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Abstract—Quantum computation is a promising research field
since it allows to conduct certain tasks exponentially faster
than on conventional machines. As in the conventional domain,
decision diagrams are heavily used in different design tasks for
quantum computation like synthesis, verification, or simulation.
However, unlike decision diagrams for the conventional domain,
decision diagrams for quantum computation as of now suffer
from a trade-off between accuracy and compactness that requires
parameter fine-tuning on a case-by-case basis. In this work,
we—for the first time—describe and evaluate the effects of this
trade-off. Moreover, we propose an alternative approach that
utilizes an algebraic representation of the occurring irrational
numbers and outline how this can be incorporated in a decision
diagram in order to overcome this trade-off.

I. INTRODUCTION

Quantum computation [1] is a promising computation
paradigm that—by exploiting quantum phenomena like su-
perposition, entanglement, and phase shifts—allows for sub-
stantial speedups compared to conventional computers for
certain problems. While the basic idea of quantum compu-
tation as well as corresponding algorithms with remarkable
speed-ups are around for several decades [2], [3], physical
realizations recently gained a new momentum with frequent
“breakthroughs”, e.g. in increasing the number of available
qubits and their rapidly improving fidelity [4]. In order
to be prepared for future quantum devices, also research
on automated design methods for quantum computations
is underway. Since quantum computations are usually de-
scribed in terms of exponentially large state vectors and
unitary matrices, this often leads to rather intractable solutions
when using straight-forward representations like, e.g., 1- and
2-dimensional arrays [5], [6], [7].

Motivated by that, alternative representations are currently
investigated. Inspired by the conventional domain, decision
diagrams are considered a promising approach for the efficient
representation of quantum computations [8], [9], [10]. The key
idea of decision diagrams is to exploit redundancies to gain a
more compact representation that is non-exponential in many
practically relevant cases. In combination with manipulation
algorithms whose complexity grows polynomially with respect
to the size of the decision diagram, this allows to efficiently
conduct certain design tasks. In this regard, especially Quan-
tum Multiple-valued Decision Diagrams (QMDDs [10]) and
its variations serve as promising representative—leading to a
broad variety of efficient approaches e.g. for synthesis [11],
[12], [13], verification [14], [15], and simulation [16].

However, current decision diagrams for the quantum domain
suffer from a trade-off between accuracy and compactness,
since (1) small errors that are inevitably introduced by the
limited precision of floating-point arithmetic can harm the

This work has partially been supported by the European Union through the
COST Action IC1405 and the Google Research Award Program.

compactness (i.e. the size of the decision diagram) signif-
icantly, and (2) overcompensating these errors (to increase
compactness) may lead to an information loss and introduces
numerical instabilities (cf. Section III). This motivates the need
for an alternative solution that inherently achieves accuracy
and compactness at once and, thus, allows to overcome the
application-specific trade-off present in current solutions.

In this work, we propose such an alternative approach
that utilizes an algebraic number field (within the complex
numbers) that is strongly connected with the well established
Clifford+T gate library. This allows to represent the considered
quantum functionality algebraically rather than numerically—
thereby completely avoiding the trade-off between accuracy
and compactness. In fact, the proposed decision diagram can
fully exploit redundancies for a compact representation and,
at the same time, guarantees a perfectly accurate result.

This paper is structured as follows: In Section II, we review
the basics of quantum computation as well as correspond-
ing decision diagrams with a particular focus on Quantum
Multiple-valued Decision Diagrams. In Section III, we discuss
the trade-off that is necessary when using decision diagrams
in the quantum domain—motivating the need for a deci-
sion diagram that represents complex numbers algebraically.
In Section IV, we illustrate how to achieve this algebraic
representation and how these findings can be exploited in
decision diagrams in order to achieve both, perfect accuracy
and compactness. Section V concludes the paper.

II. BACKGROUND

This section briefly reviews the basics of quantum
computation and Quantum Multiple-valued Decision Dia-
grams (QMDDs). For a more detailed introduction, we refer
to [1] and [10], respectively.

A. Quantum Computation

Quantum systems are composed of qubits that can be
in one of the basis states |0〉 and |1〉, or in a super-
position of both, i.e. α|0〉 + β|1〉 where α and β are
complex values with |α|2 + |β|2 = 1. Accordingly, an n-qubit
quantum system can be in one of the 2n basis states (|0 . . . 00〉,
|0 . . . 01〉, . . . , |1 . . . 11〉) or a superposition of these states. The
state of such a quantum system is represented by a state vector
of dimension 2n. By the postulates of quantum mechanics, the
evolution of a quantum state due to a quantum operation can
be described by a unitary transformation matrix of dimension
2n × 2n.

Example 1. Commonly used quantum operations include the
Hadamard operation H (setting a qubit into a superposition),
the NOT operation X (flipping the basis states |0〉 and |1〉),
as well as the phase shift operations T (π/4 gate), S = T 2



(Phase gate) and Z = S2. The corresponding unitary matrices
are defined as

H = 1√
2

(
1 1
1 −1

)
, X =

(
0 1
1 0

)
, T =

(
1 0
0 ω

)
,

where ω = 1+i√
2

= eiπ/4. Besides these operations that are
applied to a single target qubit, there are also controlled
operations on multiple qubits. The state of the additional
control qubits determines whether the operation is performed
on the target qubit.

Complex, high-level quantum operations like e.g. quantum
computations are realized in terms of a sequence of elementary
quantum operations (so-called quantum gates). The unitary
matrix of the entire high-level operation can then be computed
as the matrix product of the individual gate matrices (in
reversed order).

B. Decision Diagrams for Quantum Computation
As state vectors and unitary matrices corresponding to

quantum states and operations grow exponentially with the
size of the quantum systems (i.e., the number of qubits),
straight-forward representations like 1- or 2-dimensional ar-
rays quickly become infeasible (e.g. those proposed in [5],
[6], [7]). One dedicated data-structure that allows for a
more compact representation and efficient manipulation by
exploiting redundancies in the vectors/matrices is provided by
Quantum Multiple-Valued Decision Diagrams (QMDDs, [10]).
The general idea of QMDDs is to represent a (unitary) matrix
in terms of a directed acyclic graph such that sub-matrices
which occur multiple times are represented by a shared graph
structure.1 While there are several data-structures that follow
a similar approach (e.g. those proposed in [8], [9]), only
QMDDs additionally make use of weighted edges. This unique
property allows them to use shared structures also for sub-
matrices that differ by a scalar factor—a frequently occurring
case.

Example 2. Fig. 1a shows the transformation matrix of the
quantum operation U = H⊗I2, i.e. a Hadamard operation is
performed on one qubit of a 2-qubit quantum system. Fig. 1b
shows a decision diagram representation of this matrix. Here,
the single root node (labeled q0) represents the whole matrix
and has four outgoing edges to nodes representing the top-left,
top-right, bottom-left, and bottom-right sub-matrix (from left
to right). Likewise the 2 × 2 sub-matrices (represented by
nodes labeled q1) are decomposed until the terminal nodes
are reached—each of which represents a distinct number.

Apparently, the top-left, top-right and bottom-left
sub-matrices of the original matrix are identical and
can be represented by a shared graph structure (the left-most
node labeled q1 in Fig. 1b). However, the bottom-right sub-
matrix is represented by a separate graph structure, although
it has the same structure and differs only by a scalar factor
of −1. If this similarity is taken into account (as it is done
in QMDDs), an even more compact representation can be
achieved by extracting such scalar factors and annotating
them to the corresponding edges. Then, a single node at the
q1 level is sufficient as shown in Fig. 1c. Here, the common
factor 1√

2
is extracted and annotated to the root edge (an

additional edge pointing to the root node). For simplicity,
edge weights equal to 1 are usually suppressed and edges
with a weight of 0 are indicated by stubs.

1In this regard, state vectors are interpreted as matrices of dimension 2n×1.
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Fig. 1: Representations for U = H ⊗ I2.

To obtain the value of a particular matrix entry, one has to
follow the corresponding path from the root to the terminal
node and multiply all edge weights on this path. For example,
the matrix entry −1√

2
from the bottom-left sub-matrix of Fig. 1a

(highlighted bold) can be determined as the product of the
weights on the highlighted path of the QMDD in Fig. 1c.

In order to determine the common scalar factors that allow
for the enhanced use of shared structures, the nodes of a
QMDD are normalized. To this end, a normalization factor
is determined (usually the left-most non-zero weight of the
outgoing edges). This factor is then applied to all outgoing
edges and also propagated to all incoming edges. By doing so,
QMDD even become canonical, i.e. unique, representations of
(unitary) matrices [10].2

III. ACCURACY VS. COMPACTNESS IN QMDDS

QMDDs have successfully been applied for design tasks
like synthesis [11], [12], [13], verification [14], [15], and
simulation [16] since they allow for a compact representation
and, thus, an efficient processing of the respective matrices and
vectors. This compactness is achieved by exploiting redundan-
cies such that the entire information of the matrix/vector is
preserved.

However, while gaining a compact representation without
information loss is not complicated as long as the set of
possible values is finite (e.g. 0 and 1 for Boolean functions)
or discrete (e.g. only integer numbers occur), this is different
for the quantum domain, where we have to deal with arbitrary
complex numbers and, thus, irrational coefficients. As a con-
sequence, decision diagrams that represent conventional com-
putations like e.g. Binary Decision Diagrams (BDDs, [17]),
Kronecker Functional Decision Diagrams (KFDDs, [18]), or
Binary Moment Diagrams (BMDs, [19]) do not face problems
with the accuracy of the representation, while accuracy can
be an important issue for decision diagrams representing
quantum computations. In this section, we discuss the resulting
challenges and issues that lead to a trade-off between accu-
racy and compactness—motivating the need for an algebraic
representation of quantum computations overcoming this.

To this end, first note that, in the area of quantum com-
putation, most design automation tasks require hundreds or
even thousands of multiplications of unitary matrices (e.g. to
compute the unitary matrix for an entire quantum circuit from
the gate matrices) or multiplications of a vector and a unitary
matrix (e.g. to simulate the evolution of a quantum state).
From a numerical perspective, these tasks do not constitute an
issue per se, since the multiplication with a unitary matrix

2Using the left-most edge weight with the largest absolute value as
normalization factor increases the numerical stability of the representation
while preserving canonicity.



is a well-conditioned problem. In fact, the resulting error,
i.e. the deviation from the exact result, can be expected to
be in the order of the input error.3 Furthermore, applying
several multiplications successively will only lead to an error
that grows linearly with the number of matrix multiplications.
Consequently, using a numerical, i.e. approximated, represen-
tation of the complex numbers with a high resolution can yield
numerically stable computations.

However, this approximation can have a significant impact
on the decision diagram representation. To this end, recall that
the key idea of decision diagrams is to exploit redundancies
in order to gain a compact representation. This compact
representation is indeed a key factor for their efficiency, since
the complexity of the manipulation algorithms (e.g. matrix
multiplication) grows with the size of the decision diagram.
By using approximate representations of the complex numbers,
the detection of these redundancies can become a tough
challenge. An example demonstrates the problem.

Example 3. Recall Example 2 where the matrix shown in
Fig. 1a can compactly be represented by the QMDD shown
in Fig. 1c. This compact representation is possible since
several redundancies can be exploited. However, represent-
ing the irrational entries with floating point numbers on a
machine with limited accuracy, may break these redundancies
e.g. when using rounding towards ∞ or when the matrix is
constructed as the product of several other matrices. Then, two
occurrences of ± 1√

2
might be represented by slightly different

floating point numbers (e.g. differing in the last significant bit
of the mantissa) and no redundancy can be detected anymore.

In general, this will likely lead to a decision diagram where
none of the existing redundancies are detected at all—leading
to an exponentially large representation. A solution to this
issue (due to tiny errors caused by machine accuracy) is to
identify numbers that do not differ by more than a so-called
tolerance value (denoted as ε in the following).

Example 4. Assume that two floating point numbers that shall
represent 1√

2
differ only in the last three bits of the mantissa

(assuming an IEEE 754 single precision floating point number
with 23 mantissa bits). Then, setting e.g. ε = 10−5 allows to
detect that the two entries are equal.

However, choosing a proper value for ε is crucial. If ε
is chosen too small, it might not be able to compensate
the limited machine accuracy and, thus, to determine more
redundancies. If ε is chosen too large, additional redundancies
might be “detected” that are not actually present—leading
to an undesired approximation (information loss) and nu-
merical instabilities of the multiplication algorithm. In the
worst case, this may falsify the result such that an invalid
quantum state (e.g. a vector composed of zeros only) or a non-
unitary matrix results. Nevertheless, in many cases there exist
proper configurations for ε, but this heavily depends on the
considered application and determining an adequate tolerance
value may require time-consuming fine-tuning of parameters
on a case-by-case basis.

Example 5. Fig. 2 shows the size of the state vector (by
means of QMDD nodes) while simulating the Ground State
Estimation (GSE, [20]) quantum algorithm. As can be seen,
the number of QMDD nodes is highly affected by ε. Choosing
ε = 0, i.e. (almost) no two different numbers are considered

3Note that this is a statement about the matrix multiplication problem itself
and not about a certain implementation.

Fig. 2: Size of the QMDD when simulating GSE

to be equal, yields the highest precision that is possible
using floating point numbers, but results in a rather large
representation. Instead, choosing ε = 10−3 yields a vector
composed of zeros only—a perfectly compact but obviously
wrong result. As a trade-off, choosing ε = 10−15 leads to
almost the same numerical result as ε = 0, but yields a better
compactness and, thus, a smaller run-time.

Overall, determining a “perfect” ε, i.e. finding the best
trade-off between accuracy and compactness (which heavily
influences the run-time), is a non-trivial task. So far, it has to
be evaluated on a case-by-case level for each application.

IV. PROPOSED SOLUTION

In this section, we propose to overcome the trade-off
discussed and evaluated above by using an algebraic repre-
sentation of the complex numbers that occur in QMDDs as
solution—allowing for both, a perfect accuracy together with
a perfect exploitation of redundancies.

A. Utilizing the Ring D[ω]
In order to obtain an algebraic representation of the complex

numbers, the most obvious choice would be to extend the
well-known Gaussian numbers Z[i] to the ring Z[i,

√
2]. By

doing so, all complex numbers of the form a+b
√
2+i(c+d

√
2)

can be represented in an exact fashion. This ring is already a
dense subset of the complex numbers such that any complex
number can be approximated by an element from Z[i,

√
2]

up to an arbitrary precision (this density is a known property
of Z[

√
2] in the real numbers and can easily be lifted to the

complex numbers). However, the irrational number 1√
2

that
plays a vital role in quantum computation, is not contained
in this ring. Thus, it seems more promising to study the ring
Z[i, 1√

2
] which trivially contains Z[i,

√
2] (since

√
2 = 2 · 1√

2
),

but allows to represent 1√
2

and all its potencies exactly.
In the following, we will make use of a different in-

terpretation of this ring that is more convenient from
an algebraic perspective. More precisely, we will use
the interpretation as an extension of the so-called dyadic
fractions D = { a

2k
| a, k ∈ Z, k ≥ 0}, namely D[ω] (where

ω = 1+i√
2
= eiπ/4 as in Example 1).4

Using the latter representation, all complex numbers
that can be represented exactly can be written
as α = 1√

2
k (aω

3 + bω2 + cω + d) for coefficients
a, b, c, d, k ∈ Z, i.e. using five integers (cf. [5]).

Note that the ring D[ω] is also strongly related to the well
established Clifford+T gate library [21]. This library is very
popular in quantum computation due to its universality (any
quantum operation, i.e. any unitary transformation matrix,

4The fact that the rings Z[i, 1√
2
] and D[ω] are isomorphic becomes obvious

if one considers the ring D[
√
2, i] (which can easily be seen to be isomorphic

to both rings) as an intermediate step. In fact,
√
2 = ω − ω3 and i = ω2.



can be realized up to an arbitrarily small error) as well as
fault-tolerance. The most elementary gates in this library are
the Clifford group gates (H , CNOT, S) and the T gate as
discussed in Example 1. The relation between the ring D[ω]
and the Clifford+T gate library is that the quantum operations
which can be realized exactly by Clifford+T gates (i.e. without
any rounding error) are precisely given by those matrices
whose entries are from the ring D[ω] = D[

√
2, i] (as shown

in [5]). As a consequence, all such quantum operations can
be represented with perfect accuracy using our approach.
Hence, D[ω] provides the ideal basis for a decision diagram
that employs an accurate, algebraic representation of complex
numbers.

B. Incorporating D[ω] into QMDDs

In order to use the algebraic representation of complex num-
bers presented above within QMDDs, there are two aspects
that have to be taken into account:

1) In order to determine common factors and structural
similarities (that are required to find redundancies), a
unique representation of D[ω] numbers is required. How-
ever, there are in general infinitely many possibilities to
represent a D[ω] number.

2) The extracted (normalization factors) have to be applied
to the edge weights. More precisely, the weights have to
be divided by these factors. However, as division means
multiplication by the (multiplicative) inverse, this divi-
sion can only be conducted properly for D[ω] numbers
that indeed have a multiplicative inverse in D[ω], but
not for D[ω] numbers in general (e.g. all odd integers
greater than or equal to 3 do not have an inverse in D[ω]
and the result of a division by such a number can not
be represented as a D[ω] number).

Recall that each number α ∈ D[ω] can be written
as α = 1√

2
k (aω

3 + bω2 + cω + d) for coefficients
a, b, c, d, k ∈ Z. If the exponent k is fixed, the representation
is clearly unique since two different representations would
yield a non-trivial representation of 0 in Z[ω]. Thus, a
unique representation can be achieved when using the
smallest denominator exponent kmin such that there is no
representation with an exponent k < kmin. The existence of
such an exponent has already been discussed in [5], but no
constructive criterion for minimality has been derived. To this
end, we note that

√
2 = −ω3 + ω, such that

α = 1√
2
k (aω

3 + bω2 + cω + d) ·
√
2√
2

= 1√
2
k+1

(
(b− d)ω3 + (c+ a)ω2 + (b+ d)ω + (c− a)

)
= 1√

2
k−1

(
a′ω3 + b′ω2 + c′ω + d′

)
,

where a′, b′, c′, d′ ∈ Z if, and only if, a = c mod 2 and
b = d mod 2. Thus, we know that the exponent is minimal
if, and only if, a 6= c mod 2 or b 6= d mod 2—yielding
a constructive algorithm to obtain unique representations of
D[ω] numbers.

Regarding the division by normalization factors, we exploit
the fact that a similar argumentation as above can be performed
for the field Q[ω] as well. In fact, each Q[ω] number has a
unique representation as α

e where α ∈ D[ω] and e is an odd
integer (e ∈ 2Z+1) that is co-prime to the integer coefficients
of α. Having this, all computations can be made in the field
Q[ω] where all non-zero numbers have a multiplicative inverse.
In summary, by spending one additional integer and switching

to the algebraic number field Q[ω], a division/normalization
becomes possible.

Overall, the proposed solution allows for an algebraic and,
thus, perfectly accurate representation of complex numbers
within the QMDD data-structure. Since this allows to detect
all existing redundancies, our solution allows to overcome the
currently existing trade-off between accuracy and compact-
ness.

V. CONCLUSIONS

In this work, we have—for the first time—discussed and
evaluated the trade-off between accuracy and compactness
of decision diagrams for quantum computation. Since this
requires fine-tuning of parameters on a case-by-case basis and
might still yield useless results, we propose to overcome this
issue by an algebraic decision diagram. The proposed algebraic
representation guarantees perfect accuracy while remaining
compact (all redundancies that are actually present are de-
tected). Future work covers the evaluation of the proposed
solution regarding computational and memory overhead—
particularly with respect to the bitwidth of the integers required
for an algebraric representation.
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