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Abstract—Hardware/software co-designs are usually defined at
high levels of abstractions at the beginning of the design process
in order to allow plenty of options how to eventually realize a
system. This allows for design exploration which in turn heavily
relies on knowing the costs of different design configurations
(with respect to hardware usage as well as firmware metrics).
To this end, methods for cost estimation are frequently applied
in industrial practice. However, currently used methods for
cost estimation oversimplify the problem and ignore important
features — leading to estimates which are far off from the real
values. In this work, we address this problem for memory
systems. To this end, we borrow and re-adapt solutions based
on Machine Learning (ML) which have been found suitable
for problems from the domain of Computer Vision (CV) - in
particular age determination of persons depicted in images. We
show that, for an ML approach, age determination from the CV
domain is actually very similar to cost estimation of a memory
system.

I. INTRODUCTION

Increasing the productivity in industrial hardware/software
co-designs is a central issue, as it allows for an efficient design
and testing as well as a reduction of the design costs. In
this context, utilizing automation already in early stages of
the design process is essential for supporting the designer in
handling the complexity of modern chips. Among different
automation approaches, automated hardware generation and
automated firmware generation from model-based designs got
established in industrial practice today [3], [5]. Here, the
desired system is specified on an abstract level (e.g. by means
of design-centric meta-models) and, afterwards, depending on
the respectively applied design configuration, realized.

This allows for a design exploration at early stages of
the design process, since plenty of options how to realize a
system can be evaluated prior to its actual implementation. By
this, the designer can make sure that a system is realized in
the respectively needed customized fashion, but also satisfies
certain cost constraints (e.g. with respect to area, number of
firmware instructions, etc.). In order to evaluate the different
possible design configurations, methods for cost estimation
are essential. They take properties from the design configu-
ration and, based on that, try to extrapolate what costs an
implementation realizing those configuration eventually would
have. This information is then utilized by the designer to
eventually decide which configuration shall be realized. Within
this process, the quality of the cost estimation obviously is a
crucial criteria — misleading cost estimates will eventually lead
to the implementation of design configurations which likely is
not satisfactory. In this work, we consider this issue for the
design of memory systems.

Here, methods for cost estimations currently applied in
industrial practice thus far [7], [10], [12] actually oversimplify
the problem and ignore important features that heavily affect
the cost. Consequently, they frequently lead to cost estimates
that are far off from the real values (this is discussed in
more detail later in Section II). At the same time, we observe
that explicitly recognizing those features and “hard-code” an
algorithm considering all features in order to derive a more
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accurate estimation is a cumbersome task. Hence, we propose
an alternative solution which borrows and re-adapts concepts
based on Machine Learning (ML, [6]) which have been
found suitable for problems from the domain of Computer
Vision (CV, [1]). More precisely, we observe that, for typical
CV problems such as the determination of the age of a
person depicted in an image, ML indeed properly recognizes
the respective features and is capable of determining rather
accurate estimates. Further, we show that age determination
in CV and cost estimation of a memory system share some
similarities and can actually be addressed by the same scheme.
Based on that, we propose an alternative solution for cost
estimation which adapts the concepts from the CV domain.
The proposed method offers higher scalability and flexibility
since further features can directly and automatically learned
through the ML training process.

II. CoST ESTIMATION FOR MEMORY SYSTEMS

In this section, we illustrate the problems and challenges
of cost estimation for memory systems in early stages of the
design flow. To this end, we first introduce the specification of
Register Interface (RI) components such as presented in [4]
which serve as running example in the remainder of this work.
Using this example, today’s shortcomings of cost estimation
are illustrated — providing the motivation of this work.

RIs are common components in an SoC and provide the
communication mechanism between the core and peripheral
devices. Accordingly, RI components may be required in
different configurations (e.g. depending on the respectively
applied peripherals) which is why the initial specification is
usually provided generically in terms of a meta-model such as
follows:

Example 1. Fig. I shows the meta-model of the considered RI
component. Here, sub-components are defined that describe
the HW and FW structure of the RI. The sub-component
Interface specifies the general features of the RI such as
the DataWidth or the AddressWidth. The single registers are
defined using instances of the sub-component Unit, which has
a Name, a Size, and an Address. The accessibility to each
bitwise position in the registers/Units is defined by dedicated
bitfields, which is why each Unit has one or more instances
of a corresponding sub-component Contained (specifying the
start Position of a bitfield) and the sub-component Bitfield
(specifying e.g. the Size and the allowed access; e.g. HWRd
and SwWr regulating the property being read or written
respectively by HW and FW). Finally, the corresponding FW
(which eventually has to obey these accessibility settings) is
described using the additional sub-components Configuration,
Setting, DontCareList, and Parameter which are specified
depending on the desired instances of the Bitfields.

Using this meta-model, the designer can now instantiate
various configurations of an RI component. In the following,
we call these instances design configurations. These configura-
tions have to be chosen so that they, on the one hand, realize
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Figure 1: Meta-model of the Register Interface (RI)

the intended behavior (e.g. allow for proper access for the
peripherals) but, on the other hand, also satisfy certain cost
constraints which may exist. For the latter, it is important to
have an accurate estimation of the costs for a correspondingly
considered configuration. In the following, we exemplary
consider thereby

o the area, ie. the number of Configurable Logic
Blocks (CLBs) in terms of Logic Units (LUTs) and
Slice Registers (SRs) which are needed to realize the
configuration on an FPGA board, and

o the size of the generated binary FW code (FS) as well
as the number of cycles of a pipelined CPU which are
needed to execute the FW program (FCs).

However, in early stages of the design flow, the designer
has no fully-fledged implementation of the respective design
configurations at hand (they are still to be implemented). Ac-
cordingly, the respectively resulting costs need to be estimated
in order to evaluate different design choices and, eventually,
decide which indeed shall be realized. High-Level Synthesis
Tools can be utilized for this purpose [8], and have as well
been employed for HW/SW co-design of SoC FPGAs [11]. In
our industrial context, with the purpose of learning a fast and
accurate estimation for a whole set of designs, we utilize ML
approaches. To this end, several methods using ML algorithms
for cost estimation have been proposed in the past. They use
e.g. coarse-grained inputs (e.g. means and aggregate values) as
proposed in [7], [10], [12]. More precisely, in [12], the features
used for CLBs estimation are aggregated for each design
generation, resulting in a coarse grained feature space used for
the prediction of the SoC area objective. The work [10] instead
evaluates the power consumption of different algorithms using
high-level features taken from single algorithmic blocks, such
as average working set size and total operations. These are
used for predicting power and performance of an FPGA-
based soft processor. Finally, in [7], different features (here
presented as tunable knobs) are evaluated as input for the
multi-objective estimation problem, e.g. the Num. Work Items
per group, the Num. Work Items per group and Num. Private
Variables. However, with respect to memory systems, these
approaches oversimplify the estimation and ignore important
further information which also may affect the final costs.

In fact, spatial information such as the spatial position
of the bitfields and units inside the memory system have a
significant impact on the eventual costs and scalability of the
estimation. Each bitfield property is set in a configuration
context — representing features as a total or mean of values.
If provided on a too higher (imprecise) level, this may lead to
a diminishing of specific information that affect the real cost.
At the same time, the complexity of considering those spatial
information increases with the size of the considered systems
— yielding either a significantly increasing manual effort for
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the retrieval of feature values or making it even impossible at
all.

Example 2. Consider the instances of the RI meta-model
from Fig. 1 as shown in Fig. 2. Here, Fig. 2a shows three
different instances which, at a first glance, look identical
(e.g. in all three cases the bitfields are the same, and are
instantiated in an identical fashion). In fact, the only difference
is that the Units have different Addresses. At a first glance,
this should not cause significant differences in the costs.
Accordingly, existing methods for cost estimation methods
yield an estimation of 110 LUTs, 36 SRs, a FS of 2.6 Kb, and
564 FCs for all cases. However, if we evaluate the HW Area
and retrieve the FW metrics from the actual implementation
of those instances', we obtain different values for each case.
In fact, as discussed above, the spatial information of each
unit indeed has an impact which is why e.g. the realization
of Case (a) from Fig. 2a eventually costs 83 LUTs, 42 SRs, a
FS of 2.2 Kb, and 524 FCs. The realization of Case (b) from
Fig. 2a eventually costs 117 LUTs, 42 SRs, a FS of 2.2 Kb,
and 524 FCs. Finally, in Case (c) of Fig. 2a, the costs are 156
LUTs, 42 SRs, a FS of 2.2 Kb, and 524 FCs.

These differences between estimations and real costs be-
come even more substantial if variations on the spatial position
of bitfields inside the registers occur as illustrated e.g. by
the different cases shown in Fig. 2b. Here, exactly the same
bitfields are applied in both cases — only their distribution
amongst the Units/registers, i.e. their spatial distribution, is
different. Accordingly, state-of-the-art cost estimation methods
extrapolate the same costs for both cases, namely 89 LUTs,
97 SRs, a FS of 2.0 Kb, and 476 FCs. However, as discussed
above, also here spatial position of the bitfields has an impact
to the costs which is why the actual costs for Case (a) are 97
LUTs, 89 SRs, FS of 2.2 Kb, and 576 FCs, while for Case (b),
they are 79 LUTs, 89 SRs, FS of 1.4 Kb, and 388 FCs.

These examples illustrate that both, with respect to actual
but also relative values between the cases, previously proposed
cost estimations are far off and actually lead to rather mislead-
ing results — a serious problem when it comes to finally decide
which design configuration shall be realized. At the same time,
this motivates the development of more precise cost estimation
methods which additionally consider the further characteristics
discussed above. However, considering all possible features
relevant for cost estimation is a cumbersome task which

n the (industrial) setting considered here, we used the commercial Vivado
Design Suite by Xilinx to explicitly implement the given instances.



cannot easily be incorporated e.g. by simply adding additional
features. Because of that, we are proposing a complementary
approach which is described in the next section.

III. PROPOSED SOLUTION

In this work, we address the problem of cost estimation
sketched above. To this end, we borrow concepts from Ma-
chine Learning (ML) as well as Computer Vision (CV). We
show that existing methods e.g. to process images and videos
based on ML can be adapted for the purpose of cost estimation.
In the following, we describe the proposed methodology as
follows: We first review data preparation and basic approaches
of ML methods used today for CV tasks. Afterwards, we
describe how the features which affect the costs of a memory
system can be represented in a similar fashion than pictures
for CV algorithms.

A. Machine Learning for Computer Vision

Computer Vision (CV, [1]) is an interdisciplinary area which
is concerned with the computational analysis and under-
standing of single images or sequence of them (i.e. videos).
Typically CV requires a particular processing of the image
signal, so that specific tasks could be performed (e.g. object
detection, classification, age estimation, etc.). Originally, the
state-of-the-art methods to accomplish such tasks heavily
relied on manual labor, i.e. features were often extracted man-
ually from image pixels before they are processed further [9].
Nowadays, through the availability of more sophisticated ML
algorithms, pixel-based representations are often chosen as a
direct input to the ML algorithms [2], [6]

. In fact, through an extended use of Neural Networks
(NNs, [2], [6]) (an ML algorithm which is loosely inspired
by biological neurons), high accuracy in CV tasks can be
reached by taking raw images as input and compute features
automatically within the learning phase of the ML process [2],
[6]. For this reason, the representation of images becomes a
central issue in CV.

In the following, we utilize the common representation of
images in terms of a function f(h,w,c), where h, w, ¢ are
coordinates of a 3D matrix Z7*"W ¢ Here, H is the height
of the image, W the width of the image, and C' the number
of so-called channels of this image. All entries of the 3D
matrix (and, hence, all functional values of f(h,w,c)) define
the intensity value v for the respective position and channel.
In other words, for a gray scale image, the matrix has C =1
channel where each matrix entry represents the respective gray
scale at the corresponding position. Similarly, for an RGB
image, the 3D matrix has C' = 3 channels (one for each
of the colors red, green, and blue) where each 3D matrix
entries represents the respective portion of these three colors
at the corresponding position. For RGB images, the value v is
usually within v € [0, 255] for each one of the three channels.

Example 3. Consider the image shown on the left-hand side
of Fig. 3a. Following a typical RGB structure, this image can
be defined as the combination of the corresponding red, green,
and blue portions as sketched in the center of Fig. 3a. This
in turn can be represented in terms of a function f(h,w,c)
with a total of C = 3 channels, i.e. as a 3D matrix TH*W>3,
where H is the pixel-wise height of the RGB image and W
is the pixel-wise width. Each one of the channels is therefore
structured as a OHF>*W 2D matrix with one pixel value v at
each coordinate.

Using this representation, CV tasks such as object detection,
classification, segmentation can now be conducted using ML
algorithms [2], [6]. For example, let’s take a CV task where,
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Figure 3: Representation for CV and cost estimation tasks

given a RGB image of a person, we want to estimate the
his/her age. To this end, several parts of the human body
shown in the image may indicate the age, e.g. wrinkles in
the skin, color of the hair, etc. However, it obviously is
rather difficult to explicitly “hard-code” a computer program
which reliably reveals these useful features (e.g. because of
the variety in the images set: some images might be zoomed,
some badly/differently illuminated, some might be occluded,
etc.). Here, ML can provide valuable support.

More precisely, the task is handled as a regression problem
(which is suitable, since the desired output should be a number
indicating the person’s age) where first a training set of
images is provided for which the respective age of the person
is known. Using this training set, the ML algorithm can
“learn” all the features mentioned above not in an explicit
(i.e. “hard-coded”) fashion, but through associations with the
image and the respectively given age (to this end, meaningful
patterns in the image, the distribution of pixels, and the
linked labels guide the ML algorithm to outpoint the estimated
age of the person). The pixels of the image are thereby
algorithmically processed in order to establish a consistent
association of the given image and the given age.

B. Corresponding Representation for a Memory System

Now, recall that, as discussed and illustrated in Section II,
current methods for cost estimation suffer from the fact that
they do not properly consider all features that might affect the
costs. At the same time, “hard-coding” a computer program
which reliably reveals these useful features is hard as well
(because of the same reasons why it is hard in CV to determine
the age of a person). However, the same method applied for
age determination in the domain of CV can also be applied
in the domain of cost estimation for memory systems. To this
end, we just need corresponding representations for the domain
considered here. This is introduced in this section.

More precisely, rather than a RGB image (e.g. providing the
pixel intensity v for each coordinate and channel), a similar
data-structure for the considered memory system (e.g. pro-
viding bitfield positions, bitfield properties, etc.) is required.
Having such a representation, the same solutions can be used
as already successfully utilized in the CV domain. In the
following, we describe the proposed data-structures — one for
the hardware and one for the firmware.

The hardware data-structure (called HW image in the fol-
lowing) represents the respective properties of the memory
system in terms of a function j(q,l,b) where ¢, I, b are
coordinates of a 3D matrix AY*LXB In contrast to CV,
(@ now defines the number of Units/registers in the memory
system, while L defines the respective bit-width and B defines
the number of bitfield properties considered. Instead of three



channels as in the CV domain (for red, green, and blue), we
now use a total of seven channels to represent the HW features.
The channels indicate whether the corresponding position in
the memory system contains a bitfield (Bfs), and if the bitfield
allows for a hardware write (HwWr), hardware read (HwRd),
software write (SwWr), software read (SwRd), a don’t change
bit (DC_Bit), or a virtual bit (Virtual). Since these properties
either hold for a position in a bitfield or not, they can easily
be structured in a binary representation, i.e. each entry of
the 2D representation matrix is now a binary value where 1
denotes that the position of the bitfield has the considered
property, whereas the value O is inserted elsewhere. This
results in a feature representation, which preserves the spatial
structure of the RI for a specific bitfield property and, at the
same time, allows a simple addition or removal of features
to the hardware data-structure. Furthermore, the data-structure
captures aggregate values and statistics among features, which
do not need to be explicitly specified. All the above-mentioned
traits address the desired characteristics for the cost estimation
of memory systems.

Example 4. Consider again the instance of a memory system
as shown in the top of Fig. 2a and discussed in Example 2.
Those properties are usually represented in terms of a .uml file
as sketched in left-hand side of Fig. 3b. Overall, this yields
properties with respect to hardware write, hardware read,
software write, etc. as sketched in the center of Fig. 3b. Those
are eventually represented in terms of matrices as sketched in

the right-hand side of Fig. 3b.

Using this data-structure, the HW costs of a memory
system can be determined similarly to the age determination
in the CV-domain discussed before. That is, first a training
set of memory system instances is provided for which the
respective real area costs are available. This is used to “learn”
the respective features relations and an accurate information
processing. Afterwards, proper estimations for the instances
for which we actually want to determine the costs can be
obtained.

Next, in order to obtain the cost for firmware operations, the
corresponding data-structure becomes a bit more challenging.
Here, the sequence of reading/writing operations specifies
which bitfield/s should be read or written, from/in which
register, at each point of the sequence. This is particularly
interesting for a FW cost estimation of the RI, as the type
of writing operation performed (i.e. the no. of instructions
needed) depends on the affected register configuration. Fur-
thermore, distinct types of writing operations have a different
impact on the FW size and firmware cycles for a particular
design.

In order to outline a corresponding date-structure for the
firmware, we get inspiration once again from the CV domain.
The evaluation of the firmware cost can be thought in fact as
the same estimation of the age of a person through a multi-
channel video. This gives in fact a further dimension, so that
we can observe different angles on the wrinkles or a person’s
walking posture over time. In order to adapt this approach for
firmware cost estimation, we transform once again the writing
and reading operations, together with other RI properties,
into binary representations. These correspond to the features
representations at each point of the sequence (i.e. frames).

This results in a firmware data-structure (called FW se-
quence in the following) covering the properties of the memory
system in terms of a function z2(q, , d, p), where ¢, [, d,p are
coordinates of a 4D matrix FOXLXDXP Again, () defines
the number of Units/registers in the memory system, while
L defines the respective bit-width and D defines the number

of considered bitfield properties. That is, in the case of the
firmware structure, we have six different channels where each
channel is denoted by F,; with d € [1,6]. Besides that, P
now additionally defines the number of frames and, by this,
incorporates the time aspect (p € [1, P]). Following this,
each binary feature representation J| contains the value 1
in the bitwise position of registers containing bitfields to be
written; the same approach is applied to the reading operation
(FL). Both of these information are contained in the property
Configuration of the RI meta-model. A further representation
is added for the property DontCareList (F%). Once the writing
and reading operations, as well as the DontCareList, are
structured in the corresponding binary representations, they
are stacked at the same sequence frame FP. This composes
the dynamic part of the data-structure for the firmware es-
timation. Finally, three further representations are added to
the same frame, corresponding to a static representation of
the HwRd-feature (F}) and the DC_Bit-feature (F7) as well
as a representation of the total Bitfields (F%) of the design.
These values do not change from frame to frame and, hence,
are implemented as repeated static representations at each
point FP of the sequence. Using this representation, an ML
algorithm is equipped with all the information related to
firmware and can conduct the cost estimation in a similar
fashion as sketched above for the hardware image.

IV. CONCLUSION AND FURTHER WORK

In this paper, we present an approach for an accurate
cost estimation of Memory Systems, inspired by Machine
Learning for Computer Vision. The representations discussed
herein apply to the hardware as well as to the firmware
configurations. As a further work, we are going to apply
standard ML algorithms on the representations obtained for
a cost estimation. In particular, we propose to implement 2D
CNNs for the Hardware and 3D CNNs for the Firmware cost
estimation.
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