454% | 0.0000%
Node 2 | 0.4227% | 0.2149% | 0.4533% | 0.2226%
Node 3 | 0.4003% | 0.1113% | 0.3667% | 0.1074%
Node 4 | 0.1833% | 0.1204% | 0.2001% | 0.1257%
Node 5 | 0.1397% | 0.0628% | 0.1274% | 0.0602%
Node 6 | 0.0388% | 0.0476% | 0.0397% | 0.0498%
Node 7 | 0.0291% | 0.0176% | 0.0285% | 0.0174%
Node 8 | 0.0092% | 0.0132% | 0.0093% | 0.0133%
Node 9 | 0.0069% | 0.0045% | 0.0069% | 0.0045%

droplet at Node 1 is 2, and the volume variation at this node
is 1. According to the notation in Fig. 3(a), a child droplet
with volume (1 + z1) is associated with Node 3 while the
other with volume (1 — z1) is associated with Node 2. Note
that because the value of z; can be either a positive or a
negative number, the weights on the edges in Fig. 3 can be
either a positive or a negative value as well. For example, if
we want the value of —z1 in Fig. 3(a) to be positive, we just
need to assign a negative value to x;.

The volume V4 (3) of the mixed droplet in Node ¢ in the
Type-A dilution-chain structure is given by:

i—1

T @)

j=1

Va(i) =2+ (-1)¢Y

Likewise, the volume Vz(i) of the mixed droplet in Node 4
in the Type-B dilution-chain structure is given by:

Ve =2+ (-0 x 3 () ey

Because the second terms in Equation (3) and Equation (4)
are geometric sequences, we obtain identical value ranges for
Va(i) and Vg(i) (note that the range of z; is [-0.07, 0.07]):

1.86 < Va(i), V(i) < 2.14 (5)

The concentration of the mixed droplet in each node can be
expressed as a function of the volume variations x1, xa, ..., T;.
The expressions are omitted here for the sake of conciseness,
but we can apply numerical methods to obtain upper and
lower bounds on these concentrations.

Example 3. Suppose the desired concentration for Node i is
C(i). Let the lower and upper bounds on this concentration
be Cio(i) and Cyp(i), respectively. Based on this notation, we
define the lower bound gap as Aj,(i) = C(i) — Cio(3), and
define the upper bound gap as Ayp(i) = Cup(i)—C(3). Table 1
shows these gaps for Node 1 to Node 9 in the two dilution-
chain structures. It is obvious by inspection that both bound
gaps decrease with an increase in the number of nodes. In
other words, as we go deeper in the dilution-chain structure,
the lower and upper bounds on the concentration gradually
converge to the desired concentration. Moreover, the resulting
droplet concentration becomes confined to a narrow range. B

From Equation (5) and Table 1, we can conclude that the
dilution-chain structure provides volume stability as well
as concentration stability for the intermediate droplets.
However, concentrations that can be generated from the two
dilution-chain structures are limited. For example, the Type-
A structure generates concentrations around 33% (see Fig. 2(a)),
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Figure 4: A dilution graph utilizing the proposed
idea.

while the Type-B structure generates concentrations around
66% (see Fig. 2(b)). Therefore, if the desired concentration is
not near 33% or 66% (e.g., the concentration 47.07% that we
considered earlier), we are not able to generate the desired
concentration with only one dilution-chain structure (either
Type-A or Type-B).

However, we can first use multiple dilution-chain structures
to generate multiple intermediate droplets, and next combine
these intermediate droplets with buffer and reagent droplets
to achieve the desired concentration.

3.3 Illustrative Example

We next show how we can achieve the desired concentration
from multiple dilution-chain structures.

Suppose the desired concentration is C' = 241/512 =
47.07% and the resolution is R = 1/512 = 0.20%. In this
case, the concentration calibrated range is [46.97%,47.17%)].
Based on the proposed solution, a dilution graph as sketched
in Fig. 4 is used to generate a concentration that is within
the calibrated range. In this graph, two Type-A dilution-
chain structures are used. The left-hand side Type-A struc-
ture generates a 1X-volume droplet with concentration of
33.30078125%, while the right-hand side Type-A structure
generates a 1X-volume droplet with concentration of 37.5%.
Finally, we mix these two droplets with four 1X-volume buffer
droplets and four 1X-volume reagent droplets from the reser-
voir to obtain a droplet with concentration 47.08% (which is
within the calibrated range).

However, because of volume variations in each splitting
operation, the resulting concentration will deviate from the
desired value. Here, we assume that the volume variation x
obeys the uniform distribution (i.e., evenly distributed from
-7% to 7%). If we simulate the sample preparation process
in Fig. 4 for a total of 100 times, 85 of them generate a
concentration that is within the calibration range, and the
probability of success (POS) is 85/100 = 0.85. In contrast, if
we use the BS method reviewed in Fig. 1(a), and simulate
the sample preparation process for a total of 100 times, only
2 of them generate a resulting concentration that is within
the calibrated range, i.e., the POS is only 2/100 = 0.02.

Suppose the cost of 1X-volume buffer is 0.1 and the cost of
1X-volume reagent is 1. The BS method sketched in Fig. 1(a)
consumes a 5X-volume buffer and a 5X-volume reagent. The
cost for a one-time run is 0.1x5+1x5 = 5.5. According to [16],
the number of times (T') we need to run the method until
we get one success obeys the geometric distribution. Because
the POS for the BS method is only 0.02, the expectation
E[T] is equal to 1/0.02. Hence, the amortized cost is Comt =

5.5/0.02 = 275. On the other hand, the proposed method
shown in Fig. 4 consumes only a 8X-volume buffer and a
6X-volume reagent. Therefore, the cost for a one-time run
is 0.1 x 8 +1 x 6 = 6.8, and the amortized cost is Cymt =
6.8/0.85 = 8.

From this example, we conclude that, although the cost
for the proposed method is larger than that for the BS
method, we achieve a significant reduction in the amortized
cost because of the significant higher value of POS.

4 DETAILS OF THE PROPOSED
SOLUTION

In this section, we propose an ILP formulation to address
two problems that arise when realizing the method proposed
above: (1) what intermediate droplets must be generated by
multiple dilution-chain structures; (2) how many buffer and
reagent droplets are needed to derive the desired concentra-
tion. We first formulate these two problems and then describe
the corresponding ILP model that can address them.

4.1 Formulation of the Remaining
Problem

We first provide the following definitions and assumption
about sample preparation. For a sample preparation protocol,
we regard it as a success if the concentration of the resulting
droplet is within the calibrated range of [C — 0.5R, C +
0.5R]. Otherwise, it is a failure. Suppose we run sample
preparation for a total of IV times. If IV, of them are successful,
the probability of success (POS) is defined as POS = Ns/N.
According to [4], dispensing operations are very reliable fluidic
operations. Therefore, we assume that there is no volume
variation in dispensing.

We now formulate the general problem as follows:

Input: (1) Required concentration C; (2) Resolution R
(i.e., the difference between two neighbouring concentrations);
(3) The cost Wy of 1X-volume buffer; (4) The cost W, of 1X-
volume reagent; (5) The volume variation z in each splitting
operation. We assume that it is a random variable that obeys
the uniform distribution on [-0.07, 0.07].

Output: A dilution graph based on the two dilution-chain
structures. In this dilution graph, N, 1X-volume buffer and
N, 1X-volume reagent droplets are used. The POS for this
solution is obtained by simulation.

Objective: Minimize the amortized cost defined by:

1
505 (6)

The first term in Equation (6) represents the cost of one
run. If a sample preparation run fails, we need to run it
again until success. According to [16], the number of runs
until we get a final success obeys the geometric distribution,
and the expectation number of runs is 1/POS. Therefore,
Equation (6) represent the amortized cost needed to obtain
the desired resulting concentration.

4.2 Proposed ILP Model

As shown in Fig. 5, we use N dilution-chain (DC) structures
to construct the dilution tree. Each DC structure DC; can
either be of Type-A or Type-B. Suppose that the deepest node
we can reach is node M. We define two binary variables: (1)
a;,; is equal to 1 if DC}; generates a droplet with concentration
Ca(j) (see Fig. 6). Otherwise, a; ; is equal to 0; (2) b;,; is
equal to 1 if DC; generates a droplet with concentration
Cg(j) (see Fig. 6). Otherwise, b;; is equal to 0. Because

Ca'mt = (Wb X Nb+WT X Nr) X
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Figure 5: Structure of the ILP problem.

: C: the resulting droplet concentration;
: R: the concentration resolution;
Wi the cost of one unit-volume buffer droplet;
: W,.: the cost of one unit-volume reagent droplet;

C4(j): the concentration of node j in the Type-A DC structure;
: Cp(j): the concentration of node j in the Type-B DC structure;
: Af(4): the lower bound gap for Node j in the Type-A DC structure;
: Af}p(j): the upper bound gap for Node j in the Type-A DC structure;
. AP (j): the lower bound gap for Node j in the Type-B DC structure;
: Afp(j): the upper bound gap for Node j in the Type-B DC structure;
: N: the number of DC structures used to construct the dilution graph.
: M: the maximum node index we can use in a DC structure.

—
R == TP T RSO CR

—
N

Figure 6: Variables used in the ILP model.

each DC structure generates only one droplet, we have the
following constraints for all 4 = 1, ..., N:

M

> (ai; +biy) =1 (7)

Jj=1

The concentration of the droplet generated by DC; (i =
1,...,N) can be expressed as:

Ci = (ai; x Ca(j) +bi; x C(j)) (8)

Likewise, the lower bound gap and the upper bound gap

(see Table 1) for the concentration in DC; (i = 1,..., N) are:
M

Li (A7 (4) X aiy + AL () X big) 9)

1

J

Ui =Y (AL() x aij + AL, (5) x bij) (10)

-

1

J

Suppose that V; (i = 1,..., N) represents the volume of
a droplet generated by DC;. Because each node in a DC
structure represents a 2X-volume droplet, the value of V; can
be either 1 or 2. If V; is equal to 1, the generated droplet is
split before it is sent to the reservoir.! Otherwise, it is mixed
with other droplets in the reservoir. In addition, the volume
of buffer and reagent droplets dispensed to the chip are V},

!'Note that the droplet splitting here can also introduce volume vari-
ation. However, we do not consider this in the ILP formulation. But
it is considered when we calculate the POS for an ILP solution (see
Section 4.3).

Store the
Dilution Tree

Figure 7: Overall flow of the proposed method.

and V;., respectively. Note that the value of V; (i =1,..., N)
is predefined for this ILP problem. However, V}, and V,. are
free variables, i.e., the ILP solver is supposed to assign them
so that the target concentration C' is achieved.

As mentioned above, the calibrated range is [C — 0.5R,
C + 0.5R]. However, this range is too restrictive to ensure a
feasible ILP solution. We need to introduce a user-defined
parameter o to make this range a little wider, and the re-
sulting adjustable calibrated range is therefore [C — 0.5aR,
C + 0.5aR] (a>1).

If the concentration of each DC; achieves its maximum
value of C; + U, the resulting concentration also achieves
its maximum value. We require this value to be equal to or
smaller than C + 0.5aR, i.e., we have:

100% x Vi + SN (Ci + Ui) x Vi
Vi + Ve + XN Vi

If the concentration of each DC; achieves its minimum
value of C; — L;, the resulting concentration also achieves
its minimum value. We require this value to be equal to or
larger than C' — 0.5aR, i.e., we have:

§C+ax§ (11)

mew+zimzamxw>
Vit Vi + 3N Vi -

C—axg (12)

The ILP problem needs to minimize the following cost:

N M N M
C =W, x (%+222ai,j+zzbi,j)+

i=1 j=1 i=1 j=1

N M N M
Wex (Ve + > > aig+> > 2biy)

i=1 j=1 i=1 j=1

(13)

Note that in this ILP model, we optimize only the (not
amortized) cost. The amortized cost is optimized in the
control flow discussed in the following subsection.

4.3 Overall Flow

Fig. 7 shows the overall flow that minimizes the amortized
cost of a dilution tree. Suppose Ny,q, represents the maxi-
mum number of DC structures we can use, and let qmqz be
the maximum value of the user-defined variable a. First, we
initialize both N and « to 1. Next, for each value of N, we
generate all possible combinations of V; (i = 1,..., N). For
example, (Vla Va, VE’)) = (17 2, 1) and (Vlv Va, V3) = (17 1, 1)
are different combinations, while (Vi, V2, V3) = (1,2,1) and
(V1,V2,V3) = (2,1,1) are the same combination. For each
combination, we formulate and solve the ILP problem as
described above, and obtain the resulting dilution tree. Fol-
lowing this step, we carry out Monte Carlo simulation to



obtain the corresponding POS and amortized cost (which
are stored in the memory). This process is repeated until
all (N, a) values are iterated, resulting in a substantial num-
ber of dilution trees. We select the one with the minimum
amortized cost as the optimal dilution tree.

The total number of value combinations for V; (i = 1, ..., N)
is N + 1, therefore we need to solve (N + 1) ILP problem-
s for each innermost loop in Fig. 7. When N is equal to
1,2, ..., Nmaz, we need to solve 2,3, ..., (Npaz + 1) ILP prob-
lems, respectively. Therefore, we need to solve ((Nmaz + 1+
2)Nmaz/2) ILP problems for each middle loop in Fig. 7. Fi-
nally, « is increased from 1 to aumes with a step size of 0.1,
so there are ((@maz —1)/0.1 4 1) values of « iterated for the
outermost loop in Fig. 7. Based on the this analysis, the total
number of ILP problems Nj;, we need to solve in Fig. 7 can
be expressed as:

Nilp _ (Nmaac + S)Nmaac « |:(Oémax -

1)
2 0.1 + 1] (14)

In practice, we find that when Ny, = 5 and aumes = 1.5,
we are able to obtain a good dilution tree with low amortized
cost. The total number of ILP problems we need to solve
for this setting is 120, and it takes about 10 s to complete
the computation on a computer with a Core i3 3.7 GHz
CPU and a 8 GB memory. The solution space for the ILP
problem formulated in Section 4.2 is O(2M*™), but it only
takes about 0.09 s to find the solution using a commercial
ILP solver [15].

5 EXPERIMENTAL RESULTS

In this section, we compare the proposed method with four
prior methods, namely BS [21], DMRW [19], REMIA [12] and
FLOW [3]. For these methods, we inject volume variations
into each splitting operation, and inspect the performance of
each method.

5.1 Metrics

We first define the metrics that are used to evaluate the per-
formance of each method. In a sample preparation protocol,
several buffer and reagent droplets are used to generate the
expected concentration. However, because of the existence
of waste droplets, not all the available buffers and reagents
are used for the resulting droplet. If there are many waste
droplets, the corresponding sample preparation method is
not cost-efficient. Therefore, we define a metric called Droplet
Utilization to evaluate the extent of cost-saving of a sample
preparation method, i.e.,

Wex Nx(1-C)4+W,xNxC

Wi X Ny + W, X N, ’
where W, is the cost of a 1X-volume buffer, W, is the cost of
a 1X-volume reagent, IV} is the volume of the input buffer,
N, is the volume of the input reagent, N is the volume of
the resulting droplet, and C is the desired concentration.
This metric represent the ratio of (1) the cost of reagent and
buffer remaining in the resulting droplet versus (2) the cost
of the input reagent and buffer. It is obvious that the method
reduces cost if the value of this metric is high.

We also define a metric to evaluate the unified amortized
cost to generate the desired droplet. All prior methods gener-
ate a droplet of 2X volume. However, our method generates a
droplet with a volume larger than 2X. To ensure fair compar-
ison, we define a second metric called Unit Amortized Droplet
Cost, i.e.,

UT =

(15)

Table 2: Simulation results for previous methods
(R=1/256).

Concentration: 1/256 to 255/256, Resolution: 1/256
Metrics (W, W) BS DMRW | REMIA | FLOW
Ny 4.49 2.98 2.31 2.22
Ny, 4.02 2.98 4.69 5.93
Nuw N/A 6.03 3.96 4.99 6.68
POS 0.15 0.97 0.43 0.28
urT 0.22 0.34 0.40 0.39

(1,0) 14.97 1.54 2.69 3.96
COST (1,0.1) 16.31 1.69 3.23 5.02
(1,1) 28.37 3.07 8.14 14.55
(1,4) 68.57 7.68 24.50 46.32

Table 3: Simulation results for proposed method
(R=1/256).

Concentration: 1/256 to 255/256, Resolution: 1/256
(W, Wy) | N» | Ny | No | POS | UT | COST
(1,0) 4.66 | 5.67 1.43 0.96 0.96 0.55
(1,0.1) 4.66 | 5.67 1.43 0.96 0.96 0.61
(1,1) 4.89 | 5.32 1.56 0.94 0.95 1.26
(1,4) 4.33 | 4.01 1.21 0.85 0.91 3.36

Table 4: Simulation results for previous methods
(R=1/1024).

Concentration: 1/1024 to 1023/1024, Resolution: 1/1024
Metrics | (W, Wy) BS DMRW | REMIA | FLOW
Ny 5.00 3.52 2.41 2.22
Ny 4.01 3.50 6.09 9.68
Ny, N/A 8.01 6.02 7.05 10.90
POS 0.08 0.81 0.19 0.11
urT 0.20 0.28 0.36 0.35

(1,0) 31.25 217 6.34 10.09
COST (1,0.1) 33.76 2.39 7.94 14.49
(1,1) 56.31 4.33 22.37 54.09
(1,4) 131.50 | 10.81 70.45 186.09

Table 5: Simulation results for proposed method
(R=1/1024).

Concentration: 1/1024 to 1023/1024, Resolution: 1/1024
(Wy, W) N, Ny, Ny, | POS | UT | COST
1,0 8.97 | 10.11 | 2.44 | 0.80 | 0.96 | 0.67
(1,0.1) | 8.97 | 10.11 | 2.44 | 0.80 | 0.96 | 0.75
(1,1) 9.45 9.66 2.56 0.77 0.93 1.50
(1,4) 8.32 7.44 2.13 0.70 0.93 3.99

Wy x Ny + Wy X N, 1
_ — 16
COST = POS X N (16)
where Wy, W,., Ny, N, and N are the same as those in

Equation (15), and POS is the probability of success.
5.2 Results

A sample preparation bioassay is typically composed of
droplet transportation, droplet splitting, and droplet mixing
operations. The physics underlying these operations is de-
scribed in [4], and experimental results were also reported.
In this section, the results of sample preparation methods
are generated by simulation. Since the simulations are based
on the model in [4], our results reflect the results what is
expected for actual biochips.

In our evaluations, we first considered concentrations rang-
ing from 1/256 to 255/256 with a resolution of 1/256. The
results are shown in Table 2 and Table 3, where N,, N, and
N,, represent the average number of reagent droplets, the
average number of buffer droplets, and the average number
of waste droplets, respectively. Without loss of generality,
we used four (W,., W}) values in our simulations, namely (1,
0), (1, 0.1), (1, 1) and (1, 4). These four values are selected
based on the reagents and buffers used in a DMFB-based




bioassay [9]. In this bioassay, reagents with different con-
centrations are used, and we use four of these reagents to
extract the cost values: (1) (1,0) for trichloroacetic acid in DI
water; (2) (1,0.1) for Pluronics F127 in Borate; (3) (1,1) for
acetonitrile in chloroform; (4) (1,4) for acetone in chloroform.

As shown in Table 2 and Table 3, the POS of BS, REMIA
and FLOW are relatively low (smaller than 0.50) because
their dilution graphs are not designed with respect to vol-
ume variation in splitting operations. Both DMRW and the
proposed method achieve a POS higher than 0.9. Note that
DMRW does not consider volume variation in the design
stage. However, because it has a dilution graph that is sim-
ilar to the two dilution-chain structures, it achieves nearly
the same POS as our method. For the other methods, many
waste droplets are discarded, therefore, the droplet utilization
(UT) for these methods is less than 0.50. However, in our
method, most of the buffer and reagent droplets are used to
construct the final droplet, and the value of UT is as high
as 0.96. When it comes to parameter COST, the value of
COST is the lowest among all methods, because the pro-
posed method has a high POS and a high UT. Note that the
(Wy, Ws) entry for N, to UT is labeled as “N/A” because
the change of this value does not have any effect to previous
methods. However, as the value of W, changes, the COST
values for previous methods change as well. It is obvious
by inspection that the COST values for BS, REMIA and
FLOW methods are much larger than that in DMWR, and
the proposed method because their droplet utilization (i.e.,
UT) and POS are relatively low.

From Table 3, we can see that the simulation results for
value (1,0) and (1,0.1) are the same, because in both cases
the cost of 1X-volume buffer is negligible. However, when
this cost increases (e.g., value (1,1) and value (1,4)), the
buffer usage is reduced to limit the overall cost. Moreover,
POS decreases as well because one-time cost dominates the
amortized cost. Therefore, solutions with low one-time cost
and POS are selected by the proposed method.

Next, we consider a total of 1024 concentrations, ranging
from 1/1024 to 1023/1024, with a resolution of 1/1024. The
results are reported in Table 4 and Table 5. Because the
resolution is much smaller (only 1/4 of that in Table 2), the
BS, REMIA and FLOW method are not usable due to the
low POSs (0.08, 0.19 and 0.11, respectively). However, the
POS for DMRW and our method is acceptable.

6 CONCLUSION

We have presented a sample preparation method that provides
the desired concentration accuracy despite volume variations
in droplet splitting. We attempt to mitigate the volume-
variation problem by the use of two dilution-chain structures.
These structures can generate a droplet with concentration
in a narrow range even if there are volume variations. Based
on these structures, we have presented an ILP-based method
for the construction of a dilution tree. It generates a result-
ing droplet with the target concentrations even if volume
variations occur during sample preparation. Experimental
evaluations demonstrate the applicability and effectiveness
of the proposed method. In future work, we will proposed a
more sophisticated method that utilizes the dilution-chain
structure, and compare the area utilizations and number of
operations for different sample preparation methods. Besides
that, comparisons with error-oblivious sample preparation
methods as recently proposed in [17] shall be conducted.

REFERENCES

(1l

2

3

[4

o

[6

[7

8

9

(10]
(11]

(12]

(13]

[14]

[15]
[16]

(17]

(18]

(19]

[20]

[21]
(22]

(23]

Nilina Bera et al. 2016. Simulation-based method for optimum
microfluidic sample dilution using weighted mix-split of droplets.
IET Computers €& Digital Techniques 10, 3 (2016), 119-127.
Krishnendu Chakrabarty et al. 2010. Design tools for digital
microfluidic biochips: toward functional diversification and more
than moore. IEEE Trans. CAD 29, 7 (2010), 1001-1017.
Trung Anh Dinh et al. 2014. A network-flow-based optimal sample
preparation algorithm for digital microfluidic biochips. In ASP-
DAC. 225-230.
Richard B Fair. 2007. Digital microfluidics: is a true lab-on-a-chip
possible? Microfluidics and Nanofluidics 3, 3 (2007), 245-281.
Peter RC Gascoyne et al. 2004. Dielectrophoresis-based sample
handling in general-purpose programmable diagnostic instruments.
Proc. of the IEEE 92, 1 (2004), 22-42.
Amit Gefen. 2009. Bioengineering Research of Chronic Wounds:
A Multidisciplinary Study Approach. Vol. 1. Springer Science &
Business Media.
Daniel Grissom et al. 2012. Fast online synthesis of generally
Erogzammable digital microfluidic biochips. In CODES+ISSS.
13-422.
Daniel T Grissom et al. 2014. A low-cost field-programmable
pin-constrained digital microfluidic biochip. IEEE Trans. CAD
33, 11 (2014), 1657-1670.
Mais J Jebrail and Aaron R Wheeler. 2008. Digital microflu-
idic method for protein extraction by precipitation. Analytical
chemistry 81, 1 (2008), 330-335.
Oliver Keszocze et al. 2014. Exact One-pass Synthesis of Digital
Microfluidic Biochips. In DAC. 1-6.
Oliver Keszocze et al. 2015. A General and Exact Routing Method-
ology for Digital Microfluidic Biochips. In ICCAD. 874-881.
Chia-Hung Liu et al. 2015. Reactant minimization in sample
preparation on digital microfluidic biochips. IEEE Trans. CAD
34, 9 (2015), 1429-1440.
Yan Luo et al. 2013. Error recovery in cyberphysical digital
microfluidic biochips. IEEE Trans. CAD 32, 1 (2013), 59-72.
S Miller et al. 2016. Multiplex detection of respiratory pathogens
with Genmark’s eplex sample-to-answer system. Clinical Chem-
istry and Laboratory Medicine 54, 5 (2016), eA5—eA6.
Gurobi Optimization. 2017. Gurobi optimizer version 7.0. 2.
Andreas N Philippou et al. 1983. A generalized geometric dis-
tribution and some of its properties. Statistics € Probability
Letters 1, 4 (1983), 171-175.
Sudip Poddar et al. 2018. Error-Oblivious Sample Preparation
with Digital Microfluidic Lab-on-Chip. IEEE Trans. CAD (2018).
Hong Ren et al. 2003. Design and testing of an interpolating mix-
ing architecture for electrowetting-based droplet-on-chip chemical
dilution. In TRANSDUCERS, Vol. 1. 619-622.
Sudip Roy et al. 2010. Optimization of dilution and mixing of
biochemical samples using digital microfluidic biochips. IEEE
Trans. CAD 29, 11 (2010), 1696-1708.
Sudip Roy et al. 2011. Waste-aware dilution and mixing of bio-
chemical samples with digital microfluidic biochips. In DATE.
1-6.
William Thies et al. 2008. Abstraction layers for scalable microflu-
idic biocomputing. Natural Computing 7, 2 (2008), 255-275.
Lisa R Volpatti et al. 2014. Commercialization of microfluidic
devices. Trends in biotechnology 32, 7 (2014), 347-350.
Ping-Hung Yuh et al. 2006. Placement of digital microfluidic
biochips using the T-tree formulation. In DAC. 931-934.



