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Abstract. Mapping quantum circuits to real quantum architectures
(while keeping the respectively considered cost as small as possible) has
become an important research task since it is required to execute algo-
rithms on real devices. Since the underlying problem is NP-complete,
several heuristic approaches have been proposed. Recently, approaches
utilizing A∗ search to map quantum circuits to, e.g., Nearest Neighbor
architectures or IBM QX architectures have gained substantial interest.
However, their performance usually has only been evaluated in a rather
narrow context, i.e., for single architectures and objectives only. In this
work, we evaluate the flexibility of A∗ in the context of mapping quan-
tum circuits to physical devices. To this end, we review the underlying
concepts and show its flexibility with respect to the considered archi-
tecture. Furthermore, we demonstrate how easy such solutions can be
adjusted towards optimizing different design objectives or cost metrics
by providing a generalized and parameterizable cost function for the A∗

search that can also be easily extended to support future cost metrics.

1 Introduction

Quantum computing [1] utilizes quantum mechanical effects like superposition
and entanglement to allow for significant (in many cases exponential) speedups
compared to current devices for applications like integer factorization [2], data-
base search [3], or simulation of physical systems [4]. In the recent years, there
has been a significant progress in the physical realizations of real quantum hard-
ware. Arising from academic proof-of-concept realizations [5, 6], nowadays pub-
licly available quantum computers are made accessible, e.g., by IBM through a
cloud interface [7] and a first prototype for commercial use is available as well [8].
Moreover, architectures are envisioned to manage the step from current Noisy
Intermediate Scale Quantum (NISQ [9]) devices to fault-tolerant ones composed
of thousands of qubits [10, 11].

However, to run quantum algorithms on such real devices, the respective
high-level operations have to be broken down into elementary operations (acting
on one or two qubits only) supported by the hardware (e.g., using approaches
such as [12–14]) and the logical qubits of the quantum algorithm have to be
mapped to physical ones of the quantum device. Especially the mapping part
constitutes a tough challenge since further physical constraints have to be con-
sidered. In fact, not all pairs of qubits may interact with each other due to
so-called coupling-constraints. Hence, the mapping usually has to change dy-
namically throughout the execution of a quantum computation. This is achieved
by adding so-called SWAP operations that exchange the state of two physical
qubits and, by this, “move around” the logical qubits on the hardware. This over-
head shall obviously be kept as small as possible since each additional operation
increases the execution time and the possibility of an unreliable result (since



quantum computing is error prone yet)—resulting in a task that has recently
been proven to be NP-complete [15, 16].

In the last decade, several solutions for this mapping problem have been
proposed. First solutions focused on Nearest Neighbor (NN) architectures where
the qubits are located in a 1- or 2-dimensional grid and only neighboring qubits
may interact with each other [17–20]. With the appearance of publicly available
quantum computers, researchers also started to focus on the mapping problem
for IBM QX architectures—leading to further solutions dedicated for these archi-
tectures [21–26]. Many of the proposed approaches—for NN as well as for IBM
QX architectures—have in common that they utilize the A∗ search algorithm.
However, their performance usually has only been evaluated in a rather narrow
context, i.e., for single architectures and objectives.

In this work, we investigate the flexibility of A∗-based mapping and propose
a generic approach that allows for an efficient mapping to NN as well as to IBM
QX architectures while optimizing different design objectives. This is achieved by
exploiting the fact that the constraints of different architectures can be modeled
by coupling maps and by using a generic and parameterizable cost function.
Given the coupling-constraints of any envisioned new architecture as well as
appropriate parameters for the cost function, the proposed solution inherently
provides a customized mapping algorithm without writing any code. Moreover,
by slightly adjusting the cost function, future design objectives can be easily
incorporated as well.

Our evaluations show that the resulting approach, although being generic and
flexible with respective to different architectures and objectives, remains com-
petitive even against state-of-the-art solutions which have been optimized over
the last ten years and to a single architecture and a single objective. Moreover,
the evaluations demonstrate that simply changing some few parameters (rather
than developing new dedicated algorithms) allows to optimize for various design
objectives like gate count, circuit depth, or an equally distributed workload for
the qubits. Overall, this shows the flexibility of A∗-based mapping of quantum
circuits.

This paper is structured as follows. In Section 2, we review quantum circuits
and quantum architectures including a description of the considered mapping
problem. Section 3 discusses the A∗-based mapping in general as well as its
flexibility. Eventually, the proposed resulting generic approach is evaluated in
Section 4, while Section 5 concludes the paper.

2 Quantum Circuits and Quantum Architectures

To keep the paper self-contained, this section briefly recapitulates quantum cir-
cuits as well as currently considered quantum architectures.

2.1 Quantum Circuits

In contrast to conventional computations, quantum computations [1] operate
on qubits instead of bits. A qubit is a two-state quantum system, with basis
states |0〉 ≡

(
1
0

)
and |1〉 ≡

(
0
1

)
(representing Boolean values 0 and 1, respec-

tively). Furthermore, a qubit can be in a superposition of these basis states,
i.e., |x〉 = α |0〉+ β |1〉, where the complex amplitudes α and β satisfy
|α|2 + |β|2 = 1. The state of a qubit can be modified by applying quantum opera-
tions, whose functionality can be described by 2×2-dimensional unitary matrices.
Commonly used 1-qubit gates are

NOT = X =
[

0 1
1 0

]
, H =

1√
2

[
1 1
1 -1

]
, and T =

[
1 0
0 1+i

2

]
,



which invert the state of a qubit, sets it into a superposition, or conducts a phase
shift by 1+i√

2
, respectively.1 The state of a qubit cannot be directly observed.

Instead, measurement collapses the qubit into one of the two basis states |0〉
or |1〉. More precisely, the qubit collapses to basis state |0〉 with probability |α|2

and to basis state |1〉 with probability |β|2.
The above extends to quantum systems composed of n qubits. Here, due to a

quantum mechanical effect called entanglement, the state of a qubit might addi-
tionally be influenced by other qubits.2 Hence, the qubits can not be considered
individually, rather as complete system with 2n basis states and correspond-
ing amplitudes. The state of such a system is then accordingly manipulated
by a 2n × 2n-dimensional unitary matrix. Since such operations acting on all
qubits can not be realized physically, they are usually decomposed into a se-
quence of operations that act on one or two qubits only (other qubits are not
affected). For example, it has been shown that—besides arbitrary single-qubit
operations—having a controlled NOT (i.e., CNOT) operation

CNOT = CX =

 1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ,
where the state of the target qubit is inverted if the control qubit is in its basis
state |1〉, is sufficient to allow for universal quantum computing. Hence, any
2n × 2n unitary matrix can be decomposed into a sequence composed of 1-qubit
operations and CNOTs.

A commonly used representation for quantum computations are quantum
circuits. Here, the respective qubits are denoted by horizontal circuit lines. Op-
erations are represented by quantum gates. Boxes labeled with the respective
functionality denote 1-qubit gates, whereas • and ⊕ denote the control and tar-
get qubit of a CNOT gate, respectively. Overall, this yields a representation of
a quantum circuit as a cascade G = g1g2 . . . g|G| of gates (drawn from left to
right), where |G| denotes the total number of gates. The number of qubits and,
thus, the number of circuit lines is denoted by n.

Example 1 Figure 1 shows a quantum circuit composed of |G| = 22 gates
and n = 5 circuit lines. Each circuit line represents a qubit q0 – q4. The first
(leftmost) gate describes a CNOT operation with control line q1 and target line
q0. The U blocks represent single qubit operations.3

Since there are various ways to realize certain quantum functionality by
means of a quantum circuit, one has to define cost metrics that allow designers
to chose the best realization. Commonly used cost metrics are:

– Gate count gc(G): The gate count of a circuit G is its number of elementary
gates. When using weights for each gate type, this also allows to estimate
the fidelity of the overall circuit.

– Circuit Depth cd(G): The depth of a circuit G describes the minimal number
of time-steps required to execute all gates. In this work, we assume that all
elementary operations require one time-step and that operations acting on

1 The new state of the qubit is determined by multiplying the corresponding state
vector and the unitary matrix [27].

2 Albert Einstein referred to this effect as spooky action at a distance.
3 Note that we do not further specify the functionality of the single qubit gates since

it is irrelevant for the mapping process.



q0

q1 • • • • • • •

q2 • U U • U U • • U •

q3 • U U U U

q4

Fig. 1. Quantum circuit

disjoint sets of qubits can be executed in parallel. However, these assump-
tions can be easily adjusted if desired.

Besides these established cost metrics, we define another (artificial) cost met-
ric to demonstrate the flexibility of A∗-based mapping of quantum circuits,
e.g., when extending the cost function to take qubit fidelity [28] into account
in the future.

– Workload Distribution wd(G): The workload wd′(qi) of a qubit qi is de-
termined by the number of gates that act on qi (or use it as a control).
Workload distribution of a circuit G is then defined as standard deviation of
the workload for each qubit (that is affected by at least one gate), i.e.,

wd(G) =

√√√√ 1

n

n∑
i=0

(wd′(qi)− wdavg)2.

Example 1 (continued) As stated above, the gate count of the circuit G shown
in Figure 1 is gc(G) = 22. The depth of this circuit cd(G) = 15. For example,
the CNOT with control q1 and target q0 (i.e., CNOT (q1, q0)) can be applied
simultaneously with the gate CNOT (q2, q3). The gate CNOT (q3, q4) has to be
applied later because it operates also on q3. Finally, the workload distribution is

wd(G) =
√

108
5 = 4.65.

2.2 Mapping Quantum Circuits to Quantum Architectures

In the recent years, there has been a significant progress in the physical real-
ization of real quantum hardware. Arising from academic proof-of-concept re-
alizations [5, 6], there are already publicly available quantum computers made
accessible by IBM through a cloud interface [7] as well as first commercially avail-
able ones [8]. Moreover, architectures are envisioned to manage the step from
current Noisy Intermediate Scale Quantum (NISQ [9]) devices to fault-tolerant
ones composed of thousands of qubits [10, 11]. However, all these architectures
come with certain restrictions regarding (1) the available elementary quantum
operations and (2) the allowed qubit connectivity (i.e., which pairs of qubits may
interact with each other by means of two-qubit gates). These restrictions have
to be considered when executing quantum circuits on them.

Since decomposition into different gate libraries is already well covered by
literature (see, e.g., [12–14]), we focus on the connectivity constraints of the ar-
chitectures in the following. Before real quantum computers became available,



Q15 Q14 Q13 Q12 Q11 Q10Q0

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Q9

Fig. 2. Coupling map for IBM QX5 [30]

researchers considered so-called Nearest Neighbor (NN) architectures, where the
qubits are arranged in a 1- or 2-dimensional grid and interactions are only
possible between neighboring qubits.4 However, IBM’s QX architectures—the
first quantum computers made publicly available—employ slightly different con-
straints. While interactions are also only possible between certain pairs of qubits,
their layout is not necessarily as regular as a 1- or 2-dimensional grid and it is
additionally given which qubit may act as control and which qubit may act
as target (i.e., the direction of the CNOT is fixed). These constraints are de-
fined by so-called coupling maps (i.e., a directed graph), where the m physical
qubits Q0, Q1, . . . Qm−1 are represented by vertices and an arrow from Qi to
Qj indicates that a CNOT with control qubit Qi and target qubit Qj can be
executed (these constraints are denoted coupling-constraints in the following).
In the following, we consider architectures specified by coupling maps, since this
approach is more general (constraints of NN architectures can be easily modeled
by an according coupling map as well).

Example 2 Figure 2 shows the coupling map of IBM’s QX5 [30] architecture.
As described above, the arrow from Q1 to Q2 represents that CNOTs with control
Q1 and target Q2 can be applied. It also means that a CNOT with control Q2 and
target Q1 is not possible. Since there is also no arrow connecting Q1 and Q3, a
CNOT cannot be applied on these two qubits (independent of its direction).

In order to execute quantum circuits on architectures as described above, two
steps are conducted. First, the quantum gates of the circuit are decomposed into
elementary operations available on the hardware. Since this step is already well
covered in the literature [12–14], we assume that is has already been conducted.
The second step—mapping the n logical qubits q0, q1, . . . qn−1 of a quantum
circuit to the m physical qubits Q0, Q1, . . . Qm−1 of a quantum computer while
satisfying all coupling-constraints—constitutes a tougher challenge. Usually it
is not possible to find a mapping that satisfies the constraints throughout the
whole circuit. This becomes immediately clear by considering a circuit where one
qubit interacts with more other qubits than the maximal degree of a coupling
map. Assuming an initial mapping, the following problems may occur:

– A CNOT shall be applied where the control and the target qubit are mapped
to physical qubits that are not connected in the coupling map.

– A CNOT shall be applied where the control and the target qubit are mapped
to physical qubits that are connected in the coupling map, but there is only
a connection in the “wrong” direction.

To overcome these issues, the mapping procedure has to change the mapping
dynamically by inserting additional operations. The most established technique
is to insert so-called SWAP operations that exchange the state of two physi-
cal qubits and, thus, move around the logical qubits—changing their mapping
dynamically.5

4 Note that this constraint is still valid for many recent architectures, e.g., Google’s
Bristlecone relies on such a 2D architecture [29].

5 Note that there also exist other methods to overcome the problems [25], but they
tend to generate larger overhead for bigger circuits.
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Fig. 3. SWAP operation

Example 3 Figure 3 shows a SWAP operation that swaps the state of the phys-
ical qubits Q0 and Q1 of IBM QX5. Since the logical qubits q0 and q1 are mapped
to Q0 and Q1 initially, the SWAP operations changes the mapping such that q0
and q1 are mapped to Q1 and Q0 afterwards. The SWAP operation is decomposed
into three CNOTs as shown in the middle of Figure 3. Since only CNOTs with
control Q1 and target Q0 are possible (cf. Figure 2), the direction of the middle
CNOT has to be switched. This is achieved by inserting Hadamard gates before
and after this CNOT.

While SWAP operations are sufficient to overcome both issues listed above,
the second one can be handled with fewer overhead. Like in the decomposition
of a SWAP operation shown in Example 3, the direction of a CNOT can be
switched by inserting four Hadamard operations. Minimizing the overhead (e.g.,
regarding one of the cost metrics defined in Section 2.1) caused by satisfying the
coupling-constraints has recently been proven to be an NP-complete problem [15,
16].

Since the mapping problem is NP-complete, several heuristic approaches have
been proposed. These include dedicated solutions for NN architectures [17–20]
or for real ones [21–26] (e.g., IBM’s QX architectures) that are specified by
coupling maps and usually focus on optimizing the gate count of the mapped
circuit. Since many of these algorithms are based on an A∗ search, we analyze
and evaluate the flexibility of an A∗-based mapping in this work.

3 Mapping Quantum Circuits Using A∗

This section discusses the flexibility of A∗-based search methods for mapping
quantum circuits to quantum architectures. To this end, we first sketch the gen-
eral idea and, afterwards, provide the details of the A∗-based mapping algorithm.
Based on that, we discuss how easily the approach can be extended for different
architectures and objectives.

3.1 General Idea

This section briefly lines out the general idea of mapping quantum circuits to real
architectures using the A∗ search algorithm. Since solving the problem in an ex-
act fashion (i.e., with minimal overhead) has been proven to be NP-complete [15,
16], we aim for a heuristic approach to provide a solution within reasonable time.

The general idea is to partition the circuit to be mapped into k sub-circuits
G0, G1, . . . Gk−1. These sub-circuits are formed in a way, such that there exists
a mapping from the logical qubits of the sub-circuit to the physical qubits of the
target architecture where all coupling-constraints given by the coupling map are
satisfied (neglecting the direction of the CNOTs since this is easily adjusted by
inserting four Hadamard operations). Having that, no SWAP operations have
to be inserted inside the sub-circuits (only H operations may be required). In
between the sub-circuits, permutation sub-circuits composed of SWAP opera-
tions are inserted that change the mapping of logical qubits to physical ones
dynamically. Determining the cheapest permutation circuit (with respect to a



given cost function) such that all coupling-constraints are satisfied for the next
sub-circuit to be mapped (again, neglecting the direction of the connections be-
tween physical qubits) is conducted using an A∗ search. Hereby it is notable that
the cost function might include a look-ahead for future sub-circuits such that
the overall cost are subject to be optimized rather than utilizing locally-optimal
permutations (which often leads to an increase of the overall cost [22]).

One flexibility of the proposed mapping algorithm is how to form the sub-
circuits. In the literature, there exist approaches using different strategies. The
most straightforward and naive version is to treat each gate as its own sub-circuit.
Then, the A∗ search algorithm is called once for each gate (except for the first
one). To reduce the number of calls to the search algorithm and to optimize
the overall cost by explicitly considering multiple gates, sub-circuit composed of
several gates are usually considered. One commonly used possibility is to group
all gates that act on disjoint qubits into a sub-circuit [21, 22].6 Alternatively, it
is also possible to group as many gates into a sub-circuit such that a satisfying
mapping can still be found for the sub-circuit (e.g., using SAT solvers as done
in [20, 26]). Finally, it is also possible leave the decision of determining the sub-
circuits open for the A∗ search as done in [23]. Here, a set of possible gates to be
grouped are passed to the search algorithm, which inherently chooses a subset
of these gates to be included in the next sub-circuit according to its objective
function.7

Example 4 Considering the circuit shown in Figure 1, the partitioning into
sub-circuits based gates acting on disjoint qubits [21, 22] is conducted as follows
when ignoring 1-qubit gates. The first sub-circuit G0 contains the CNOT gate
with control q1 and target q0, i.e., CNOT (q1, q0). The second gate of the circuit
CNOT (q1, q2) has to be placed in a new sub-circuit G1, since it also acts on
qubit q1. The third sub-circuit G3 contains two gates, i.e., CNOT (q1, q0) and
CNOT (q2, q3), since they act on disjoint sets of qubits. Continuing this procedure
results in k = 10 sub-circuits. That are indicated by dashed lines in Figure 1.

In the following, we discuss how the A∗ search algorithm is used to determine
the “best” permutation (with respect to a certain cost metric) in between two
sub-circuits to be mapped. Note that no such call of the algorithm is required for
the first sub-circuit since the effect of these SWAP gates are directly incorporated
into the initial mapping of the logical qubits.

3.2 A∗ Search

How to conduct mapping of quantum circuits using A∗ search algorithms is de-
scribed in two steps. First, we review how A∗ search works in general. Afterwards,
its utilization in the considered problem is described.

General Algorithm The A∗ algorithm is a state-space search algorithm. To
this end, (sub-)solutions of the considered problem are represented by state
nodes. Nodes that represent a solution are called goal nodes (multiple goal nodes
may exist). The main idea is to determine the cheapest path (i.e., the path with
the lowest cost) from the root node to a goal node. Since the search space is typ-
ically exponential, sophisticated mechanisms are employed in order to consider
as few paths as possible.

6 Note that 1-qubit gates can be neglected when forming the sub-circuits.
7 Note that a similar strategy is used in [24] (even though the permutation is not

found using A∗ search).
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Fig. 4. A∗ search algorithm

All state-space search algorithms are similar in the way that they start with
a root node (representing an initial state) which is iteratively expanded towards
a goal node (i.e., one of the desired solutions). How to choose the node that
shall be expanded next depends on the actual search algorithm. For A∗ search,
we determine the cost of each leaf-node of the search tree. Then, the node with
the lowest cost is chosen to be expanded next. The cost of a node x is given by
f(x) = g(x) + h(x). The first part, g(x), describes the path cost of the current
state (i.e., the cost of the path from the root to x). The second part provides
an approximation of the remaining cost (i.e., the path cost from x to a goal
node), which is estimated by a heuristic cost function h(x). Since the node with
the lowest cost is expanded, some parts of the search space (those leading to
expensive solutions) are never expanded.

Example 5 Consider the search tree shown in Figure 4. This tree represents
the part of the search space that has already been explored for a certain search
problem. The nodes that are candidates to be expanded in the next iteration of
the A∗ algorithm are highlighted in blue. For all these nodes, we determine the
cost f(x) = g(x) + h(x). This sum is composed by the cost of the path cost
from the root to x (i.e., the sum of the cost annotated at the respective edges)
and the estimated path cost from x to a goal node (highlighted in red). Consider
the node labeled E. This node has cost f(E) = (40 + 60) + 200 = 300. The
other candidates labeled B, C, and F have cost f(B) = 580, f(C) = 360, and
f(F ) = 320, respectively. Since the node labeled E has the fewest expected cost,
it is expanded next.

Obviously, the heuristic cost should be as accurate as possible, to expand as
few nodes as possible. If h(x) always provides the correct minimal remaining cost,
only the nodes along the cheapest path from the root node to a goal node would
be expanded. But since the minimal costs are usually not known (otherwise, the
search problem would be trivial to solve), estimations are employed. However,
to ensure an optimal solution, h(x) has to be admissible, i.e., h(x) must not
overestimate the cost of the cheapest path from x to a goal node. This ensures
that no goal node is expanded (which terminates the search algorithm) until all
nodes that have the potential to lead to a cheaper solution are expanded.

Example 5 (continued) Consider again the node labeled E. If h(x) is admis-
sible, the true cost of each path from this node to a goal node is greater than or
equal to 200.
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Using A∗ for Mapping To utilize the A∗ algorithm recapitulated above for
searching for the “best” permutation in between two sub-circuits of the circuit
to be mapped, we have to define (1) the semantics of a node, (2) an expan-
sion strategy for the nodes, and (3) a cost function to determine which node is
expanded next.

Semantics of the nodes: Each node in the A∗ search adaption for the quantum-
circuit mapping problem represents a mapping of the logical qubits of the quan-
tum circuit to the physical ones of the quantum hardware. The root node for
our search represents the mapping found by the last call of the search algo-
rithm (or the initial mapping when searching for the permutation after the first
sub-circuit G0). Each node that represents a mapping that satisfies all coupling-
constraints for the gates in the currently considered sub-circuit is a goal node.

Expansion strategy: As discussed in Section 2.2, the mapping is changed dy-
namically by inserting SWAP operations. Hence, a node is expanded by adding
one node with a correspondingly modified mapping for each possible SWAP
operation (according to the coupling map). To reduce the search space, we con-
sider only SWAP operations that affect physical qubits to which a logical qubit
is mapped that also occurs as control or target in a CNOT gate of the currently
considered sub-circuit.

Example 6 Considering again the quantum circuit shown in Figure 1 and as-
suming that the logical qubits q0, q1, q2, q3, and q4 are mapped to the physical
qubits Q0, Q1, Q2, Q3, and Q4 (cf. Figure 2), respectively. A permutation has
to be inserted before sub-circuit G8 = {CNOT (q2, q3), CNOT (q1, q4)} since the
coupling-constraints are not satisfied for CNOT (q1, q4)—there is no arrow be-
tween Q1 and Q4 in the coupling map. A∗ search is applied to determine the
best permutation circuit. Expanding the root node of the search tree (i.e., the
node representing the current mapping) causes 8 successors (instead of 22) since
there exist eight connections in the coupling map that affect the physical qubits
Q0, Q1, Q2, Q3, or Q4.

Cost function: Eventually, we need to specify a cost function for the nodes in
the search tree to determine which node has to be expanded next. For demon-
stration purposes, we describe the cost function for optimizing with respect to
the overall number of additional gates in this section. In the following section,
we show the flexibility of the A∗-based approach by extending the cost function
such that other objectives are supported. Recall that the cost function f of a
node f(x) = g(x) + h(x) is composed of the path cost as well as the heuristic
cost that estimates the remaining cost for reaching a goal state.

The current cost of a node x is determined by its depth in the search tree
since this describes the number of SWAP gates required to reach the map-
ping described by x. Since a SWAP gate is composed of 7 elementary oper-
ations (3 CNOTs and 4 Hadamard gates), the path cost could be defined by



g(x) = 7 · depth(x). However, in order to make this value better comparable to
the cost functions of other objectives, just the number of SWAPs is used as cost,
i.e., g(x) = depth(x).

Usually, it is harder to find a good heuristic to estimate the remaining path
cost for reaching a goal state since the heuristic shall be as accurate as possible
(to prune large parts of the search space) while being admissible (i.e., not overes-
timating the true remaining cost) if an optimal/minimal solution is desired. To
get an admissible heuristic, one has to determine the distance (i.e., the number
of edges) of the logical qubits8 in the coupling map for each CNOT gate in the
currently considered sub-circuit, and take the maximum of all these distances.9

However, since we do not aim for a locally optimal solution anyway (since this
often affects the overall solution negatively [22]), we drop the admissibility con-
straint and specify the heuristic cost by accumulating all these distances.

Having g(x) and h(x) allows to utilize the A∗ search algorithm as introduced
above. However, we can exploit the knowledge that it is called once for each
sub-circuit Gi (except for the first one). Since we aim for a globally optimal
solution rather than a local one, we additionally define lookahead cost l(x,Gi)
that estimates how the current mapping affects future sub-circuits. This term is
added to the cost function, i.e., f(x) = g(x) + h(x) + l(x,Gi). The lookahead
cost contains an additive term for each subsequent sub-circuit Gj (i < j < k)
that is computed as sum of the distances of the target and control qubits of
the CNOTs (like the heuristic cost). However, these additive terms are weighted
with factors that decrease exponentially with j − i.

Example 6 (continued) Figure 5 shows the search tree for finding the cheapest
permutation circuit. The cost for the leftmost node (highlighted in gray) with
depth 1 of the search tree has a path cost of g(x) = 1 since one SWAP operation
(i.e., Q1 ↔ Q2) has been added to reach this mapping. The heuristic cost is
determined as follows: After the SWAP, the distance between the logical qubits q1
and q4 is 2 (since they are mapped to the physical qubits Q2 and Q4, respectively).
Similarly, the distance between the logical qubits q2 and q3 is also 2. Hence,
h(x) = (2− 1) + (2− 1) = 2. Since the control and the target qubit of the CNOT
in the next sub-circuit (i.e., G9 = {CNOT (q2, q3)}) have also a distance of 2,
the lookahead cost is l(x,G8) = (2−1) ·0.75 = 0.75) when using a weight of 0.75.
Overall, this sums up to cost f(x) = 1 + 2 + 0.75 = 3.75. Similarly, the cost of
the node highlighted in gray with depth 2 is f(x′) = 2. Since this is a goal node,
the new mapping is determined by inserting a permutation circuit composed of
the SWAPS Q1 ↔ Q2 and Q2 ↔ Q3—eventually resulting in the mapped circuit
shown in Figure 6. This circuit has a gate count of 22 + 2 · 7 = 36, a depth of
25, as well as a workload distribution of 28.

3.3 Flexibility Regarding Different Objectives

Having the general scheme of A∗-based quantum-circuit mapping as discussed
above, we eventually can discuss the flexibility of this solution with respect
to different architectures and objectives. As already stated in Section 2.2, the
A∗ based approach is flexible regarding the architecture since coupling maps
allow to specify not only IBM QX architectures, but also arbitrary ones like NN

8 More precisely, the distance of the physical qubits to which the logical ones are
mapped is taken.

9 Note that the distance might also include 4 Hadamard gates to indicate that the
direction of the CNOT has to be switched.



Q0 � q0

Q1 � q1 • • • • • • × • U •

Q2 � q2 • U U • U U • ×× U

Q3 � q3 • U U U × •

Q4 � q4

Fig. 6. Quantum circuit mapped to IBM QX5

architectures (since the distance of two physical qubits in the coupling map can
be easily determined in linear time using Dijkstra’s algorithm). Besides that,
the decision how to group gates also allows for a large flexibility when using
A∗-based mapping. In this section, we demonstrate that the algorithm is also
flexible regarding certain cost metrics by providing a generic and parameterizable
cost function that can be extended to take other cost metrics into account (e.g.,
qubit fidelity [28]) in the future.

The path cost g(x) of a node x is generalized in such a way that it does not
only include cost resulting from the gate count of the permutation circuit costg
(i.e., the depth of x in the search tree), but also cost resulting from the circuit
depth costd as well as cost resulting from the workload distribution costw of
part of the circuit that is already mapped (including the permutation circuits
described by x), i.e.,

g(x) = costg/7 · w0 + costd/5 · (1− w0) + costw · w1. (1)

Here, the additional weights w0 and w1 (with 0 ≤ w0, w1 ≤ 1) allow to specify
how much the algorithm shall focus on a certain cost metric.10 For example,
setting w0 = 1 and w1 = 0 results in the objective function described in the
previous section—optimizing only the number of additional gates.

The heuristic cost (estimating the remaining cost based on the current map-
ping described by x) contains only the number of SWAPs to reach a goal node
costhg (this gives an estimate for gate count as well as for circuit depth):

h(x) = costhg/7 (2)

Like the path cost, also the lookahead cost for a subsequent sub-circuit Gj

(i < j < k) is generalized to a sum of three terms:

– The sum of distances of the qubits occurring in the CNOTs of the sub-circuit
Gj , i.e., costlg,

– the increase of circuit depth based on the distance of the qubits in the oc-
curring CNOTs, i.e., costld, and

– the change in the workload distribution based on the distance of the qubits
in the occurring CNOTs, i.e., costlw.

This leads to the generalized lookahead cost

l(x) = (costlg/7 · w0 + costld/5 · (1− w0) + costlw · w1) · wj−i
2 . (3)

Here, the additional weight w2 allows to exponentially decrease the contribution
of future sub-circuits.

10 Note that we store the depth and the workload distribution for each physical qubit
(considering the already mapped part of the circuit) to keep track of these values.



Q0 � q0 × H H

Q1 � q1 • • • • • • ×

Q2 � q2 • U U • U U • • U •

Q3 � q3 • U U U U

Q4 � q4 ×

Q13 × ×

Q14 × ×

Q15 × H • H

Fig. 7. Quantum circuit mapped to IBM QX5 using depth optimization

Overall, this leads to the generalized cost function

f(x) = g(x) + h(x) +

k∑
j=i+1

l(x,Gj) (4)

for a node x when currently considering a sub-circuit Gi.

Example 6 (continued) Setting weights of the generalized cost and heuristic
functions to w0 = 0.05, w1 = 0, w2 = 0.75 allows to optimize for circuit depth
at first hand and not for the gate count. Using this cost function in the mapping
algorithm results in the circuit shown in Figure 7. This circuit has now a depth of
22 (instead of 25) at the cost of increasing the gate count from 36 to 26+4·7 = 54.

4 Experimental Evaluation

In this section, we experimentally evaluate the flexibility of A∗-based mapping.
To this end, we compare the generic solution proposed in this paper to dedicated
solutions for 1D NN architectures developed over the past 10 years. Moreover, we
evaluate how the parameters of the generalized objective function affect the cost
of the mapped circuits. To this end, we have implemented the proposed general
mapping approach in C++ and conducted several evaluations using benchmarks
from RevLib [31] on a laptop with 2.6 GHz and 4 GB RAM.11

4.1 Flexibility Regarding the Considered Architecture

In a first series of evaluations, we compare the proposed generic mapping algo-
rithm to dedicated solution for 1D NN architectures. As discussed in Section 2.2,
these architectures can be modeled easily by using coupling maps, but are more
restricted which makes it easier to develop dedicated optimizations. We com-
pare the proposed approach to one of the first methods developed for these kind
of architectures [17] as well as to one of the latest and most elaborated solu-
tions [19] (this way, we showcase, how an adapted A∗-based version compares to
the initial NN-methods as well as today’s state-of-the-art methods that emerged
after several years of research on nearest neighbor optimization). Since both try

11 Note that we grouped all gates that act on disjoint qubits into a sub-circuit as done
in [21, 22] (neglecting 1-qubit gates when forming the sub-circuits).



Table 1. Comparison to dedicated solutions for 1D NN architectures

Benchmark Required SWAP operations Improvements
Name n |G| [17] [19] proposed w.r.t. [17] w.r.t. [19]
3-17 3 13 5 6 4 -1 -2
4gt10-v1 5 36 29 24 22 -7 -2
aj-e11 5 59 43 33 29 -14 -4
hwb5 5 106 86 66 59 -27 -7
hwb6 6 146 140 111 104 -36 -7
mod5adder 6 81 79 46 54 -25 8
ham7 7 87 86 72 71 -15 -1
QFT7 7 21 29 18 21 -8 3
rd53 7 78 96 66 61 -35 -5
hwb7 8 2659 3480 2067 2015 -1465 -52
QFT8 8 28 41 31 34 -7 3
urf2 8 25150 23608 18428 16597 -7011 -1831
hwb8 9 16608 21767 13176 13546 -8221 370
QFT9 9 36 66 49 47 -19 -2
urf1 9 57770 62019 45730 42219 -19800 -3511
urf5 9 51380 54038 39852 37066 -16972 -2786
hwb9 10 20405 32979 18988 19495 -13484 507
QFT10 10 45 96 64 61 -35 -3
Shor3 10 2076 3353 2112 1982 -1371 -130
sym9 10 4452 5353 3103 4049 -1304 946
urf3 10 132340 140908 108321 100345 -40563 -7976
cycle10 2 12 1212 2193 966 1176 -1017 210
Shor4 12 10004 9510 5616 5410 -4100 -206
plus63mod4096 13 29019 54999 25617 29108 -25891 3491
plus127mod8192 14 65455 136820 63354 69470 -67350 6116
plus63mod8192 14 37101 77753 35472 38713 -39040 3241
Shor5 14 20530 22846 12221 11302 -11544 -919
ham15 15 458 803 531 537 -266 6
urf6 15 53700 91563 54815 51666 -39897 -3149
Shor6 16 37770 41551 22829 21159 -20392 -1670

to minimize the number of additional SWAP operations,12 we also set our pa-
rameters w0 = 1, w1 = 0, and w2 = 0.75 for j − i = 1 and to w2 = 0.5 for
j > i+ 1.

Table 1 summarizes the obtained results when using the proposed approach
for mapping all benchmark listed in the respective papers. The first three columns
list the name of the benchmark, the number of qubits n, as well as the number of
gates in the circuit to be mapped |G|. The next three columns list the obtained
number of additional SWAP operations for the dedicated solutions presented
in [17] and [19] as well as for the generic approach presented in this paper. The
last two columns list the respectively achieved improvements. Runtimes are not
provided since all mappings have been determined within a couple of seconds.

As can be seen in Table 1, the proposed generic approach significantly out-
performs the dedicated approach presented in [17]. On average, 35.7% fewer
SWAP operations are inserted. The generic approach even provides similarly
good results compared to one of the most elaborated approaches for these spe-
cific architectures [19]. On average, the number of additionally required SWAP
operations reduces even by 1.4%. These results are rather remarkable, since they
indicate that dedicated solutions for, e.g., 1D NN architectures do not perform
better than generic solutions applicable to any kind of envisioned architecture.

Overall, our evaluation shows that we reach significant and minor improve-
ments compared to [17] and [19], respectively, even though the generality and
flexibility of our approach does not allow to utilize dedicated optimization tech-
niques when mapping to NN architectures. This is a clear testament of the power
of A∗ as it shows that, using the proposed method allows to determine much
better results as initial version and very competitive results compared to recent
dedicated solutions.

12 Note that no Hadamard operations have to be inserted since these architectures
allow CNOTs in any direction between neighboring qubits.



Table 2. Evaluation of different parameter settings

Benchmark Opt. gate count Opt. depth Opt. workload dist.
Name n |G| gc cd wd gc cd wd gc cd wd
3-17 3 36 105 63 14 112 64 9 138 74 10
rd32-v1 4 36 112 66 51 120 65 32 127 68 34
4 49 5 217 706 408 204 733 376 282 805 471 210
4gt10-v1 5 148 513 294 174 524 253 199 499 293 151
ex3 6 403 1345 762 447 1463 685 408 1338 768 333
hwb5 6 1336 4319 2512 1550 4689 2284 1666 4457 2547 1488
4mod5-bdd 7 70 270 151 116 285 130 87 274 145 98
ham7 7 320 1136 660 464 1287 609 392 1407 811 317
cm82a 8 650 2284 1242 531 2660 1131 697 2618 1454 630
urf5 9 164416 532100 294007 150186 612474 285427 163635 615963 332710 172780
sqn 10 10223 35572 19534 7354 41422 17673 10533 35860 19538 7144
urf3 10 125362 459017 250539 117506 560534 234612 144637 619623 324165 111370
9symml 11 34881 120708 67381 23653 149082 62038 33838 122708 68333 22098
dc1 11 1914 6841 3756 1264 7691 3337 1717 6369 3505 1466
life 11 22445 78395 44236 14841 95975 40431 21876 78548 44172 13975
rd84 12 13658 47471 25604 9203 58654 23878 12679 47833 25737 9101
sqrt8 12 3009 10910 5979 1906 12836 5352 2667 10923 6021 1917
sym10 12 64283 225510 126852 42949 278390 115416 60660 260146 146408 39162
adr4 13 3439 11569 6259 2616 14086 5990 3401 11878 6386 2360
dist 13 38046 133149 70751 22399 163240 64447 33983 133160 70283 22303
squar5 13 1993 6984 3630 1483 8282 3397 1940 7177 3678 1494
0410184 14 211 864 425 156 1147 347 184 891 452 107
pm1 14 1776 5971 3149 1454 6985 3046 1865 6451 3426 1110
sao2 14 38577 136483 71152 21215 169801 65420 35041 137215 71131 20456
co14 15 17936 64910 31600 6403 85351 29466 12829 70202 33803 5381
square root 15 7630 26733 14022 4274 31663 12373 5895 27274 14244 3731
urf6 15 171840 617067 324396 88294 727960 307340 132278 628436 329294 74676
cnt3-5 16 175 555 204 44 674 224 79 579 220 49
inc 16 10619 36524 20579 6551 44182 18813 9890 37521 21126 4859
mlp4 16 18852 67821 37902 10773 83733 33734 15466 68415 37865 8728

4.2 Flexibility Regarding Different Cost Metrics

In a second round of experiments, we analyze the flexibility of the proposed
method with respect to different objectives. In fact, changing a few parame-
ters allows to optimize for different cost metrics without changing any code or
developing a new and dedicated solution.

Table 2 summarizes the obtained results. The first three columns list the
name of the benchmark, the number of qubits n, the depth of the gate count of
circuit to be mapped |G|. In the remaining columns, we list the gate count of
the mapped circuit gc, its depth cd, as well as the workload distribution of the
qubits wd for the proposed circuit when optimizing for gate count (by setting
w0 = 1, w1 = 0), for circuit depth (by setting w0 = 0.04, w1 = 0), and for the
workload distribution (by setting w0 = 1, w1 = 0.1) when mapping the circuits
to IBM QX5 (w2 was the same for all three mappings and was 0.75 for j− i = 1
and 0.5 for j > i+ 1).

Considering the optimization with respect to gate count as baseline, changing
the parameters for optimizing with respect to circuit depth indeed results in a
decrease of depth (on average by 7.7%) at the expense of inserting more SWAP
and Hadamard operations (on average 17.1%). Similarly, the depth of the circuits
optimized for depth is on average 12.3% smaller compared to those optimized for
the workload distribution of the qubits. In contrast, their workload distribution
is 39.3% worse compared to circuits optimized for that cost metric.

Overall, the experimental evaluation confirms the flexibility of the proposed
approach with respect to different objectives. Moreover, this shows that opti-
mizing for different objectives or architectures does not require to develop new
algorithms, but only to adjust very few parameters in the objective functions.
By this, we provide a mapping solution which is inherently applicable for future
architectures just by employing suitable parameters or by slightly modifying the
cost function.



5 Conclusions

In this work, we evaluated the flexibility of A∗ for mapping quantum circuit to
physical quantum computers. By using coupling maps to model restrictions in the
qubit interactions of these devices, one can specify arbitrary quantum architec-
tures (e.g., NN architectures or IBM QX architectures). We additionally provide
a generic and parameterizable cost function, our approach allows to optimize
for different design objectives (like gate count, circuit depth, or workload distri-
bution) just by changing parameters and without writing any code—inherently
providing a customized mapping algorithm. Our experimental evaluation shows,
that this generic approach is competitive with dedicated approaches for NN ar-
chitectures and that changing the parameters indeed significantly influence the
design objectives as desired.
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