
Four-valued Logic in UML/OCL Models:
A “Playground” for the MVL Community

(Tutorial Paper)

Nils Przigoda1 Judith Przigoda1 Robert Wille2
1Siemens Mobility GmbH, Braunschweig, Germany

2Institute for Integrated Circuits, Johannes Kepler University Linz, Austria
nils.przigoda@siemens.com, judith.przigoda@siemens.com, robert.wille@jku.at

Abstract—The Unified Modeling Language (UML) together
with the Object Constraint Language (OCL) are the description
means for modeling and specifying, e. g., software systems in
early stages of the design. They allow to define components, their
relations, and constraints of a system while, at the same time, hide
precise implementation details. Despite providing a “blueprint”
for the desired systems, UML/OCL descriptions also allow for
an early validation and verification of the design. However, an
often overseen feature of UML/OCL is that it explicitly allows
for the consideration of irregular variables assignments such as
null and invalid—yielding a four-valued logic in the current
UML/OCL version. In this tutorial, we provide an overview
on this feature and the resulting four-valued UML/OCL logic.
More precisely, we are providing a review of the corresponding
description means as well as existing methods that allow for
a validation and verification of the corresponding models. By
this, we are aiming to introduce those UML/OCL descriptions
and methods to the MVL community in order to trigger new
directions for research and application.

I. INTRODUCTION

Along with the increasing complexity of modern com-
puter systems, the design, implementation, and verification
of corresponding hardware as well as software became more
complex as well. As a means of reducing said complexity,
more abstraction levels have been introduced to keep the
increase of complexity in each level manageable. In the
hardware domain, corresponding abstraction levels include the
gate level, the Register Transfer Level (RTL), as well as the
Electronic System Level (ESL), while the software domain
relies on descriptions based on machine code, assembly code,
or high level languages. Besides that, modeling languages are
used that serve as an additional “bridge” between the initial
(textbook) specification as well as a first implementation. Here,
the Unified Modeling Language (UML, [16]) together with the
Object Constraint Language (OCL, [15]) are the description
means used to define systems from a very abstract point of
view.

Moreover, UML/OCL does not only allow a concise mod-
eling and specification of a system to be implemented;
it additionally enables the designer to (automatically) con-
duct validation and verification [2, 4, 10, 12, 21, 27, 28],
code-generation [11, 17], as well as other design tasks. To this
end, a substantial number of corresponding methods and tools
have been proposed in the past years—eventually forming a
rather large and active community working on this topic.

However, most of the existing work focused thereby on the
consideration of regular values within UML/OCL only, i. e.,
the consideration of a logic composed of Booleans, integers,
etc. and, hence, resting on a two-valued basis with true and

false as elementary information unit. But an often overseen
feature of UML/OCL is that, in its newest version, UML/OCL
additionally allows for the consideration of irregular variable
assignments. Here, the original Boolean values true and
false were no longer deemed sufficient, but are enriched
with a third value ε representing the null (pointer)—as
known from programming languages—as well as a fourth
value ⊥ representing errors (similar to e. g., the exceptions
from Java). This yields a four-valued logic of UML/OCL
incorporating true and false as well as ε and ⊥. While
this certainly introduces new potential for both, the UML/OCL
community but maybe also for the MVL community, very few
work towards a more in-depth consideration or exploitation of
multiple-valued UML/OCL models has been done thus far.

In this tutorial, we aim at changing that by providing a
basis on UML/OCL for the MVL community. Knowing that
UML/OCL has hardly been considered by the MVL commu-
nity thus far, we first start with a simple introduction into
the “world” of UML/OCL in Section II—showcasing a small
example. Followed by that, we provide a formal definition of
the type system and logic behind UML/OCL in Section III—
including the multiple-valued cases. Afterwards, we sketch and
discuss the potential of the corresponding descriptions with
respect to validation and verification of corresponding systems
even before first implementations are available in Section IV.

Overall, this may provide the starting point for a more
detailed consideration of UML/OCL issues such as validation
and verification by the MVL community. In fact, using this
tutorial, the formal basis as well as possible directions for
further work (e. g., extending validation and verification ap-
proaches for the multiple-valued cases) are given—hopefully
triggering new directions for research and application.

II. THE UML/OCL “WORLD”

UML together with OCL offers a broad palette for modeling
not only technical systems but also, e. g., concepts as well as
data schemes. Overall, 14 different diagram types are offered
by UML/OCL [16]. The probably most common types are
class diagrams and object diagrams, which allow to describe
components, attributes and relations of a system to be modeled
as well as precise instantiations of all those, respectively. In
this section, we will give a brief introduction to the “world”
of UML/OCL by means of an example. By this, we provide
a glimpse into the corresponding description means, before a
more formal review is provided in the next section.



Element
value: Integer

succ 0..1

pred
0..1

context Element
inv sorted: (self.succ <> null) implies

(self.value <= self.succ.value)

Figure 1: A simple list model

Figure 1 illustrates a model describing a simple list of
Integer values. It consists of one class Element with an
attribute to save the entry value and an association to connect
elements with each other. Additionally, an invariant sorted
makes sure that the values of the elements of such lists are
in ascending order. Note that, although this example is very
small, it will allow us to showcase some interesting aspects
with respect to multi-valued logic later.

An instantiation of this model (also called system state) is
shown in Figure 2(a) in terms of an object diagram. This sys-
tem state is composed of two element objects (i. e., instances
of the class element). The value of the first instance is 42 and
the value of the second 1764. Thus, the invariant sorted
evaluates to true and the system state is valid. Swapping the
two values (as shown in Fig. 2(b)), of course, also changes the
evaluation of the invariant to false—rendering the system
state invalid. These examples of system states might give rise
to the impression that the UML/OCL only rest on the two
atomic values true and false.1 However, this impression
is wrong.

In fact, UML/OCL also allows for the value null (sym-
bol: ε), which basically represents a null pointer. All instances
of the attribute value can not only be assigned a regular
integer but also be ε. In Fig. 2(c) the attribute of the second
element has the value ε instead of a regular integer value.
Having a look at the evaluation of the invariant sorted
again, the result will be neither true nor false. Instead
the result of the evaluation will be invalid (symbol: ⊥)—
a placeholder offered by UML/OCL to represent issues like
exceptions. In general, the evaluation of an invariant can be ε
as well, however, not in this simple model.

Note that the OCL specification requires that the evaluation
of an invariant returns a Boolean value. But as shown by the
simple list model and its system states Boolean does not mean
either true or false. Instead the possible values of Boolean
are true, false, ε, and ⊥—yielding a multiple-valued
description.

III. THE LOGIC BEHIND UML/OCL
While the previous section just briefly sketched the concepts

of UML/OCL, a more formal basis is provided now. For a
more detailed version refer to [26]. More precisely, this section
reviews the logic principles behind UML/OCL models by
means of their formalization: A type system, classes, models,
and, finally, system states as well as constraints.

1 Integers as well as further (even more complex) data types are also not
restricted in such an obvious and expected way, details will given in Sect. III.

E1: Element
value = 42

E2: Element
value = 1764

pred succ

(a) A system state where the invariant sorted evaluates to true

E1: Element
value = 1764

E2: Element
value = 42

pred succ

(b) A system state where the invariant sorted evaluates to false

E1: Element
value = 42

E2: Element
value = ε

pred succ

(c) A system state where the invariant sorted evaluates to ⊥

Figure 2: System states for the linked list model

A. The UML/OCL Type System
A precise type system forms the formal foundation of the

logic behind UML/OCL. As UML class diagrams are usually
enriched with textual constraints by means of the OCL, it is
beneficial to use the type system offered by OCL. However,
there is no need to introduce the complete OCL type system,
since not all parts of it are considered in this work.

The type system T will recursively be defined starting with
the basic data types, Boolean (symbol: B) and Integer
(symbol: Z):

T ::= Boolean | Integer.

While regular values belonging to these two types are identical
with the mathematic sets, i. e., B = {true,false} and
Z = {. . . ,−1,0,1,2, . . .}, the OCL type system also allows for
two additional irregular values: invalid (symbol: ⊥, from
OCL type OclInvalid) and null (symbol: ε, from OCL
type OclVoid).2

Example 1. The ε value has a similar semantic as null
pointers in classical programming languages and would, e. g.,
be returned by the OCL query OrderedSet{ε}->at(1)
which asks for the first member of an ordered set (which is ε
in this case). In contrast, ⊥ is used to indicate exceptions that
may occur when evaluating OCL constraints, e. g., when trying
to access the second element of an ordered set with just one
element as in OrderedSet{ε}->at(2). This is similar to
an OutOfBoundsException, e. g., in Java. Especially the
⊥ value only arises in this context and is, unlike the ε value,
not a valid assignment for class attributes.

More precisely, ε and ⊥ are included in the universe,
i. e., the set of all possible values of each type t—including
classes and collections. In order to consider the corresponding
type/universe without ε and/or ⊥, we use the notation t 6ε, 6⊥
(universe of regular values) and t6ε or t6⊥, respectively.

Example 2. For the type Boolean, true and false are
the only regular values in the universe. Together with the
two irregular values ε and ⊥, the universe of Boolean is
complete and we essentially obtain what is commonly called
a four-valued logic in the modeling community—even if there
is no named counterpart in literature as, e. g., the Belnap logic.

Special care has to be taken for collections: the collection
Collection(t) may not contain the element ⊥ (invalid),

2 For more details about the OCL type system, interested readers are
referred to the OCL specification [15, p. 211].



even though ⊥ is an element of the (complete) universe of
the type t. However, ⊥ as well as ε themselves are considered
valid collections of any type—and are different from the empty
collection.

Example 3. The complete universe of Set(Boolean) is
given by: Set{} (empty set), Set{true}, Set{false},
Set{true, false}, Set{ε}, Set{true, ε},
Set{false, ε}, Set{true, false, ε}, ε, and ⊥.

Another basic type are so-called enumerations. An enumer-
ation allows for a specific and finite set of values. The (infinite)
set of all possible enumerations is denoted by E and, for every
element e ∈ E, a new type is added to the type system as
follows:

T ::= . . . | e.

Additionally, all classes C are also types—their precise
concept is introduced later in this work. Nevertheless, for every
class c ∈ C, the type system is extended by:

T ::= . . . | c.

In addition to the already introduced types, the collections
mentioned before are also valid types. More precisely, the OCL
offers four different collection types, which are inherited from
UML: Set, Bag, OrderedSet, and Sequence. They can
be distinguished by the properties ordered and unique. An
overview is given in Table I. Each collection is a so-called
generic type, i. e., it needs a type as argument and all elements
of the collection must be of this type. Formally, the type
system is extended by:

T ::= . . . | Set(T)
| Bag(T)

| OrderedSet(T)

| Sequence(T).

Obviously, it is possible to nest collection types. This, e. g.,
makes it possible to have types like Set(Bag(Integer))
or Sequence(OrderedSet(Boolean)).

On top of this type system, variables can be defined: A
variable is a tuple (v, t) consisting of an identifier/name v of
type String6 ∅, 6ε, 6⊥, i. e., neither empty nor ε nor ⊥, and a type t
and is usually denoted as v : t. It can be seen as an actual
instance of a type t which represents a precise assignment of
any value from the (complete) universe of t to v.

Example 4. p : Integer defines the variable p of the type
Integer and, with p← 17, an explicit assignment is given.

The set of all variables of a type t ∈ T is denoted by Vt.
Moreover, the short-hand VT =

⋃
t∈TVt is used to denote

the set of all variables whose type is in T (likewise for T 6⊥).
Having the notion of variables, we can now precisely define
class types.

Collection Type Ordered Unique
Set no yes
Bag no no
OrderedSet yes yes
Sequence yes no

Table I: Differences of the four different collections

B. Classes and Models
This subsection provides the basic notation for classes

and models using the previously defined type system T and
variables V. Models are mainly represented as so-called class
diagrams enriched with textual constraints in OCL.

Definition 5 (Class). A class c = (n : String6 ∅, 6ε, 6⊥, A,O)
is a 3-tuple composed of a name n and finite sets of at-
tributes A ⊂ VT 6⊥ (i. e., attributes may never be assigned the
irregular value ⊥) as well as operations O.3 The identifiers of
the attributes are unique which means that for a1 = (v1 : t1),
a2 = (v2 : t2) ∈ A we have (v1 = v2) ⇒ (a1 = a2).

As class attributes may not assume the value ⊥, we addi-
tionally consider the derived type system T 6⊥ which contains
all types from T whose universe does not contain ⊥.

Classes can be linked to other classes or to themselves using
associations.

Definition 6 (Association). An association r (also called
relation) is an element of the Cartesian product R := VC×VC×
(N× (N≥1 ∪ {∞})) × (N× (N≥1 ∪ {∞})), it is formally denoted
by r = (rolec1 : c1,rolec2 : c2, (l1,u1), (l2,u2)) ∈ R. The first
two elements are variables with a precise class instance. The
two classes, namely c1 and c2, are not necessarily different. In
fact, if they are equal, the association is called reflexive. The
identifiers of the variables are given by roleci . With these role
names belonging to the association, OCL is able to navigate
to another end. The third and fourth element are representing
the multiplicities between the classes, i. e., its lower and upper
bounds. More precisely, any instance of a class c1 needs to be
connected to at least l1 as well as to at most u1 instances of
class c2 and vice versa.

Note that restricting the multiplicities to one interval per
relation end instead of a set of intervals as originally done in
the UML yields to a simpler formalization without decreasing
the expressiveness as other multiplicities can be expressed in
terms of additional OCL constraints.

For the sake of simplicity, we further restrict ourselves to
binary associations only, even if the UML allows for n-ary
associations with n ≥ 2. However, also this restriction does
not decrease expressiveness, since it has been shown that
a model containing n-ary associations can be mapped into
a semantically equivalent model solely composed of binary
associations by adding a helping class and some invariants to
the affected classes [9].

Additionally, it should be mentioned that there can be more
than one relation between the same classes with identical
multiplicities as long as the role names are different and,
equally to classes, R contains an infinite number of relations
with the same variables (i. e., the role names and the types are
equal) but with different multiplicities. Again, there will be
some meaningful restrictions for models.

Definition 7 (Model). A model m = (C,R) is a tuple of
classes C ⊂ C and relations R ⊂ R where
• both elements are finite (sub)sets of the infinite universal

sets,
• all class names are unique in C,

3 Operations and behavioral aspects of UML/OCL models are not
explicitly covered here due to page limitations, but the concepts presented
in the following can easily be extended accordingly.



• the role names belonging to a class c ∈ C are unique,
and

• for each class c ∈ C the set of all identifiers of the
corresponding attributes of c and the set of all identifiers
of relations where one relation end belongs to the class c
are disjoint.

Definition 8 (Model elements). All relations of a model
together with the union of all attributes (of all its classes)
form the set of model elements.

Further aspects such as class inheritance can be modeled
using the type system as introduced so far but will be omitted
in this tutorial for the sake of brevity.

C. Objects and System States

The universe of a class type is given by the set of corre-
sponding objects which can be defined as follows.

Definition 9 (Class Instance/Object). An instance of a class
c = (n : String 6 ∅, 6ε, 6⊥, A,O) is given by a precise assignment
of values to n (object name) as well as to all attributes of
the class c. In the following, it will be called object or object
instance. The universe of objects of a class c is written as Υc .

Based on the type system given so far, now the modeling
structures can be defined.

Note that the name of an object is used to refer to it.

Definition 10 (Links). Let m = (C,R) be a given model
and r = (rolec1 : c1,rolec2 : c2, (l1,u1), (l2,u2)) ∈ R
be a relation. Then, an instance of a relation is a so-called
link between two object instances υc1 and υc2 (derived from
the classes c1 and c2, respectively). More precisely, it is an
element λ = (rolec1 ← υc1,rolec2 ← υc2 ) of the Cartesian
product Υc1 × Υc2 . The identifiers are, in general, necessary
in order to differentiate between possibly various relations
between the classes c1 and c2. A set of links is denoted by Λ.

Based on objects and links, system states are derived.

Definition 11 (System State). Let m = (C,R) be a given
model. Then, σ = (Υ,Λ) is called a system state of m, if

• both elements, Υ and Λ, are finite sets,
• the object names for the objects in Υ are unique, and
• all objects used anywhere in any link λ ∈ Λ are contained

in Υ.

The set of all possible system states for m is denoted by Σm.

Within system states, the instantiated model elements are
formally denoted as follows.

Definition 12 (Instantiated Model elements). The set contain-
ing all instances of all model elements (cf. Def. 8) in a system
state σ, or instantiated model elements, is denoted by m(σ). A
single element is normally denoted by µ ∈ m(σ) in this work.

Furthermore, the validity of an association has to be deter-
mined.

Definition 13 (Validity of an Association in a System State).
Let σ = (Υ,Λ) be a system state of a model m = (C,R). Then,
the relations in R are valid or satisfied in the system state σ,
iff

∀ r = (rolec1 : c1,rolec2 : c2, (l1,u1), (l2,u2)) ∈ R :(
∀υ ∈ Υc1 : l1 ≤

��{(rolec1 ← υ,rolec2 ← υ′) ∈ Λ
}�� ≤ u1

)
∧

(
∀υ ∈ Υc2 : l2 ≤

��{(rolec1 ← υ′,rolec2 ← υ) ∈ Λ
}�� ≤ u2

)
D. Class Diagrams with OCL Constraints

So far, we have considered the formalism for pure UML
class diagrams. However, in Section II we have already
presented a model with textual constraints using OCL. In the
following, we discuss how OCL constraints can additionally
be taken into account.

The Object Constraint Language (OCL) is a declarative
language which mainly consists of
• navigation expressions to access attributes and association

ends of a particular object (self) or related objects that
can be reached using navigable association ends,

• arithmetic operations (i. e., addition, subtraction, multipli-
cation, division, etc.),

• collection operations (i. e., intersection, union, element
containment, etc.), and

• logic operations (i. e., conjunction, disjunction, negation,
etc.) as well as quantifiers (universal and existential).4

For the remainder of this work, it is sufficient to know
that OCL constraints can be annotated to classes (in terms of
so-called invariants) in order to express constraints that shall
be satisfied by any object instance of that class.5 In order to
refer to the particular object on which an OCL expression is
evaluated, the keyword self is employed.

Example 14. The running example from Fig. 1 has one
invariant sorted which can evaluate to true, false, or ⊥
(but not ε). Fig. 2 shows how the evaluation of the invariant
changes with invalid system states and irregular values.

The above description leads to the following definition of
UML/OCL models:

Definition 15 (UML/OCL model). A 3-tuple m = (C,R, I) is
called UML/OCL model if, and only if, (C,R) is a model and
I =

∐
c∈C(Ic) is the disjoint union of sets of invariants Ic for

each class c ∈ C. All these sets are finite, possibly empty sets
of OCL expressions.

System states of UML/OCL models are simply the system
states of the underlying UML models extended by the validity
of the invariants. Thus, the notion of validity is extended as
follows:

Definition 16 (Valid System State). Let m = (C,R, I) be a
UML/OCL model and σ = (Υ,Λ) be a system state of the
model (C,R). Moreover, let Ic denote the set of invariants
from I that are associated with a class c ∈ C.

Then, σ is called a valid system state if, and only if,

4 A comprehensive overview on all OCL expressions and as keywords
as well as a precise semantic definition can be obtained from [15].

5 In general, OCL constraints can also be annotated to (class) operations
in terms of so-called pre- and postconditions, but the translation of the
corresponding expressions is essentially identical to invariants.



• the relations in R are satisfied in σ (cf. Definition 13)
and

• for each class c ∈ C and each object υ of this class that
is instantiated in σ (i.e. υ ∈ Υc ∩Υ), all invariants from
Ic evaluate to true when self is referring to υ.

The set of all valid system states of m is denoted by Σ3
m.

IV. VERIFICATION AND VALIDATION
OF UML/OCL MODELS

Having a formal definition of UML/OCL as given in the
previous section, it is now possible to formulate verification
and validation tasks with respect to a model. In this section,
we provide examples of such tasks and refer to approaches for
the (automatic) execution of those tasks—providing a starting
point for interested readers that plan to work in this area.

First, consistency checking is discussed. The preceding
definitions included a broad variety of constraints which all
have to be satisfied by a valid system state. However, the
complexity of the description may lead to over-constrained
(or inconsistent) models, i. e., models from which no valid
system state can be derived. As this would not allow a
valid instantiation of the system to be realized, such models
obviously are considered erroneous. Hence, checking for an
inconsistent model is considered as one of the most important
structural verification tasks. More precisely, a consistency
check proves whether the model is free of contradictions by
determining a valid system state of the given model. If it is
shown that no valid system state exists, the model has been
proven to be inconsistent. Automatic methods addressing this
task have been proposed, e. g., in [1–6, 10, 12, 21, 28].6

In case of an inconsistent model, the reasons for the
inconsistency are an issue of further investigation. Finding
errors in complex models proves to be a very cumbersome
task, hence, pinpointing the designer to faults saves a lot of
effort. Therefore, different approaches have been published
which can pinpoint the designer to contradictory parts of the
model [8, 22, 25].

In case of a consistent model, the chosen modeling still
might not be optimal and lead to problems in later stages of
design. As models provide an abstraction they should be as
small as possible while at the same time complete and clear. If
different persons are contributing to a model or even with only
one designer if the system to be modeled is relatively complex,
the designer might overlook implications of constraints. A
common effect thereby is, that some constraints of the model
imply another constraint to be fulfilled such that the implied
constraint is, in fact, obsolete and can be removed from the
model. Methods that aid the designer in this task are available
at [24, 29].

In case a valid, minimal and clear model and system state
have been found, this still only proves that, at one point in
time, it is possible to have a valid system state. However,
this does not necessarily mean that this system state does not
lead to catastrophic behavior, if the operations defined in the
classes are executed. Hence, while so far this work focused
on static aspects, it is also beneficial to analyze sequences of

6Note that the number of objects even in a minimal valid system state
might be very huge, thus, so-called problem bounds are normally considered
which restrict the number of objects per class and, by this, making the
verification task decidable. However, a closer look at problem bounds is out of
scope of this tutorial and, therefore, this issue will be ignored in the following.

(valid) system states connected by operations. One of the most
obvious tasks is to check whether there are two (or more) valid
succeeding system states between which an operation can be
called such that the aforementioned pre- and postconditions of
this operation are satisfied. This is referred to as executability
of a model. Another question might be the executability of a
single operation—there is no need of an operation which can
be not invoked at all or which always results in an invalid
system state. Reachability of a certain desired system state
is also a verification issue which leads to another important
aspect, namely the determination of deadlocks, i. e., system
states from which no operation can be called anymore. The
designer should check if the system can be trapped into such
a deadlock system state from one or more starting system
states. This is equivalent to defining such a state and then
checking its reachability. Methods for that are available at [21,
27]. They additionally may require the proper definition of
frame conditions [13, 14] as well as their consideration during
reasoning [18, 23]. Also concurrency for models has been
considered [19].

Overall, a huge stack of methods which tackle those ver-
ification/validation tasks has been developed over the last
decades (see references from above). Many of them are
also publicly available in corresponding tools such as the
UML-based Specification Environment (USE) [7]. Here, the
designer has to write an ASSL script for a dedicated task
which, then, enumeratively executes all possible solutions
(even for small models, this can make the runtime escalate).
Hence, in newer versions of USE, relation logic based on Alloy
and the constraint solver KodKod are combined. This also
replaces the ASSL idea [12]. Other approaches propose to use
CSP [10] or theorem provers like Isabell/HOL [2]. Solutions
using SAT solvers are available at https://github.com/przigoda/
model-finder.

V. CONCLUSIONS

In this tutorial, we reviewed the basic concepts of
UML/OCL—the description means for modeling and spec-
ifying systems in early stages of their design. Besides a
brief sketch of how UML/OCL can be used, this particularly
includes a formal definition of the type system and logic
behind UML/OCL as well as a review on the possible valida-
tion and verification tasks that can be conducted using these
descriptions. Our review explicitly included the consideration
of irregular values such as null and invalid which yields
descriptions in a four-valued logic.

Using this review, we hope to provide the starting point for
a more detailed consideration of this often overseen feature
of UML/OCL. In fact, the existing validation and verification
approaches discussed above already nicely showcases how
UML/OCL can be used in early stages of the design flow
to check the plausibility or correctness of a model. Together
with the formal basis reviewed in Section III, this could
easily be extended for solutions additionally covering multiple-
valued models as well. A first approach in this direction has
recently been proposed in [20]. However, we see much more
potential here. Particularly for a community such as gathered
at ISMVL, this will provide a new and exciting “playground”
for further work that may trigger new directions for research
and application.

https://github.com/przigoda/model-finder
https://github.com/przigoda/model-finder


REFERENCES

[1] Kyriakos Anastasakis, Behzad Bordbar, Geri Georg, and
Indrakshi Ray. “UML2Alloy: A Challenging Model
Transformation”. In: Model Driven Engineering Lan-
guages and Systems (MoDELS). 2007, pp. 436–450.

[2] Achim D. Brucker and Burkhart Wolff. “HOL-OCL:
A Formal Proof Environment for UML/OCL”. In: Int’l
Conf. Fundamental Approaches to Software Engineer-
ing (FASE). 2008, pp. 97–100.

[3] Jordi Cabot, Robert Clarisó, and Daniel Riera. “Verifi-
cation of UML/OCL Class Diagrams using Constraint
Programming”. In: Model Driven Engineering, Verifi-
cation, and Validation (MoDeVVa). 2008, pp. 73–80.

[4] Carolina Dania and Manuel Clavel. “OCL2MSFOL:
A Mapping to Many-sorted First-order Logic for Effi-
ciently Checking the Satisfiability of OCL Constraints”.
In: Int’l Conf. on Model Driven Engineering Languages
and Systems (MoDELS). 2016, pp. 65–75.

[5] Martin Gogolla, Jörn Bohling, and Mark Richters. “Val-
idating UML and OCL models in USE by automatic
snapshot generation”. In: Software and System Model-
ing 4.4 (2005), pp. 386–398.

[6] Martin Gogolla, Jörn Bohling, and Mark Richters.
“Validation of UML and OCL Models by Automatic
Snapshot Generation”. In: Int’l Conf. on The Unified
Modeling Language (UML). 2003, pp. 265–279.

[7] Martin Gogolla, Fabian Büttner, and Mark Richters.
“USE: A UML-based specification environment for
validating UML and OCL”. In: Sci. Comput. Program.
69.1-3 (2007), pp. 27–34.

[8] Martin Gogolla, Mirco Kuhlmann, and Lars Hamann.
“Consistency, Independence and Consequences in UML
and OCL Models”. In: Int’l Conf. Tests and Proofs
(TAP). 2009, pp. 90–104.

[9] Martin Gogolla and Mark Richters. “Expressing UML
Class Diagrams Properties with OCL”. In: Object
Modeling with the OCL, The Rationale behind the
Object Constraint Language. Vol. 2263. Lecture Notes
in Computer Science. 2002, pp. 85–114.

[10] Carlos A. González, Fabian Büttner, Robert Clarisó, and
Jordi Cabot. “EMFtoCSP: a tool for the lightweight
verification of EMF models”. In: FormSERA@ICSE.
2012, pp. 44–50.

[11] Alexander Knapp and Stephan Merz. “Model checking
and code generation for UML state machines and col-
laborations”. In: Workshop on Tools for System Design
and Verification (FM-TOOLS). 2002, pp. 59–64.

[12] Mirco Kuhlmann and Martin Gogolla. “From UML and
OCL to Relational Logic and Back”. In: Int’l Conf.
Model Driven Engineering Languages and Systems
(MODELS). 2012, pp. 415–431.

[13] Philipp Niemann, Frank Hilken, Martin Gogolla, and
Robert Wille. “Assisted generation of frame conditions
for formal models”. In: Design, Automation & Test in
Europe Conference (DATE). 2015, pp. 309–312.

[14] Philipp Niemann, Frank Hilken, Martin Gogolla, and
Robert Wille. “Extracting frame conditions from oper-
ation contracts”. In: Model Driven Engineering Lan-
guages and Systems (MoDELS). 2015, pp. 266–275.

[15] Object Management Group. Object Constraint Lan-
guage – Version 2.4. 230 pp.

[16] Object Management Group. OMG Unified Modeling
Language TM (OMG UML) – Version 2.5. 230 pp.

[17] Judith Peters, Robert Wille, and Rolf Drechsler. “Gen-
erating SystemC Implementations for Clock Constraints
Specified in UML/MARTE CCSL”. In: Int’l Conf.
on Engineering of Complex Computer Systems. 2014,
pp. 116–125.

[18] Nils Przigoda, Jonas Gomes Filho, Philipp Niemann,
Robert Wille, and Rolf Drechsler. “Frame conditions
in symbolic representations of UML/OCL models”. In:
Int’l Conf. on Formal Methods and Models for System
Design (MEMOCODE). 2016, pp. 65–70.

[19] Nils Przigoda, Christoph Hilken, Robert Wille, Jan
Peleska, and Rolf Drechsler. “Checking concurrent
behavior in UML/OCL models”. In: Model Driven En-
gineering Languages and Systems. 2015, pp. 176–185.

[20] Nils Przigoda, Philipp Niemann, Judith Peters, Frank
Hilken, Robert Wille, and Rolf Drechsler. “More than
true or false: native support of irregular values in
the automatic validation & verification of UML/OCL
models”. In: Int’l Conf. on Formal Methods and Models
for System Design (MEMOCODE). 2017, pp. 77–86.

[21] Nils Przigoda, Mathias Soeken, Robert Wille, and Rolf
Drechsler. “Verifying the structure and behavior in
UML/OCL models using satisfiability solvers”. In:
IET Cyper-Phys. Syst.: Theory & Appl. 1.1 (2016),
pp. 49–59.

[22] Nils Przigoda, Robert Wille, and Rolf Drechsler. “Con-
tradiction Analysis for Inconsistent Formal Models”.
In: Int’l Symposium on Design and Diagnostics of
Electronic Circuits & Systems. 2015, pp. 171–176.

[23] Nils Przigoda, Robert Wille, and Rolf Drechsler.
“Ground setting properties for an efficient translation
of OCL in SMT-based model finding”. In: Int’l Conf.
on Model Driven Engineering Languages and Systems
(MoDELS). 2016, pp. 261–271.

[24] Nils Przigoda, Robert Wille, and Rolf Drechsler.
“Leveraging the Analysis for Invariant Independence
in Formal System Models”. In: Conference on Digital
System Design (DSD). 2015, pp. 359–366.

[25] Nils Przigoda, Robert Wille, and Rolf Drechsler.
“Verbesserung der Fehlersuche in inkonsistenten for-
malen Modellen (Erweiterte Zusammenfassung)”. In:
Methoden und Beschreibungssprachen zur Model-
lierung und Verifikation (MBMV). 2015, pp. 165–172.

[26] Nils Przigoda, Robert Wille, Judith Przigoda, and Rolf
Drechsler. Automated Validation & Verification of
UML/OCL Models Using Satisfiability Solvers. 2018.
ISBN: 978-3-319-72813-1.

[27] Mathias Soeken, Robert Wille, and Rolf Drechsler.
“Verifying dynamic aspects of UML models”. In:
Design, Automation & Test in Europe (DATE). 2011,
pp. 1077–1082.

[28] Mathias Soeken, Robert Wille, Mirco Kuhlmann, Mar-
tin Gogolla, and Rolf Drechsler. “Verifying UML/OCL
models using Boolean satisfiability”. In: Design, Au-
tomation & Test in Europe. 2010, pp. 1341–1344.

[29] Robert Wille, Mathias Soeken, and Rolf Drechsler. “De-
bugging of inconsistent UML/OCL models”. In: De-
sign, Automation & Test in Europe Conference (DATE).
2012, pp. 1078–1083.


	Introduction
	The UML/OCL ``World''
	The Logic Behind UML/OCL
	The UML/OCL Type System
	Classes and Models
	Objects and System States
	Class Diagrams with OCL Constraints

	Verification and Validationof UML/OCL Models
	Conclusions

