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Abstract—Reversible circuits are needed in different emerging
technologies, but their design is still mainly conducted on low ab-
straction levels thus far. Hardware Description Languages (HDLs)
provide suitable description means to lift the design process
to higher levels of abstractions. However, synthesis of HDL
descriptions thus far still relies on non-reversible building blocks
even if the corresponding statements are purely reversible. This
leads to reversible circuits with additional circuit lines (i.e.,
circuit signals)—rendering HDL-based synthesis infeasible for
many applications such as quantum computing. In this work,
we present a synthesis method which realizes many of the HDL
statements with no additional lines at all. To this end, we consider
the respective (reversible) HDL statements as an entirety rather
than breaking it down into (possibly non-reversible) building
blocks. For the first time, this allows to realize many HDL
descriptions with no additional circuit lines.

I. INTRODUCTION

Reversible circuits realize an unconventional form of com-
puting in which operations can be employed in both directions,
i.e., from the inputs to the outputs and vice versa. The
resulting properties are very useful for designing and realizing
different emerging technologies. Most prominently, this finds
application in the design of quantum circuits [1] which are
inherently reversible and, caused by the current momentum in
this area, many design approaches first realize reversible cir-
cuits which, afterwards, are mapped to corresponding quantum
realizations [2], [3]. But also other areas such as adiabatic
circuits [4], [5], [6], the design of encoders [7], on-chip
interconnects [8], certain aspects of low power design [9], [10],
or even verification [11] heavily utilize principles of reversible
circuits.

Accordingly, a substantial amount of work has been spent
on the efficient synthesis of reversible circuits. Originally, most
synthesis approaches focused on realizing the desired circuit
with a minimal number of circuit lines1 (e.g., approaches
based on truth-tables [12], permutations [13], positive-polarity
Reed-Muller spectra [14], and Boolean satisfiability [15]). But
since they relied on exponential function representations, their
scalability remained limited. In contrast, hierarchical synthesis
approaches have been proposed which e.g., employed a divide
and conquer approach, i.e., they decompose the function to be
realized into smaller functions for which corresponding build-
ing blocks are available. Afterwards, these building blocks are
cascaded together with respect to the applied decomposition so
that eventually the desired circuit results. Approaches relying
on two level descriptions [16], [17] or decision diagrams [18],
[19] fall in this category. Besides that, also hybrid approaches
exists [20]. However, in all these approaches, the design is still
mainly conducted on low abstraction levels.

1Note that, in the domain of reversible circuits, the respective circuit signals
are usually called circuit lines.

Hardware Description Languages (HDLs) provide a suit-
able alternative to those approaches. Accordingly, several
reversible HDLs have been introduced in the past (see e.g.,
[21], [22]). They offer description means which are similar to
conventional HDLs (such as Verilog [23] or VHDL [24]),
but, at the same time, respect restrictions and rules needed
to describe reversible circuits. While this allows to lift the
design of those circuits to higher levels of abstractions, the
corresponding synthesis approaches still suffer from the main
problem of generating too many additional circuit lines. This
is, because the corresponding HDL statements are decomposed
into sub-statements which may not be reversible anymore.
Because of this, additional circuit lines are introduced to
embed non-reversible functionality into a reversible one (this
is described in more detail later in Section III-A). This leads
to reversible circuits with additional circuit lines—rendering
HDL-based synthesis infeasible for many applications such
as quantum computing where the number of circuit lines is
crucial.

Although recent approaches investigated e.g., on
re-writing the given HDL description [25], undoing
computations [26] [27], or realizing single operations in
a more line-aware fashion [28], no solution exists yet, which
is capable of realizing HDL descriptions with no additional
circuit lines at all. This is particularly unsatisfactory because
the originally given HDL is always purely reversible and,
hence, at least in principle, allows for a fully reversible
description of the circuit to be realized.

In this work, we provide a solution that addresses this prob-
lem. The proposed approach rests on a rather simple but not yet
investigated idea: Rather than breaking down reversible state-
ments into (possibly non-reversible) building blocks (which
cause additional circuit lines), we aim to synthesize those
statements as an entirety. In order to handle larger statements
(for which purely reversible building blocks are not available
and/or cannot efficiently be generated), a translation scheme
is provided which maps many of those statements into smaller
ones—without “loosing” reversibility and, hence, the need to
introduce additional circuit lines. For the first time, this allows
to realize many HDL descriptions with no additional circuit
lines at all. By this, the proposed synthesis scheme provides
the first feasible HDL-based synthesis method for emerging
technologies relying on reversible circuits. Experimental eval-
uations confirm the benefits of the resulting approach. For
HDL descriptions which also have been used in the past to
evaluate HDL-based synthesis, reversible circuits are generated
which do not require a single additional circuit line anymore.
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Fig. 1: Reversible circuit.

The remainder of this paper is structured as follows: The
next section reviews reversible circuits and corresponding
HDL descriptions. Based on that, the considered problem (how
to synthesize those reversible HDL description without addi-
tional circuit lines?) as well as the general idea of the approach
proposed in this work are discussed in Section III. Afterwards,
the resulting synthesis scheme is described in Section IV.
Finally, results obtained by our evaluations are discussed in
Section V and the paper is concluded in Section VI.

II. BACKGROUND

To keep the paper self-contained, this section briefly reviews
the basics on reversible circuits as well as corresponding
hardware description languages.

A. Reversible Circuits
Reversible circuits realize functions f : Bn → Bm over

variables X = {x1, . . . , xn} which have the same num-
ber of inputs and outputs (i.e., for which n = m) and
which employ a unique mapping for all input/output pat-
terns. That is, those circuits realize bijections. A reversible
circuit G = g1 . . . gd is composed as a cascade of reversible
gates gi. Each reversible gate in the circuit has the form
gi(C, T ), where C = {xi1 , . . . , xik} ⊂ X are control lines
and T = {xj1 , . . . , xjk} ⊆ X/C are target lines. The most
important gates (which are also employed in this work) are the
Toffoli gate [29] and the Fredkin gate [30]. The Toffoli gate has
only one target line T = {xj} whose value is inverted, iff all
positive (negative) control lines are assigned 1 (0). The Fredkin
gate has two target lines T = {xj1 , xj2}, whose values are
swapped, iff all positive (negative) control values are assigned
to 1 (0). In both cases, the value of all remaining lines pass
through the gate unchanged.

Example 1. Fig. 1 shows a reversible circuit realizing a
reversible function over three inputs X = {x0, x1, x2} and
with three gates (two Toffoli gates and one Fredkin gate).
Each variable of the realized function is represented by a
circuit line. The first gate realizes a Fredkin gate of the form
g1({x0}, {x1, x2}). The second and third gate realizes Toffoli
gates of the form g2({x0}, {x1}) and g3({x0, x1}, {x2}),
respectively. In figures, control lines are usually denoted by •,
whereas the target line(s) are denoted by ⊕ and × in case of
Toffoli gates and Fredkin gates, respectively. As can be seen
in Fig. 1, this circuit maps the input pattern 101 to the output
pattern 100 and vice versa (computations in both directions
are possible).

Since reversible circuits realize bijections which can be
computed in both directions, the inverse of a reversible cir-
cuit G (denoted G−1 in the following and realizing the func-
tion f−1) can be easily obtained by G−1 = g−1d g−1d−1...g

−1
1 ,

where g−1
i

is the inverse gate of g
i
. Since Toffoli and Fredkin

gates are self-inverse, gi = g−1i holds and, thus, G−1 can
simply be obtained by reversing the order of the gates of G.

In order to measure the costs of a circuit, different metrics
can be applied which often depend on the respectively defined
application area. In this work, we consider metrics called
quantum costs and transistor costs as defined in [2], [3]
and [31], respectively.2 They depend on the gates used in the
circuit and, hence, are also called gate costs in the following.
Besides that, and usually much more important, the number
of circuit lines constitute a crucial cost metric. In principle,
a reversible function over n variables can be realized using
n circuit lines. However, sometimes additional circuit lines
(usually employing a constant input) are added, e.g., to realize
non-reversible functions (an aspect which becomes relevant
and is discussed in more detail later in Section III-A).

B. Reversible Hardware Description Languages

Reversible Hardware Description Languages (reversible
HDLs) allow for the description and realization of complex
and large reversible circuits which would be hard to design
manually. In this work, we consider the language SyReC
which has been introduced in [21] and constitutes a suitable
representative for this work.

SyReC utilizes the concept of reversible assignments which
are of the form v⊕ = e,⊕ ∈( ˆ,+,−), where the
left-hand side (LHS) variable v must not appear in the right-
hand side (RHS) expression e. Those assignments conduct
a so-called reversible update, i.e., update the variable v
using a reversible operation such as XOR (ˆ=), increment
(+ =), or decrement (− =) to keep the entire statement
reversible3. The RHS expression e may be non-reversible
and can either be a signal identifier or a binary expres-
sion of the form of v = eleft � eright, where � is an
arbitrary binary operation and eleft and eright are again
expressions or sub-expressions. A list of the most com-
mon binary operations which are directly applicable include
arithmetic (+,−, ∗, /,%, ∗), bitwise (&, |, ˆ), logical (&&, ‖),
and relational (<,>,<=, >=,=, ! =) operations. Although
the RHS expression can be non-reversible, reversibility is
always ensured because the input values remain unchanged
and only reversible updates (for which inverses are available)
are conducted—allowing to always employ a statement in both
directions.

Example 2. Consider the SyReC description as shown in
Fig. 2. Here, the module signature first defines the sig-
nal names (x0, x1, x2, x3, x4, x5), types (in/inout/out), and
bitwidths (64). The next lines define the statements to be
executed. Each statement consists of an LHS signal and an
RHS expression. The LHS signal is updated with the reversible
operation and the RHS expression. For example, line 2 states
that x0 is XORed with the results of ((x1+x2)−x3) and, then,
the results is stored in x0(i.e., xt+1 = xt ⊕ ((x1 + x2)− x3))

For a complete treatment of the reversible HDL considered
here (including a complete grammar), we are referring to [26].

2Note that we choose these cost metrics as they are also applied in the
respective related work. However, the considerations conducted here do not
rely on a particular cost metric and can be applied to any other metric as
well.

3Note that further operations f can be used for the reversible update as
long it has an inverse operator f−1 with v = f−1(f(v, e), e). Furthermore,
note that XOR is self-inverse, while the inverse of the increment (+ =) is
the decrement (− =) and vice versa.



module main(inout x0(64), in x1(64), in x2(64), in x3(64), in x4(64), out x5(64))

x0 ˆ= ((x1 + x2)− x3)

x0− = (((x1 − x2)− x3) + (x1 − x4))

x0ˆ= ((x1 + x2)/(x3 − x4))

x5 ˆ= (((x0 ∗ x1) ∗ x1) + ((x2 ∗ x1) + x3))

Fig. 2: A Simple HDL code

III. MOTIVATION AND GENERAL IDEA

Synthesis of reversible circuits described in terms of a re-
versible HDL constitutes a non-trivial task which has intensely
been considered in the past years. A major problem in all
these endeavors was that, even though the respectively given
HDL is purely reversible in principle, all synthesis approaches
proposed thus far still required additional circuit lines. This
section illustrates the problem and briefly discusses why this
remained to be a challenge until today. Afterwards, we sketch
an idea to eventually overcome this problem.

A. Considered Problem
Reversible HDLs allow for the definition of complex re-

versible functionality. However, in order to eventually realize
those descriptions in terms of reversible circuits, a hierarchi-
cal synthesis method has been applied thus far [26]. Here,
realizations of the respective operations (both, the reversible
assignment operations (ˆ=), (+ =), and (− =) as well as
all considered binary operations (+,−,&, |,&&, ‖, <,>, etc.)
are first pre-computed or taken from literature such as [32],
[33], [34]. Then, these building blocks are taken and used to
realize each statement of the given HDL description towards
the corresponding circuit realization. To this end, two steps
are conducted as illustrated in Fig. 3a:

1) Realize the RHS expression e, which yields a
sub-circuit Ge composed of existing building blocks
realizing the respective binary operations.

2) Realize the reversible update, which yields a
sub-circuit G⊕ composed of existing building blocks
realizing the respective reversible assignment operation
and, by this, the entire statement.

The application of this hierarchical flow in which the overall
(reversible) statement is decomposed into sub-functions causes
a significant drawback: Since the expression e (as well as
possible sub-expressions eleft and eright out of which e
is composed of) may describe non-reversible functions (i.e.,
may include non-reversible binary operations), corresponding
buildings block for those require additional circuit lines with
constant inputs. The following example illustrates the issue.

Example 3. Let’s assume the statement x0 ˆ= x1+x2 shall be
realized. Following the hierarchical flow sketched above, first
a building block Ge = Gx1+x2 realizing the addition of x1

and x2 is required. But since addition is not reversible (e.g.,
the sum 3 may originate from two different input assignments
x1 = 1/x2 = 2 or x1 = 2/x2 = 1), additional circuit
lines are required to make this building block reversible. A
possible realization is shown in the left-hand side of Fig. 3c
(the sub-circuit labeled Gx1+x2 ), where additional lines with
constant inputs are used to store the desired output while the
originally given circuit lines keep the input values—making the
computation reversible4. Using this building block in addition

4Note that Fig. 3c shows a circuit where all signals are realized with
bitwidth 2. Accordingly, xi[0] and xi[1] denote the least significant and most
significant bit, respectively.
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Fig. 3: Synthesis of a statement of the form x0⊕ = x1 � x2.

to a building block for the ˆ=-operation (the sub-circuit shown
in the center of Fig. 3c and labeled Gx0ˆ=x1+x2

) eventually
realizes the considered statement.

In the worst case, each non-reversible binary operation that
occurs in the expression e causes a further set of additional
circuit lines. In order to reduce this amount of additional
lines, several improvements have been proposed. The most
effective one [35] is to undo all operations conducted in order
to determine the result of the expression e, after the reversible
update has been executed. More precisely, after the two steps
from above have been conducted, a third step as illustrated in
Fig. 3b is employed:

3) Undo the realization of expression e, i.e., add a
sub-circuit G−1e .

Example 4. Additionally conducting the third step for the
statement x0 ˆ= x1 + x2 considered in the previous example
eventually yields the complete circuit shown in Fig. 3c (in-
cluding the sub-circuit shown in the right-hand side of Fig. 3c
and labelled G−1x1+x2

)5.

Although adding G−1e substantially increases the gate costs
of the circuit (by almost doubling it), it sets the additional
circuit lines back to their constant values. By this, those
constant values can be used again for the realization of the
next statement—preventing the need for additional circuit lines
for each single statement. Motivated by that, several methods
have been proposed (see e.g., [25], [26], [27], [28]) to keep the
length of the statement small and/or to optimize expressions so
that the number of additionally required circuit lines are kept
as small as possible. However, despite these efforts, no solution
is known yet, which is capable of realizing these reversible
statements with no additional circuit lines at all.

5Note that G−1
x1+x2

can be easily determined by just inversing the gates
from Gx1+x2 .



B. General Idea
The current state-of-the-art in HDL-based synthesis of re-

versible circuits clearly is unsatisfactory. Although a fully
reversible description of the circuit to be realized is available in
terms of an HDL that allows to define purely reversible state-
ments, existing synthesis schemes still rely on non-reversible
building blocks introducing additional circuit lines. An ob-
vious way to avoid that is to always consider a reversible
statement in its entirety, i.e., without breaking it down into
possibly non-reversible building blocks. That this works in
principle is illustrated by the following example:

Example 5. Consider again the realization of the statement
x0 ˆ= x1 + x2. However, rather than following a hierar-
chical approach which combines the building block for the
+-operation and the ˆ=-operation (yielding additional circuit
lines), the statement can also be synthesized in its entirety at
once—yielding, e.g., the circuit as shown in Fig. 3d.

However, a big problem with this approach is that consid-
ering a statement in its entirety requires the availability of
building blocks for all possible statements. That is, instead
of utilizing and composing building blocks only for single
operations such as ˆ=, + =, and − = as well as +,−,&, |
,&&, ‖, <,>, etc., such an approach would additionally re-
quire building blocks for all possible combinations of them—
an infinite amount which obviously leads to an infeasible
amount of building blocks to pre-compute. Moreover, even
an “on-the-fly”-synthesis often is not feasible—in particular
when statements are getting complex and, hence, often cannot
be efficiently synthesized anymore (e.g., already a statement
such as x0 ˆ= (x1+x2) ˆ (x3−x4)+x5 is highly non-trivial
to synthesize in its entirety for a decent bitwidth). Because of
these problems, researchers and engineers still opt back to the
hierarchical synthesis scheme reviewed above—even if they
yield additional circuit lines.

In this work, we propose an alternative that eventually ad-
dresses this problem for many of the cases. Our approach rests
on a rather simple but not yet investigated idea: Many of the
combinations between operations can be easily translated into
a sequence of simpler statements. As a very simple example,
a statement such as x0+ = x1+x2+x3 (requiring additional
circuit lines for each of the binary operations when following
the established hierarchical synthesis flow) can be translated
into an equivalent sequence of x0+ = x1, x0+ = x2, and
x0+ = x3 (for which building blocks with no additionally
circuit lines are available and/or can be generated easily).
Following this premise, an HDL-based synthesis for reversible
circuits with no additional circuit lines is possible if

1) arbitrary statements (combining various operations) can
be translated into a sequence of simple statements (i.e.,
statements with at most one non-reversible operation
only), and

2) building blocks for those simple statements are available
and/or can be determined easily.

IV. RESULTING HDL-BASED SYNTHESIS SCHEME

In this section, we provide details of the proposed
HDL-based synthesis scheme. More precisely, we first discuss
methods to translate arbitrary statements into a universal subset
of simple statements. Then, we discuss why determining
building blocks realizing those simple statements in its entirety
and, hence, without additional circuit lines is a feasible task.

A. Translating Arbitrary Statements to Simple Statements
HDLs such as SyReC reviewed in Section II-B allow for

arbitrary definitions of statements. This is defined through
a corresponding grammar available in [26]. Having that,
statements can take any form of v⊕ = e (see also Sec-
tion II-B). The RHS-expression e (with e = eleft � eright)
can be represented in a tree-like fashion, i.e., an Abstract
Syntax Tree (AST), where eleft and eright can themselves be
composed of sub-expressions (i.e., represent either operators or
operands).6 The root node of the AST represents the operator
� of the expression e.

Having this description, term re-writing techniques can be
employed to translate a given statement to a corresponding
sequence of simple statements. This works particularly well
in cases where the statement or the (sub-)expression(s) are
composed of operations that are associative. But also certain
combinations of operations work well, which are not per
se associative but can be adjusted accordingly (e.g., state-
ments/expressions involving several combinations of + and
− operations can be translated into simple statements by
translating a subtraction into an addition with inverted inputs).
In contrast, a few combinations of operations such as −
and ˆ are harder to translate. But since those combinations
rarely occur in existing HDL descriptions (as also confirmed
by evaluations summarized in Section V), it is acceptable to
ignore those combinations for now.

As a result, many of the arbitrary statements can be trans-
lated into a subset of simple statements. This is described
for many of the frequently occurring cases in the following.
In all following descriptions, we assume thereby that the
RHS-expression is provided in terms of an AST in which each
internal node corresponds to an operator and each leaf node
corresponds to an operand.

Then, the simplest case is where the expression e is solely
composed of ˆ, +, and − (i.e., operations which are also
available as reversible assignment operations). If additionally
the signals belonging to eleft of the expression are not
repeated more than once on every level of the AST, apply
the following steps:

1) Recursively traverse the AST in a post order fashion and
add statements eleft� = eright for each operation node.

2) Once the overall expression e is realized, add the state-
ment v⊕ = e which describes the assignment of the root
expression e to the LHS.

3) Add statements which inverse the statements from
Step 1, i.e., add eleft�−1 = eright for each depth.

Example 6. Consider again the HDL description shown in
Fig. 2. The statement in Line 2 (whose RHS-expression is
represented by an AST as shown in Fig. 4a) can be translated
to the following sequence of statements:

x1+ = x2

x1− = x3

x0 ˆ= x1

x1+ = x3

x1− = x2

Otherwise, if the expression e is solely composed of ˆ,
+, and − (i.e., operations which are also available as re-
versible assignment operations), but the signals belonging

6Note that, according to the grammar proposed in [26], eright is never
larger than eleft.
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Fig. 4: ASTs of the expressions from the Examples 6 to 9.

to eleft of the expression are repeated more than once
on every level, slightly more elaborated translations are
needed. Still, as long as the respective operations of the
statement/(sub-)expression(s) are associative (or can easily be
made associative, e.g., by inverting them), proper translations
are possible. More precisely, if the assignment operator is of
⊕ ∈ {ˆ}(⊕ ∈ {−}) and a binary operator � ∈ {−}(� ∈ {ˆ})
operates on the leaf nodes only, then the following steps can
be applied:

1) Traverse the AST in a post order fashion and,
for the deepest operation node, add the statement
v⊕ = eleft � eright.

2) For the rest of the AST:
• If the currently considered operator node has one

leaf node, add the statement v� = eleft/right (if
⊕ ∈ {ˆ,+}) or v�−1 = eleft/right (otherwise)

• If the currently considered operator node has two
leaf nodes, add the statement v�top = eleft�eright
(if ⊕ ∈ {ˆ,+}) or v�−1top = eleft � eright (oth-
erwise) where �top refers to the next top level
operation of the currently considered node.

Example 7. Consider again the HDL description shown in
Fig. 2. The statement in Line 3 (whose RHS-expression is
represented by an AST as shown in Fig. 4b) can be translated
to the following sequence of statements:

x0− = (x1 − x2)

x0+ = x3

x0− = (x1 − x4)

Furthermore, also translations to single statements are pos-
sible if the expression e is not solely composed of ˆ, +, and
− (i.e., if the expression is composed of operations which are
not available as assignment operations). For example, this is
possible if the assignment operator is of ⊕ ∈ {ˆ} (⊕ ∈ {−})
and a binary operator � ∈ {−} (� ∈ {ˆ}) operates only on
leaf nodes. Then, if additionally the signals belonging to eleft
of the expression are not repeated more than once on every
level of the AST and no two consecutive nodes of the AST
have both operators, � 6∈ { ˆ,+,−}, the following steps can
be applied:

1) Traverse the AST in post order fashion and, for the
deepest operation node with � 6∈ { ˆ,+,−}, add the
statement v⊕ = eleft�eright, where eleft and eright are
either signals or results of the respective sub-expression.

2) For the rest of the AST:
• If the currently considered operator node has two

leaf nodes, add the statement eleft� = eright (if
� ∈ { ˆ,+,−} )

• If the currently considered operator node has one
leaf node and if � ∈ { ˆ,+,−}, add the statement
v� = eleft/right (if ⊕ ∈ {ˆ,+}) or v�−1 =
eleft/right ) (otherwise)

• If the currently considered operator
node � 6∈ { ˆ,+,−}, add the statement
v�top = eleft � eright (if ⊕ ∈ { ˆ,+, } )
or v�−1top = eleft � eright (otherwise) where
�top refers to the next top level operation of
the currently considered node which, according
to the case assumption stated above, has to be
�top ∈ { ˆ,+,−}).

3) Add corresponding inverse statements for all statements
which have been added in Step 2 with � ∈ { ˆ,+,−},
i.e add eleft �−1 eright for all these cases.

Example 8. Consider again the HDL description shown in
Fig. 2. The statement in Line 4 (whose RHS-expression is
represented by an AST as shown in Fig. 4c) can be translated
to the following sequence of statements:

x1+ = x2

x3− = x4

x0 ˆ= (x1/x3)

x3+ = x4

x1− = x2

The cases discussed so far cover a huge amount of fre-
quently occurring statements. However, for the statements
which do not fall into any of the cases mentioned above,
no translation down to simple statements that can be easily
realized with no additional circuit lines has been found. Nev-
ertheless, applying the rules from above, still yield reductions
with respect to the number of lines as illustrated by the
following example.

Example 9. Consider again the HDL description shown in
Fig. 2. The statement in Line 5 (whose RHS-expression is
represented by an AST as shown in Fig. 4d) can be translated
to the following sequence of statements:

x5 ˆ= ((x0 ∗ x1) ∗ x1)

x5+ = (x2 ∗ x1)

x5+ = x3

Here, all the statements except x5 ˆ= ((x0 ∗ x1) ∗ x1) can
be easily realized with no additional circuit lines. Compared
to the number of additional lines required when realizing the
original statement from Line 6, this allows for a substantial
reduction.

Overall, the general idea and the rules proposed above
indeed allow for a translation of arbitrary statements into
simple statements in most of the cases (this is also confirmed
by experimental evaluations summarized later in Section V).
By this, the main basis for the proposed synthesis scheme is
laid out. Based on that, only a restricted set of building blocks
for those simple statements is needed anymore.
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x1

x2

x1

x0

x2
G′e

G⊕

G−1
e

Fig. 5: Structure of a building block for x0⊕ = x1 � x2.

x0[0] x0[0]
x0[1] x0[1]
x1[0] x1[0]
x1[1] x1[1]
x2[0] x2[0]
x2[1] x2[1]

(a) x0 ˆ= x1&x2

x0[0] x0[0]
x0[1] x0[1]
x1[0] x1[0]
x1[1] x1[1]
x2[0] x2[0]
x2[1] x2[1]

(b) x0 ˆ= x1 ˆ x2

Fig. 6: Building blocks with Boolean operations.

B. Determining Building Blocks for Simple Statements

Having an HDL description translated into simple state-
ments, the determination of the correspondingly needed build-
ing blocks gets much easier. Indeed rather than to realize
arbitrary combinations of expressions, now only building
blocks for a restricted amount of combinations is needed.
If we restrict ourselves to the statements with at most one
non-reversible operator in the right-hand side expression, we
end up with a total of 51 different combinations (3 possible
assignment operations times 17 possible binary operations). By
providing purely reversible building blocks for these combina-
tions, the realization of many statements with no additionally
required circuit lines is possible.

In fact, most of these building blocks have a structure which
is similar than the one sketched in Fig. 5.

Here, the sub-circuit G′e now realizes the respective binary
operations in expression e, with the results stored in one of the
input lines (rather than an additional circuit line). Then, the
sub-circuit G⊕ realizes the respective reversible assignment
operation (as also done in the original HDL-based synthesis).
Finally, the sub-circuit G−1e applies the inverse again. Since
the sub-circuit G′e is now guaranteed to be composed of at
most one binary operation ⊕ only, it can be realized easily.
Fig. 3d shows a corresponding example for the statement
x0 ˆ= x1 + x2, where the sub-circuits for addition and the
inverse addition (i.e., subtraction) are designed using the
methods proposed in [34].

Besides that, building blocks realizing Boolean operations
such as AND and XOR can be realized in an even simpler
fashion. Here, Fig. 6a and Fig. 6b provide corresponding
examples for x0 ˆ= x1&x2 and x0ˆ= x1 ˆ x2, respectively.

V. EXPERIMENTAL EVALUATION

The concepts introduced above have been implemented in
C++ and resulted in a synthesis tool which is capable to
realize arbitrary HDL descriptions with no additional circuit
lines in almost all cases. In order to confirm the benefits,
intensive evaluations have been conducted using HDL de-
scriptions provided in [36] which also have been used in the
past to evaluate HDL-based synthesis of reversible circuits.
Using those benchmarks, we realized corresponding reversible
circuits using the resulting synthesis tool and compared them
to circuits generated

• using the original synthesis tool presented in [21] and
• using the state-of-the-art solution available thus far (ad-

ditionally employing line-aware synthesis as proposed in
[26]).

All evaluations have been conducted on an 64-bit Intel ma-
chine with 2.66 GHz and 8 GB of main memory. In the
following, the main results are presented and discussed.

Table I summarizes the obtained results. The first column
provides the name of the respectively considered benchmark
as well as the considered bitwidth (for each benchmark, we
realized circuits for bitwidth of 16 and 32). Afterwards, the
number of additionally required circuit lines and the number
of gates as well as the respectively resulting gate costs (based
on the metrics reviewed in Section II-A) are provided for each
resulting circuit.

The numbers clearly show that the proposed synthesis
scheme realizes the HDL descriptions with no additional
circuit lines. Considering that all previous work only managed
to reduce the number of circuit lines (compare the results from
the original synthesis tool to the results from the line-aware
synthesis tool) but never where able to completely get rid of
them, this confirms the main benefit of the synthesis scheme
proposed in this work. Moreover, this improvement can be
obtained while, at the same time, hardly further increasing
the resulting costs. In fact, in almost all cases the costs are
much lower than that of line-aware synthesis scheme. This
is particularly remarkable since previous studies frequently
showed a trade-off between the number of circuit lines and
the quantum costs.

VI. CONCLUSIONS

In this paper, we proposed to optimize HDL based synthesis
of reversible circuits by considering reversible HDL statements
as an entity, instead of breaking it down into non-reversible
blocks. Since, there are infinite number of possible state-
ments (leading to an infeasible amount of building blocks),
we propose to translate arbitrary statements into a universal
subset of simple statements (i.e., statements with at most one
non-reversible operation) for which building blocks can be
determined easily. Following this approach, the number of
additional lines can be reduced to zero, whenever arbitrary
description can be fully translated to simple statements. But
also in all other cases, the descriptions can be translated and,
hence, a reduction becomes possible. As the number of circuit
lines is usually considered to be a very limited resource (e.g.,
in the domain of quantum computation), these achievements
are promising.
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