
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

MultiControl: Advanced Control Logic Synthesis
for Flow-Based Microfluidic Biochips

Ying Zhu, Xing Huang, Bing Li, Tsung-Yi Ho, Senior Member, IEEE, Qin Wang, Hailong Yao, Senior
Member, IEEE, Robert Wille, Senior Member, IEEE, and Ulf Schlichtmann, Senior Member, IEEE

Abstract—Flow-based microfluidic biochips are one of the most
promising platforms used in biochemical and pharmaceutical
laboratories due to their high efficiency and low costs. Inside
such a chip, fluids of nanoliter volumes are transported between
devices for various operations such as mixing and detection.
The transportation channels and corresponding operation de-
vices are controlled by microvalves driven by external pressure
sources. Since assigning an independent pressure source to every
microvalve would be impractical due to high costs and limited
system dimensions, states of microvalves are switched by a control
logic using time multiplexing. Existing control logic designs,
however, still switch only a single control channel per operation,
leading to a low efficiency. In this paper, we present the first
automatic synthesis approach for a control logic that is able
to switch multiple control channels simultaneously. Moreover,
we propose the first fault-aware design in control logic by
introducing backup control paths to maintain the correct function
even when manufacturing defects occur. The construction of
control logic is achieved by a highly efficient framework based
on Particle Swarm Optimization, Boolean logic simplification,
grid routing, together with mixing multiplexing. Simulation
results demonstrate that the proposed multi-channel switching
mechanism leads to fewer valve-switching times and lower total
logic cost, while realizing fault tolerance for all control channels.

Index Terms—Flow-based microfluidic biochips, control logic,
fault tolerance, channel multiplexing.

I. INTRODUCTION

In traditional biochemical laboratories, experiments are per-
formed using cumbersome devices such as tubes and droppers.
This work flow is inconvenient and error-prone due to the need
for human intervention. To improve the execution efficiency of

A preliminary version of this work was published in the Proceedings of
IEEE/ACM International Conference on Computer-Aided Design, 2018 [1].
Extensions beyond [1] include a new multiplexing mechanism for peristalsis
valves in mixers, an efficient and effective control-architecture synthesis flow
based on a hybrid Particle Swarm Optimization, two control-logic reduction
strategies, a grid-routing-based control-path construction algorithm, as well
as comprehensive experimental evaluations. (Corresponding author: Xing
Huang)

Y. Zhu, B. Li, and U. Schlichtmann are with the Chair of Electronic
Design Automation, Technical University of Munich, Germany (e-mail: y-
ing.zhu@tum.de, b.li@tum.de, ulf.schlichtmann@tum.de)

X. Huang and T.-Y. Ho are with the Department of Computer
Science, National Tsing Hua University, Hsinchu, Taiwan (e-mail: x-
ing.huang1010@gmail.com, tyho@cs.nthu.edu.tw)

X. Huang is also with the College of Mathematics and Computer Science,
Fuzhou University, Fuzhou, China (e-mail: xing.huang1010@gmail.com)

Q. Wang and H. L. Yao are with the Department of Computer
Science and Technology, Tsinghua University, Beijing, China (e-mail:
woodythu@163.com, hailongyao@tsinghua.edu.cn)

R. Wille is with the Institute for Integrated Circuits, Johannes Kepler
University Linz, Austria. (e-mail: robert.wille@jku.at)

experiments, biochemical industry has achieved a remarkable
advance by providing system-in-a-package solutions, where
experiments can be performed within a compact system com-
pletely. Although this system integration improves experiment
efficiency significantly compared with traditional biochemical
laboratories, only relatively simple experiment protocols can
be processed automatically, and complex biochemical exper-
iments such as exhaustive diagnosis of diseases still cannot
completely avoid human intervention [2].

To overcome the shortcomings of the systems above, flow-
based microfluidic biochips have been investigated intensely
in the past decade [2], [3]. In such a chip, a large number of
devices, e.g., mixers and detectors, are constructed. These de-
vices are connected by microchannels (also referred to as flow
channels) to transport intermediate experiment results. The
transportation of these results is controlled by microvalves,
which are tiny switches built on top of flow channels [4].

A major advantage of biochips is their large integration.
Accordingly, the manufacturing process of biochips has taken a
road similar to integrated circuits by etching microchannels on
a substrate [5]. Observing this similarity, the design automation
community has started to propose methods and work flows to
improve the design quality and efficiency. For example, the
synthesis of biochip architectures has been addressed in [6]–
[12] and the routing of flow channels in [13]–[15]. Further-
more, test methods for defect detection after manufacturing
have also been proposed in [16], [17].

Compared with integrated circuits, biochips, however, ex-
hibit some specific features. Besides flow channels that are
used to transport fluid samples, valves need to be driven by
external air/fluid-pressure patterns to change their states. The
schematic of a biochip is shown in Fig. 1(a) and 1(b), where
the control channel is built on top of the flow channel. An
air/fluid pressure through the control channel squeezes the flow
channel to block the movement of flow samples. When the
air/fluid pressure in the control channel is released, the flow
channel opens again for fluid transportation. In other words,
a valve works like a switch, whose state is controlled by
the air/fluid pressure in the control channel. With valves as
the controlling units, complex biochips can be constructed, as
shown in Fig. 1(c) [18].

When executing an application, the patterns of air/fluid
pressure in the control channels should be generated by a
control logic, which plays a critical role in a biochip, since
it manages the overall execution of applications. Recently,

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 2

flow port control port

flow channelcontrol channel

valve

(a)

control layer

flow

layer

valve

flow channel

control channel

(b) (c)

co
n

tr
o

l

ch
an

n
el

s

co
n

tro
l p

o
rts

(d)
Fig. 1: (a) Schematic of flow-based microfluidic biochips. (b) Cross section of (a). (c) A microfluidic biochip with flow channels
(green) and control channels (yellow and red) [18] (d) Structure of a complete biochip [19].

related research considering control channel optimization has
started to appear. For example, the method in [20] minimizes
pressure-propagation delay in control channels to reduce the
response time of valves. The lengths of control channels are
matched in [21] to synchronize switching times of valves.
These methods, however, mainly focus on the control channels
that deliver air pressure to valves. The control logic to generate
the required pressure patterns has not sufficiently been inves-
tigated yet. Up to now, only one method has been proposed to
consider the reliability of control logic [22], where the order of
patterns that are required to control valves is adjusted to reduce
the maximum number of switching times in the control logic.
This method, unfortunately, still does not address the efficiency
of generating the required pressure patterns.

In this paper, we examine the design of control logic and
propose a method to improve its efficiency in generating the
required pressure patterns. In addition, the resources required
by the control logic are also reduced. The major contributions
of this paper are listed as follows:
• We present the first practical problem formulation for

control logic design considering both control multiplexing
and fault tolerance in flow-based microfluidic biochips.
It is of great significance in improving the execution
efficiency and reliability of biochips, while minimizing
the total cost of a control logic.

• The basic design rules of control logic are examined and
a new channel-switching mechanism is proposed for the
first time, which can switch multiple control channels
simultaneously by expressing channel switching patterns
with Boolean logic. Together with the newly introduced
switching state compression by mixing control, the effi-
ciency of generating the required pressure patterns can
be improved significantly.

• The structure of the control logic is determined by
mapping the identified control patterns onto a general
routing grid. Since this mapping allows control channels
to be routed horizontally and vertically, it provides more
flexibility in determining new structures of control logic.
To the best of our knowledge, this is the first work to
examine the design of control logic itself.

• A systematic approach incorporating both multi-channel
switching and fault tolerance is presented for automatic
control-logic construction, which determines locations of
control valves as well as their connections using a hybrid

Particle Swarm Optimization (PSO) and an efficient grid-
routing algorithm.

• Simulation results confirm that the optimized control
logic leads to fewer valve-switching times and lower total
logic cost, while fault tolerance for all control channels
is implemented successfully.

The rest of this paper is organized as follows. In Section II,
the existing structure of control logic design is explained and
its limitations are discussed. In Section III, new mechanisms
for multi-channel switching and fault-tolerance are presented,
and the problem model of control logic design in flow-based
microfluidic biochips are formulated. The proposed control
logic design methods are then described in detail in Section IV.
Simulation results are reported in Section V. Conclusions are
drawn in Section VI.

II. CONTROL LOGIC IN FLOW-BASED BIOCHIPS

In flow-based biochips, valves at the intersections of flow
and control channels need to be switched by the patterns of
air/fluid pressure generated by the control logic. In Fig. 1(d)
an example of a complete biochip from [19] is shown. The
flow core of the biochip is located at the center for executing
biochemical operations. The control channels surrounding the
flow core, the multiplexer, the core input, as well as the
pressure sources on the right-hand side together form a control
logic to generate pressure patterns to switch valves in the
flow core. Due to the cost and the size of the mechanical
components, it is not practical to assign each valve an indepen-
dent pressure source. For example, in the design in Fig. 1(d),
116 valves in the flow core have been implemented. For
executing applications, instead of using 116 pressure sources
directly, which would be very cumbersome and expensive,
only 15 pressure sources are used to generate pressure patterns.
In other words, a control logic using time multiplexing is
deployed to switch the states of valves.

In Fig. 1(d), the core input at the bottom provides a pressure
source that can be switched on or off. On the right, the control
ports are connected to external pressure sources to create
control patterns that specify which control channel can be
connected to the core input. The multiplexer in the middle
forms a multiplexing function to connect the channels to the
core input according to these control patterns. Once a control
channel is connected to the core input, its pressure value is
updated to the same as that of the core input. Correspondingly,

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 3

core input

x1

x1

x2

x2

control
ports

x1x2 x1x2

control channels

flow channels

control valves

flow valves
2

31
x1x2

control
logic

control
channelcontrol

output

2 31

Fig. 2: Control logic for multiplexing three control channels.
Control ports x1, x1, x2, and x2 are connected to external
pressure sources.

the open/closed state of the valve in the flow core driven by this
control channel is also updated. In the following, the valves in
the flow core are called flow valves and they share the same
indices as the control channels.

Fig. 2 explains the multiplexing function of the control logic
to reduce the number of pressure sources. In this example, four
control ports x1, x1, x2, x2 are connected to pressure sources
to control the connection of the control channels that drive the
three flow valves. In control logic design, the pressure values
of the control ports are often complementary [19], [23]. At
any time, only one of a pair of complementary ports can have
a high pressure, so that the complementary control variables
xi and xi can be implemented. These variables are used to
control the valves built on top of the channels in the control
logic, called control valves as shown in Fig. 2. The outputs of
the control logic represent the states of the control channels,
and are called control outputs. The states of control ports and
the control valves determine which control cahnnel is to be
connected to the core input to change the valves of the control
outputs. For example, control channel 1 driving flow valve 1
is connected to control output 1, whose value is updated to the
value of the core input when both x1 and x2 are set to logic
‘1’. In the following, the terms “control channel” and “control
path” will be used interchangeably.

The combinations of control valves on the control paths
form control patterns for channel multiplexing. For example,
three control patterns x1x2, x1x2, and x1x2 are used in Fig. 2
to control the three channels. At any moment, only one of
them can be true, so that only one control output can be
connected to the core input for updating its pressure value.
If the target pressure should be high, the pressure of the
core input is activated; otherwise, the core input releases
the pressure in the control channel. With this mechanism, n
control ports can be used to multiplex 2n/2 control channels.
If the number of control channels is between 2n/2−1 and
2n/2, some control patterns are not used, such as x1x2 in
Fig. 2. In the control logic in Fig. 2, the number of pressure
sources is five, which is larger than the number of control
channels. Therefore, the control multiplexing actually requires
more pressure sources in this case. However, as the number of
control channels N increases, the required number of pressure
sources 2 ∗ dlog2Ne+1 rapidly decreases compared with N .

The function of the control logic shown in Fig. 2 is to

change the pressure values in the control channels so that
flow valves can be switched to execute applications. These
pressure values are called channel states. Assume that at time
t the channel states are “011”, where ‘1’ represents that the
pressure in the corresponding control channel is high and ‘0’
represents the pressure is low. At time t+ 1, assume that the
states of the control channels need to be updated to “100”.
Since the control logic in Fig. 2 only allows one control
channel to be connected to the core input at a moment, the
state transitions need to be implemented using three switching
operations, in which the control variables x1 and x2 are set
to “11”, “01” and “10”, respectively. In this process, the three
control channels are connected to the core input one after the
other, activated by the control patterns x1x2, x1x2, and x1x2,
respectively. Accordingly, the pressure of the core input should
sequentially be set to ‘1’, ‘0’ and ‘0’ to update the pressures
in the control channels. For convenience, the time to update
all control channels from their states at time t to their states
at time t+1 is called a time slot. Within a time slot, the states
of several control channels may need to be changed by the
control logic. Therefore, the state transition from time slot t
to time slot t + 1 may be split into several time slices, each
of which represents an actuation of the control logic.

III. PROPOSED MULTIPLEXING MECHANISMS FOR
CONTROL LOGIC DESIGN AND PROBLEM

FORMULATION

The control logic design described above is very effective in
reducing the number of pressure sources. However, flow valves
are switched sequentially in this scheme by activating control
channels individually. During the state transition from time
slot t to time slot t+1, the execution of an application on the
biochip is paused. If the number of valves whose states need
to be updated is large, the execution time of the application
can be prolonged. This disadvantage is due to the fact that
only one output can be updated in a time slice. To solve this
problem, a new design scheme that allows multiple control
outputs to be activated simultaneously will be introduced in
the following to improve the efficiency of the control logic.

In addition, the existing control logic design is also sen-
sitive to manufacturing defects. If a control channel cannot
be opened properly, the corresponding flow valve cannot be
switched anymore, potentially leading to a complete chip
failure. This reliability issue is addressed in the proposed
new design scheme with duplicated control paths, which
are constructed together with control paths for multi-channel
switching to improve design efficiency.

A. Multi-channel switching
In Fig. 2, only three flow valves are driven by the control

logic, though the combinations of pressure sources are capable
of generating four control patterns. Consider the scenario that
channel states are switched from “011”→“100”. The control
logic individually switches the second and the third channel
from ‘1’ to ‘0’. Therefore, it is possible to combine the last two
operations. Besides the three control patterns used in Fig. 2,

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 4

core input

x1x2 x1x2 + x1x2

2

31
x1x2 + x1x2

core input

x1

x1

x2

x2

control
ports

x1x2

2

31
x1x2 + x1x2

pattern x1x2

multi-channel

x1

x1

x2

x2

cancel

cancel
merge

merge

(a) (b)
x1x2 + x1x2

Fig. 3: Control logic with multi-channel switching. (a) Addi-
tional control pattern x1x2 is used to update control channels
2 and 3 simultaneously. (b) Simplified control logic after valve
merging and canceling.

there is still the fourth control pattern x1x2 available, which
can be used to switch the channel 2 and 3 together, as shown
in Fig. 3(a). We call this “multi-channel switching”. In this
augmented design, both channels 2 and 3 are connected to
the core input through the newly added control paths. Conse-
quently, in the transition from “011”→“100”, the number of
time slices can be reduced by 1.

In Fig. 3(a), flow valve 3 is driven by two control paths.
At the bottom of these two paths, the two control valves are
connected to the same control port x2. Therefore, they can be
merged to save one valve. The two control valves at the top
of these two control paths are complementary, since they are
connected to x1 and x1. Therefore, no matter what value x1
has, at least one of the two control paths to flow valve 3 opens
on the condition that x2 is set to ‘1’. Accordingly, the two
valves at the top of the two control paths to flow valve 3 can
be canceled. The merging and canceling operations can also be
applied to the control channels to flow valve 2. Consequently,
the control logic can be simplified as shown in Fig. 3(b), where
only one control valve is required in each of the control paths
to the control outputs 2 and 3. This merging and canceling
process is actually the simplification of the Boolean logic
x1x2+x1x2 = x1 and x1x2+x1x2 = x2. The + sign means
that either control path can drive the corresponding flow valve
sufficiently. In Fig. 3(b) the number of valves has been reduced
from 10 to 4 compared with Fig. 3(a). Compared with the
original control logic in Fig. 2, the number of valves has also
been reduced from 6 to 4, while the multi-channel switching
function is still implemented.

In the simplified design in Fig. 3(b), the flow valves can
still be switched individually, because the individual control
patterns x1x2 and x1x2 are still valid for channels 2 and 3
respectively. For example, the control pattern x1x2 connects
only the control channel 3 to the core input, while the other two
channels are still closed. Consider a more complex scenario of
channel states “011”→“100” →“001”→“110”. The transition
“100” →“001” requires two time slices for channels 1 and 3,
while channel 2 does not need to be updated. The transition
“001”→“110” still requires three time slices, since the chan-
nels 1 and 2 cannot be updated simultaneously. Consequently,
the total number of time slices required by the flow valves can

x1x2 + x1x2

core input

x1

x2

x1x2 + x1x2 x1x2 + x1x2

2

31

(a) (b)
“011” “100” “001” “110”

x1

x1

x2

x2

control
ports

x1x2 + x1x2 x1x2 + x1x2

2

31

x2

cancel

cancel
merge

cancel

merge

multi-channel
pattern x1x2

merge

channel state patterns:

x1x2 + x1x2

core input
pattern x1x2

multi-channel

Fig. 4: Control logic reduction by alternate multi-channel
switching. (a) Control pattern x1x2 is used to update control
channels 1 and 2 simultaneously and control channel 2 has no
individual control pattern. (b) Simplified control logic.

be calculated as the sum of time slices in the time slots, i.e.,
2+2+3=7, which is less than the time slices 8 required in the
original design in Fig. 2, where only single-channel switching
is possible.

B. Logic reduction by alternate multi-channel switching for
given applications

In the case in Fig. 3(b), the control logic cannot be reduced
anymore, since all the spare control patterns have been used.
This design still maintains the ability to update each control
channel individually, as well as to update the states of the
channels 2 and 3 simultaneously. The maintained single-
switching ability guarantees that this control logic is capable
of generating states of control channels for any applications.

If the application of the biochip is given, the state tran-
sitions become known. In a sequence of transitions such as
“011”→“100”→“001” →“110”, it can be observed that the
control channel in the middle is always updated together with
another one, either the first or the last. This phenomenon
indicates that it is not necessary to assign channel 2 an
individual control pattern. Instead, the original control pattern
x1x2 in Fig. 3(a) can be spared to implement multi-channel
switching between channels 1 and 2, as shown in Fig. 4(a).

In Fig. 4(a), control channels 1 and 3 receive individual
control patterns x1x2 and x1x2, respectively. The control
channel 2, however, can only be switched together with either
channel 1 by x1x2 or channel 3 by x1x2. This loss of
generality makes this control logic design suitable only for a
given application. But the control logic itself can be simplified
and the switching times of valves in executing the application
can be reduced.

After the merging and canceling operations are applied to
the case in Fig. 4(a), only three control valves are left in
the design, as shown in Fig. 4(b). The logic of the control
patterns can be verified from the multi-channel control patterns
as x1x2 + x1x2 = x2 for channel 1, x1x2 + x1x2 = x1 for
channel 2, and x1x2+x1x2 = x2 for channel 3. Furthermore,
the number of control ports is also reduced by one, since x1
is not required anymore, leading to a further decrease of the
complexity of the biochip platform.

For the state transitions of the control channels

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 5

1 3
5

6

core input

x1

x1

x2

x2

x3

x3

x1x2x3

x1x3

2
4

Fig. 5: Fault tolerance in control logic.

“011”→“100”→ “001”→“110”, the further simplified
control logic requires only 2+2+2=6 time slices, since
channel 2 always shares the new value with another channel.
A special case is in the transition “100”→“001”, where the
state of channel 2 does not change. Therefore, the function
of the chip is independent of whether the state of the second
channel is updated or not, similar to a “don’t care” channel in
logic design. In the design in Fig. 4(b), the pattern x1x2 takes
advantage of this phenomenon for multi-channel switching.
Since the number of control valves in the control logic has
also been reduced significantly, this comparison confirms that
the newly introduced multi-channel switching concept can
improve the execution efficiency of the control logic and
reduce the resource usage at the same time.

C. Fault tolerance in control logic
In Fig. 4(b), there is only one valve and one control path to

a control output. During manufacturing, there might be defects
in the control logic. If a control valve cannot be closed, the
core input is always connected to the control channel, leading
to a failed flow valve in the biochip. To tackle this problem,
a control valve can be duplicated and inserted in series to the
original control valve, similar to the solution in [24]. On the
other hand, if a control valve cannot be opened or a control
path is blocked, there is no path to connect the core input to
the control output to update its state. A simple strategy to solve
this problem is to duplicate all the channels and valves and
insert them in parallel to the original channels and valves. This
method, however, may lead to an unnecessarily complicated
design and large resource usage.

Fig. 5 shows another example of control logic generated by
the proposed method, where the control paths along control
valves to control outputs 2 and 4 are highlighted. In this case,
the control pattern x1x2x3 activates these two outputs simulta-
neously, forming a multi-channel switching pair. Furthermore,
to each of these control outputs, there are two independent
paths through the control logic. If one of these paths is blocked
due to a manufacturing defect, the other path still maintains
the correct function of the control logic.

D. Problem formulation
Based on the new mechanisms discussed above, the control-

logic design considering control multiplexing and fault-

tolerance can be formulated as follows:
Input : The states of all flow valves/control channels at

every moment in a given biochemical application.
Output : An optimized control logic supporting multi-

channel switching and fault tolerance.
Objective: (1) Minimize the number of time slices for

channel switching, (2) minimize the number of control valves,
and (3) minimize the total control-channel length.

IV. A GENERAL FRAMEWORK FOR CONTROL
MULTIPLEXING AND FAULT TOLERANCE

To generate a control logic supporting multi-channel switch-
ing and fault tolerance, a general framework including two
major steps is adopted in this section. First, the given control
channel states are converted to channel switching patterns.
Then control channels that can be enabled simultaneously
are identified to reduce the total number of time slices. In
the second step, control channels are constructed to meet the
multi-channel switching and fault-tolerance requirements and
thus generate the final control logic.

A. Switching states compression by mixing multiplexing
The complexity of control logic is affected by the flow-

valve states to be generated. Generally more valve states lead
to more control channels and valves. In practice, a large
number of valve states are actually generated by mixers. As
shown in Fig. 6(a), each of the three mixers has three flow
valves at the top to create a circular flow for peristalsis
mixing. This function requires these valves to be switched
with a high frequency within a given time period. The
flow-valve states need to repeat a given pattern series, e.g.,
“010”→“011”→“001”→“101”→“100”→“110” [23]. Assume
that each of the three mixers in Fig. 6(a) is activated by this
pattern series once, but at a different time. An exemplary flow-
valve switching states are thus shown as in Fig. 6(b), where
the bold patterns highlight the valves need to be switched (in
total 21 states should be switched in this example).

In a mixer, the flow valves for peristalsis are only used
to create a circular flow with the given pattern series, no
matter from which pattern the series starts. In other words,
the switching series can be rotated, as long as the whole
pattern series is repeated. To compress switching times, we
take advantage of this feature by driving all mixers with the
same peristalsis patterns, as shown in Fig. 6(a). The three
control ports at the top of this structure provide a repeating
regular pattern series for all the peristalsis valves. The real
connection of these ports to the peristalsis valves in the mixers
are controlled by newly introduced valves v1, v2 and v3.
Therefore, the switching states in Fig. 6(b) can be converted
into Fig. 6(c), where v1, v2 and v3 are opened with a low
pressure in their control channels when the mixers start,
and they are closed with a high pressure when the mixers
stop. Since the regular patterns are shared by all mixers and
switch very often, they are generated by external pressure
sources directly. The control logic only needs to generate the
corresponding states for v1, v2 and v3. Compared with the

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 6

(a)

(c)

010
011
001
101
100
110

000

000
000

000

000
000
000

000
000
000

000
000
000
000
000
000

000

011
010

000

110
000
000

100
101
001

000
000
000
010
011
001

000

100
101

000

000
000
000

000
000
110

010
011
001
101

110

000

011
010

000

110
000
000

100
101
001

011
011
011
001

100 001
001

111

100
100

111

110
111
111

110
110
100

(b)

mixer1 mixer2 mixer3 v1v2v3
regular
patterns

mixer1 mixer2 mixer3

core
input

regular patterns

x1x2

x1x2
v1

v3

v2

x1 x2

x2x1

x1x2 x1x2

x1x2

Fig. 6: Switching states compression by mixing multiplexing.
(a) Structure of mixing multiplexing. (b) Switching states
when peristalsis valves in mixers are controlled separately. (c)
Switching states with mixing multiplexing.

original direct control of peristalsis valves in Fig. 6(b), the
control logic only needs to produce 5 switching activities,
fewer than a fourth of the switching activities in Fig. 6(b).

To implement mixing multiplexing, the original switching
states are examined. For each mixer, a new valve is created
on the control paths to its peristalsis valves. These valves are
considered control valves and the original peristalsis valves
are removed from the control patterns. Consequently, the
control logic can generate the control patterns such as x1x2,
x1x2 and x1x2 to control v1, v2 and v3, respectively. In
addition, mixers can be activated by multi-channel switching.
For example, mixer2 and mixer3 in Fig. 6(c) can be activated
by the control pattern x1x2 simultaneously. This concept of
mixing multiplexing is a pre-processing step for control logic
construction, and it scales well as the number of mixers in the
chip increases, since for each mixer only the control patterns of
one valve need to be generated, which only mark the starting
and stopping time of the mixer and thus do not switch often.

B. Computation of multi-channel switching scheme

As discussed in Section III-B, the number of time slices
of the control logic and the resource usage can be reduced
significantly if the control channel states required for the
application are considered. These states are written as a state
matrix P̃ , whose rows represent the states of all control
channels at different moments. For example, for the states of

the transitions “011”→“100”→“001”→“110”, P̃ is written as

P̃ =


0 1 1
1 0 0
0 0 1
1 1 0

 Ỹ =


0 1 1
1 0 0
1 X 0
0 0 1
0 0 1
1 1 0

 (1)

In a transition such as “011”→“100”, the first control chan-
nel needs to be connected to the core input and the pressure
value of the core input should be set to ‘1’. Afterwards, the
second and the third control channels need to be connected
to the core input with its pressure value set to ‘0’. In both
cases, it is the responsibility of the control logic to connect
the corresponding control channels to the core input. These
requirements to the control logic can be represented by a
switching matrix Ỹ derived from the state matrix P̃ . In this
matrix, a ‘1’ represents that the corresponding control channel
is connected to the core input and its state is updated to the
same as that of the core input; a ‘0’ indicates no update
of the corresponding control channel. Therefore, these rows
are called switching patterns. As an example, the switching
matrix of P̃ in (1) is also shown as Ỹ . Note that in the
transition “100”→“001”, when the first channel is updated to
‘0’, the second channel can be updated together with the first
channel, or it can be ignored since its state does not change.
Accordingly, a don’t care ‘X’ appears. In reality, multiple ‘1’s
in a row in Ỹ may not be updated simultaneously, in case
this specific multi-channel combination is not implemented.
Therefore, such a row needs to be split into time slices so that
the corresponding channels are updated by several operations.
To reduce the overall number of time slices, the multi-channel
combinations need to be selected carefully.

In a general case, assume that the switching matrix is written
as

Ỹ =


Y0
Y1
· · ·

YM−1

 =


y0,0 y0,1 · · · y0,N−1
y1,0 y1,1 · · · y1,N−1

· · · · · ·
. . . · · ·

yM−1,0 yM−1,1 · · · yM−1,N−1


(2)

where yi,j is a constant taking one of the values ‘0’, ‘1’ or ‘X’.
M is the number of transitions in which at least one channel
should be switched. N is the number of control channels.

As discussed above, a row in Ỹ may contain multiple ‘1’s
that cannot be implemented simultaneously. Consequently, the
corresponding time slot of switching these control channels
needs to be split into several time slices. The objective is that
the overall number of time slices implementing the switching
matrix Ỹ is reduced. To fulfill this objective, the potential
multi-channel switching combinations need to be examined.

For N control channels, there are 2N − 1 possible combi-
nations to form multi-channel scheme, defined by the multi-

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 7

Fig. 7: Multiplexing matrix and a feasible selection matrix
corresponding to the switching matrix in (1).

plexing matrix X̃ with N columns, as

X̃ =


X0

X1

...
X2N−2

 =



1 0 0 0 · · · 0
0 1 0 0 · · · 0

· · · · · · · · · · · ·
. . . · · ·

0 0 0 0 · · · 1
1 1 0 0 · · · 0
0 1 1 0 · · · 0

· · · · · · · · · · · ·
. . . · · ·

1 1 1 1 · · · 1


(3)

where each row represents a possible combination of control
channels to form the multi-channel switching. If an item xi,j
in X̃ is ‘1’, the corresponding control channel is included in
the multi-channel switching combination.

Since the objective of multi-channel switching is to select
proper combinations of rows in X̃ to implement the switching
matrix Ỹ , a selection matrix T̃ of M rows and 2N−1 columns
is defined as follows

T̃ =


t0,0 t0,1 · · · t0,2N−2
t1,0 t1,1 · · · t1,2N−2

· · · · · ·
. . . · · ·

tM−1,0 tM−1,1 · · · kM−1,2N−2

 (4)

where the i-th row defines which rows in X̃ are selected to
implement the switching pattern in the ith row of Ỹ in (2).

For example, Fig. 7 shows the multiplexing matrix and a
feasible selection matrix corresponding to the switching matrix
in (1). There are a total of seven channel combinations and
four of them are selected to implement the switching patterns
defined in Ỹ . Note that the last switching pattern in Ỹ , i.e.,
‘110’, is split into two time slices to update the states of
the first two control channels. More specifically, the channel
combinations ‘100’ and ‘010’ are selected to update the states
of the two channels sequentially.

In a row in (2), if an item yi,k is ‘1’, meaning that this
control channel must be activated once, it must be covered by
at least one of the rows in X̃ that has a ‘1’ at the corresponding
column. This constraint can be expressed as

j=2N−2∑
j=0

ti,jxj,k

{
≥ 1, yi,k = 1
= 0, yi,k = 0

∀i = 0, . . .M − 1, k = 0, . . . N − 1

(5)

where xi,j and yi,k are given constants. ti,j are 0-1 variables
whose values are determined by a solver.

In a control logic, the maximum number of allowed control
patterns is usually given or constrained by the number of exter-

nal pressure sources as a constant Qcw = 2dlog2Ne and usually
Qcw � 2N−1. Accordingly, for each row in X̃ , a 0-1 variable
li is defined to indicate whether the corresponding combination
is selected. The total number of selected combinations should
be no larger than Qcw, constrained as

2N−2∑
i=0

li ≤ Qcw. (6)

If row j in X̃ is not selected so that lj = 0, all the selection
variables in column j in T̃ must be set to 0, constrained as

ti,j ≤ lj , ∀i = 0, . . .M − 1, j = 0, . . . 2N − 2. (7)

Since a row in T̃ represents which multi-channel switching
combinations from X̃ are selected to implement the switching
patterns in the corresponding row in Ỹ , the number of ‘1’s in
this row in T̃ represents the required number of time slices. To
minimize the total number of slices, the following optimization
problem can be solved

minimize
M−1∑
i=0

2N−2∑
j=0

ti,j (8)

s.t. (5), (6), (7). (9)

After solving (8)–(9), the combinations of channels to im-
plement multi-channel switching are determined by the values
of li. The values of ti,j specify how the switching patterns
in Ỹ can be realized by these control patterns to reduce the
overall switching times.

For an application, the number of rows in the switching
matrix Ỹ might be large, making (8)–(9) very difficult to
solve. In practice, many rows in the switching matrix Ỹ might
be equal. For example, a typical application contains many
mixing operations, which use only a few switching patterns
repeatedly. In the proposed method, these rows are merged
and the number of merged rows are multiplied with ti,j in (8)
to reduce the scale of the problem. Another deployed technique
to reduce the scale of (8)–(9) is that in the multiplexing
matrix, the maximum number of channels that are allowed to
switch simultaneously is constrained to a given number. This
is acceptable because the case that a large number of channels
are updated simultaneously is not common in reality. In the
experiments, this maximum number is set to 3.

C. Control-logic construction
With the ILP model formulated above, control channels

that need to be switched independently/simultaneously are
determined, and it is then the task to construct a control logic
that can meet the channel-switching requirements while taking
the fault-tolerance design into account. Accordingly, in this
subsection, we present an efficient heuristic for control-logic
construction, which consists of two major steps: 1) control-
architecture synthesis and 2) control-path construction.

1) Control-architecture synthesis

After computing the multi-channel switching scheme in
Section IV-B, the 0-1 variables li, i = 0, 1, . . . , 2N − 2 carry
the information of all the selected multiplexing combinations.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 8

Input Module

0-1 variables li,

i=0,1,…,2N-2

Multiplexing

 matrix

Randomly initialize the particle

population P and parameters

Control-Architecture Synthesis

Compute the fitness value of each

particle pi according to (12)

Initialize pbesti and gbest of the

population, and set t=0

Initialize i=0

Update the position of pi

according to (13) and (14)

Replace pbesti by if 1t

iS  1() ()t

i iFn S Fn pbest 

Replace gbest by if 1t

iS  1() ()t

iFn S Fn gbest 

pi is the last particle?

t >= maximum iteration?

No

i=
i+

1

Yes

No

t=
t+

1

Yes

 gbest+logic forest

X

Fig. 8: Flow chart of the proposed control-architecture synthe-
sis flow.

Moreover, the number of available control ports is initialized
to 2 ∗ dlog2Ne, which can generate a total of 2dlog2Ne dif-
ferent control patterns accordingly. The major goal of control-
architecture synthesis is then to assign each control channel
exact control patterns, so that the multi-channel switching
scheme determined in Section IV-B can be effectively imple-
mented and the total cost of the control logic is minimized. To
this end, we apply the heuristic Particle Swarm Optimization
[25], which was developed through simulation of the social
behaviors of bird flocks, and has been found to be robust in
solving complex engineering and optimization problems [26],
[27]. Fig. 8 shows the flow chart of the proposed control-
architecture synthesis flow.

Consider a particle population P , each particle pi is associ-
ated with a velocity vector Vi representing the flying direction
and a position vector Si indicating the current solution in
the search space. A fitness function is applied for particles
to evaluate the quality of their positions. Moreover, a local
best position pbesti of pi in its search history is tracked,
and a global best position gbest with the best assessment of
all particles is also recorded. The whole population is then
updated by iteratively changing the position of each particle,
based on its flying velocity as well as the corresponding
experience perception (i.e., exchange information with pbesti
and gbest). After a certain number of iterations, the global best
position of the population is selected as the final solution.

Particle Encoding and Evaluation Mechanism: In the
proposed method, the position vector Si of a particle pi ∈ P
is encoded as
cp(i1), cp(i2), . . . , cp(ij), 0 6 ij 6 2N−2 and lij = 1 (10)

s.t. ∀s, t with s 6= t, cp(is) 6= cp(it) (11)

where the value of each cp(ij) is set to a constant k (0 6 k <
2dlog2Ne), indicating that the k-th control pattern is assigned
to the multiplexing combination lij .

With the encoding strategy defined above, the population is
then initialized by randomly scattering the particles into the
whole search space. Furthermore, to evaluate the solution qual-
ity of a particle pi during the PSO search, the corresponding
fitness function can be expressed as:

Fn(Si) = α · Cv + β · El (12)

where α and β are two weighing factors, Cv and El are the
numbers of control valves and control paths in the control
architecture expressed by pi, respectively.

Formula (12) implies that the particle positions with fewer
control valves and paths will be selected as potential solutions
and used to guide the searching of the whole population. The
encoding of a particle, however, only indicates the control
patterns applied to each multiplexing combination. In order
to derive the values of Cv and El, the underlying architecture
expressed by the particle needs to be determined. Accordingly,
we present a control-architecture synthesis approach based on
the merging and canceling operations discussed in Section III,
which consists of the following two steps: logic reduction for
flow valves and logic forest construction.

(1) Logic reduction for flow valves: The major goal of this
step is to reduce the complexity of the control architecture
expressed by a particle, by simplifying the internal logic
connected from core input to each flow valve. We take a part of
multiplexing matrix of a biochemical application (see below)
as an example to illustrate this process.

0 1 1 1 0
1 1 0 0 0
0 0 0 0 1
0 0 1 0 1


x1x2x3
x1x2x3
x1x2x3
x1x2x3

f1 f2 f3 f4 f5

In this matrix, five flow valves (f1 − f5) are connected
to the core input and a total of four multiplexing combina-
tions are selected to realize the multi-channel control, i.e.,
2N−2∑
i=0

li = 4, N = 5. Moreover, the control pattern assigned

to each combination in a particle is shown beside each row
of the matrix. Fig. 9(a) shows the corresponding logic trees
constructed for f1 to f5, where root of each tree is the core
input, each internal node represents a control valve connected
to the corresponding control port, each edge represents a
potential control path connecting two valves, and leaf nodes
are flow valves. It is then the task to simplify each logic tree
by iteratively merging and canceling those redundant control
valves. For example, in the logic tree of flow valve f2, the
valve pairs of x1 and x2 can be merged, respectively, and
both x3 and x3 can be cancelled since they always lead to
a connected path to f2. Similarly, as shown in Fig. 9(b), the
logic trees of f3 and f5 can also be simplified.

The reduction of a logic tree, on the other hand, is actually
equivalent to the simplification of the Boolean logic of the
corresponding flow valve, i.e., finding the essential prime

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 9

Tr1 Tr2 Tr3 Tr4

x2 x2 x2 x2

x3 x3

x2

x3

x1

f1

x1

f2 f4

core core core core

f3 f3

x1

x3 x3

f2

x3

x2

x1 x1 x1

Tr5

x2 x2

x3 x3

core

f5 f5

x1 x1

Logic

reduction

(a)

Tr1 Tr2 Tr3 Tr4 Tr5

x2

x3

x2 x2 x2

x3 x3

x2

x3

x1

f1

x1

f2

f4

x2

f5

core core core core core

f3 f3

x1 x1x1

shared

valves

(b)
Fig. 9: Logic reduction for flow valves. (a) The initial logic trees constructed for flow valves. (b) Logic trees after internal
simplification.

x1

x2

x3 f2 x3

f4

core

x2

x3

f1 f3

f5

f3

Mt1

reverse

order

(a)

x3 f2

core

x1

x2

f1 f3 f3

x3

x2

x3

Mt2

x2

x3

core

x1

f4

x2

f5

Mt3

(b)
Fig. 10: Logic forest construction for the trees de-
scribed in Fig. 9(b). (a) Mt1=Tr1+Tr2+Tr3+Tr4+Tr5. (b)
Mt2=Tr1+Tr2+Tr3 and Mt3=Tr4+Tr5.

implicants of its Boolean expression. This problem, however,
has been proved to be NP-complete [28]. To identify the
redundant control valves so that the internal logic of each
flow valve can be simplified in an efficient manner, we adopt
the Quine-McCluskey method [29] to realize the merging and
canceling operations discussed above. It can be seen from
Fig. 9 that the number of control valves in the Boolean logics
connected from core input to f1−f5 are reduced by 0,4,1,0,4,
respectively. In other words, the total number of control valves
used in the whole control logic is reduced by 9 through the
internal simplification for flow valves. Moreover, the number
of potential control paths in the logic (i.e., the number of edges
in the logic trees) is also reduced from 32 to 21.

(2) Logic forest construction: With the simplified Boolean
logic of each flow valve, in this step, the control architecture is
further optimized in a global manner by merging the logic trees
among flow valves, thereby generating a forest representing the
underlying architecture of the final control logic.

We still take the multiplexing matrix mentioned above as an
example to illustrate this optimization technique. As shown in
Fig. 10, after generating the logic trees of flow valves, these
trees can then be merged sequentially to share more control
valves and paths, thus further reducing the cost of the whole

control logic. Fig. 10(a) shows the resulting logic after merging
all the trees in Fig. 9(b), where the logic forest is degraded into
a large logic tree in this case. Although the numbers of control
valves and paths are reduced to only 6 and 12, respectively,
this logic suffers from the following drawbacks: 1) it does
not take potential manufacturing defects into account and this,
thereby, will lead to plenty of duplications of both control
valves and paths when performing the fault-tolerance design
and 2) leaf node f4 appears on the left-hand side of f3 when
merging the logic tree Tr4 into Mt1, leading to a reverse-
order pair of flow valves. When the states of flow valves
f3 and f5 need to be updated simultaneously, control pattern
x1x2x3 will be activated. Since the control path between core
input and flow valve f3 can pass through flow valve f4, the
state of f4 will be updated at the same time, leading to a logic
error. Accordingly, to achieve a tradeoff between the cost of
control logic and the efficiency of fault tolerance, meanwhile
ensuring the logical correctness of system, we present the
following rules to effectively guide the merging of logic trees:
• We set an allowable step size Ms to indicate the maxi-

mum number of logic trees that can be merged continu-
ously.

• If reverse-order pairs are introduced into the logic when
merging a logic tree Tri, the current merging process will
be terminated and a fresh round of merging will be started
with Tri as the first logic tree.

Fig. 10(b) shows the generated logic forest when parameter
Ms is set to 3, which includes two subtrees Mt2 and Mt3.
Compared with the control architecture described in Fig. 9(b),
the number of control valves used in the logic is further
reduced from 15 to 10, and the number of control paths is
reduced from 21 to 16, while the potential for fault-tolerance
is also maintained in the control architecture.

After performing the two reduction methods discussed
above, the fitness value of a particle pi, i.e., Fn(Si) defined
in (12), can be derived directly by counting the number of
internal nodes and edges in the logic forest, respectively.

Updating Strategy of Particle Population: As illustrated
in Fig. 8, after initializing the particle population, the PSO-
search is then performed by iteratively updating the position

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 10

cp(1)=3 cp(2)=1 cp(4)=2 cp(6)=5 cp(8)=7 cp(9)=8

cp(1)=4 cp(2)=1 cp(4)=3 cp(6)=7 cp(8)=5 cp(9)=8

Si
t`

pbesti/

gbest

cp(2)=1

cp(9)=8

Encodings with

the same values
Encodings with different values De

cp(1)=3

cp(1)=4

cp(4)=2

cp(4)=3

cp(6)=5

cp(6)=7

cp(8)=7

cp(8)=5

cp(1)=4 cp(2)=1 cp(4)=2 cp(6)=5 cp(8)=5 cp(9)=8Si
t+1

conflict encoding

Si
t+1 cp(1)=4 cp(2)=1 cp(4)=2 cp(6)=3 cp(8)=5 cp(9)=8

encoding adjustment

experience perception

Fig. 11: Experience perception of particles during the PSO
search.

of each particle, and thus exploring the whole solution space.
Correspondingly, the updating strategy of particles used in the
proposed algorithm can be stated as follows:
• The position updating of a particle pi corresponding to

the flying velocity in the t-th iteration can be formulated as

St′

i = Uv(S
t
i , w, r, Cu) =

 swap(x1, x2), r < w
rep(x1), r ≥ w&Cu 6= ∅
St
i , otherwise

(13)
where w is the inertia weight in PSO, r is a randomly
generated number distributed on the interval [0, 1), Cu is
a set of control patterns that has not been assigned to any
control channel, swap(x1, x2) is an updating function used
to exchange the values between two randomly generated
encoding positions x1 and x2, and rep(x1) replaces the current
value at position x1 by a new control pattern in Cu.
• The position updating of pi corresponding to the experi-

ence perception in the t-th iteration can be formulated as

St+1
i = Up(S

t′

i , c, r1) =

{
Ip(pbesti), r1 < c
Gp(gbest), r1 ≥ c

(14)

where c is the acceleration coefficient, r is a randomly gener-
ated number distributed on the interval [0, 1), and Ip(·)/Gp(·)
is the individual/global perception function used to exchange
encoding information between St′

i and pbesti/gbest. The per-
ception functions are executed through the merging between
particle encodings, which consists of the following steps:

(1) Scan the encoding in each parent particle, and select
the same encodings as the values of corresponding encoding
positions in the new particle.

(2) Copy all the different encodings of two parent particles
to a set De.

(3) Randomly select encodings from De and apply them to
the new particle until the values of all encoding positions are
determined.

(4) If the newly generated particle is illegal, i.e., the values
of some encoding positions violate the constraint (11), replace
these conflict encodings by the unused control patterns in Cu.

We take the particles shown in Fig. 11 as an example to
illustrate above procedure. In this example, the multiplexing
combinations li, i = 1, 2, 4, 6, 8, 9 are selected to realize the
multi-channel control. In the beginning, encodings with the

Input Module

Logic forest

Control-Path Construction

Initialize the routing grid according to gbest

Assign control valves to exact locations

on the routing grid

Perform line routing for each edge in

the logic forest

The optimal

particle gbest

The final control logic

Duplicate control valves and generate

the corresponding fault-tolerant paths

Fig. 12: Flow chart of the proposed control-path construction
method.

same values in St′

i and pbesti/gbest, i.e., cp(2) and cp(9),
are copied to the new particle St+1

i directly. Furthermore, the
remaining encodings of two parent particles, including cp(1),
cp(4), cp(6), and cp(8), are added to the set De. The encodings
in the rectilinear bounding boxes with dashed lines are then
selected and applied to the corresponding positions of St+1

i .
Note that since the same control pattern is assigned to cp(6)
and cp(8) in the new particle, it is thus adjusted by replacing
cp(6) with a new control pattern.

2) Control-path construction

After a certain number of iterations, the global best solution
of the population, i.e., the control architecture expressed by
the particle with minimum fitness value, is selected as the
underlying architecture to construct the final control logic in
the physical design step.

Fig. 12 shows the flow chart of the proposed control-path
construction method. In this method, a general routing grid as
shown in Fig. 13 is used as virtual guide to construct control
paths. Such a grid is composed of a set of horizontal and
vertical edges, and edges join other edges at nodes. On this
routing grid, a path can be viewed as a series of consecutive
connected edges. On each edge, a control valve can be built.

With the logic forest constructed previously, in this step, the
control logic is generated by constructing the corresponding
paths from core input to each flow valve on the virtual grid.
The size of grid is initialized to Cp × (Lv − 1), where Cp is
the number of control ports used in the logic and Lv is set
to the total number of leaf nodes in the logic forest. Then the
core input as well as the valves used in the control logic can
be assigned to exact locations on the grid according to the
relative positions of internal nodes in the logic forest. Fig. 13
shows the routing grid as well as the assigned valve locations
corresponding to the logic forest described in Fig. 10(b). Since
each edge in the logic forest corresponds to a routing net
connecting two valves, it is then the task to find control paths
such that all the routing nets can be routed successfully. In the
proposed method, we traverse each tree in the logic forest and
find ‘L’ routing paths for each net using the well-known line-

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 11

x1

x2

x3

x3

x2

f1 f2 f3 f4 f5

core

input
control

valve

control

path

(a)

x1

x2

x3

x3

x2

f1 f2 f3 f4 f5

shared valves for

fault tolerance

duplicated valves

backup

path

obstacles

c1

c2

c3

c4

c5

c6

logic error

(b)
Fig. 13: Physical design of control logic. (a) The constructed
control logic corresponding to the logic forest described in
Fig. 10(b). (b) Fault-tolerance design for flow valve f1.

core input

x1

x2

x3

x3

x2

f1 f2 f3 f4 f5

Fig. 14: The final control logic supporting fault tolerance
corresponding to the logic forest described in Fig. 10(b).

routing algorithm [30]. Note that there may exist several paths
between two control valves on the routing grid. To reduce the
total channel length, in other words the cost of control logic,
our algorithm tends to share routing paths among different
nets, i.e., using the edges occupied by previously routed nets
on the grid as much as possible. The constructed control paths
corresponding to the routing nets in Fig. 10(b) are also shown
in Fig. 13(a), where line segments in different colors represent
control paths connected to different flow valves.

After generating all the control paths of the logic system,
fault-tolerance design can be performed by computing a back-
up path for each flow valve. Since manufacturing defects can
result in either the failure of control valves or the blockage
of control paths, the original control channel as well as the
control valves along the path should be seen as obstacles when
finding backup paths for a flow valve. As shown in Fig. 13(b),
for example, as we computing the backup path for flow valve
f1, the control path from core input to f1 and control valves
c1, c2, and c3 are seen as obstacles. In other words, any backup
path of f1 cannot reuse these resources. Moreover, valves c4
and c5 along the control paths of f4 and f5 can be shared to
reduce extra cost. Note that valve c6 cannot be shared since the
new path will inevitably pass through f2, and thereby may lead
to a logic error if f2 is required to be switched independently
in the biochemical application. Correspondingly, a duplicated
control valve connecting x3 is added to the grid. The dashed
lines in Fig. 13(b) shows the final backup path constructed for
f1. Besides control valves c4 and c5, a part of the control path
of f4 is also shared in the backup path. Similarly, the backup
paths of other flow valves can be constructed to generate the

TABLE I: Details of benchmarks used in this paper.
Benchmarks (#Mx,#Fv ,#Cs,#Sp,#Ip)

RA30: (2,19,10221,13408,86) R0: (1,22,5000,6684,153)
mRNA: (3,37,5361,1403,52) R1: (2,27,6000,8013,244)

CPA: (3,25,2941,1409,92) R2: (3,48,127000,9372,325)

final control logic as shown in Fig. 14, in which only two
extra control valves are added to implement fault tolerance in
the logic system.

V. SIMULATION RESULTS

The proposed method was implemented in C/C++ and tested
on a PC with 2.4 GHz CPU and 32GB memory. We demon-
strate the results of three real-life biochemical applications that
are CPA (Colorimetric Protein Assay) used in RA30 chip from
[9], IVD (Int-Vitro Diagnostics) applied in CPA chip from
[9], and mRNA chip from [31]. In addition, three randomly
generated sequences of switching patterns R0, R1, and R2
are tested to demonstrate the characteristics of the proposed
method further. The details of aforementioned benchmarks are
listed in Table I, where #Mx is the numbers of mixers used in
the applications and #Fv is the number of flow valves/control
channels. The numbers of states of flow valves in executing
the corresponding applications are reported in #Cs and the
numbers of switching patterns corresponding to the rows of
the switching matrix Ỹ in (2) are reported in #Sp. After
merging equivalent rows of switching patterns as described
in Section IV-A, the numbers of independent patterns used in
(8)–(9) are reported in #Ip. The parameters used in this paper
are set as follows: w = 0.5, c = 0.5, α = 0.7, β = 0.3, and
Ms = 3. In our simulations, the control logic itself has two
layers to implement the multiplexing function. In the flow part,
the flow channels and control channels also form a two-layer
structure. Therefore, the whole chip can be considered as two
two-layer blocks interfaced by the control outputs.

A. Verification of mixing-multiplexing control architecture
In Section IV-A, we presented a mixing-multiplexing con-

trol architecture (MMCA) by switching the states of flow
valves in mixers in a centralized manner, and thus further
improve the efficiency of a control logic. To verify the effec-
tiveness of mixing multiplexing, we compare the design results
between MMCA with the architecture in which mixers are
controlled individually (IMCA). Fig. 15 shows the comparison
results on the total number of valve-switching times. Overall
MMCA achieves a 25%–39% switching times reduction across
all the benchmarks, with an average reduction of 34%. This
significant reduction of switching times will further improve
the execution efficiency of biochips. Moreover, as shown in
Fig. 16, compared with IMCA, the total number of applied
control patterns is also reduced by 10%–29% in the bench-
marks, with an average reduction of 21%. This result implies
that MMCA has a greater potential to realize a large-scale
multi-channel control.

B. Validation of multi-channel switching mechanism
As discussed previously, in the traditional single-channel

switching mode, the ‘1’s in a switching matrix must be updated

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 12

TABLE II: Validation of the proposed multi-channel switching mechanism.
Bench Control architecture with individual mixing Control architecture with mixing multiplexing

#Ts #Tm Imp (%) #Nc #Ap #Cp Time (s) #Ts #Tm Imp (%) #Nc #Ap #Cp Time (s)

RA30 27025 15247 43.6 19 17 10 2.0 27025 10080 62.7 19 12 11 3.3
CPA 4198 1742 58.5 25 22 10 12.3 4198 1065 74.6 25 13 11 1.2

mRNA 4464 1597 64.2 37 20 12 13.5 4464 1055 76.4 37 18 13 38.5
R0 6891 6799 1.3 22 26 10 17.6 6891 5090 26.1 22 20 13 5.7
R1 14334 9776 31.8 27 28 10 37.1 14334 6179 56.9 27 24 13 17.2
R2 26058 11781 54.8 48 51 12 414.8 26058 7481 71.3 48 46 15 275.0

Average — — 42.4 — — — — — — 61.3 — — — —

15247

1742 1597

6799

9776

11781

10080

1065 1055

5090

6179

7481

34%

39% 34%

25%

37%

36%

Average reduction=34%

Fig. 15: Comparison on the number of valve-switching times.

individually, leading to a low-efficiency control system. To
validate the efficiency of the proposed multi-channel switching
mechanism, we compare the synthesis results of two switching
modes in both IMCA and MMCA in Table II.

In IMCA, the total numbers of time slices in the single-
channel switching mode are reported in the column #Ts in
Table II. With multiple-channel switching, these numbers are
reduced significantly in most cases, as shown in the column
#Tm . The reduction of these switching times can reach up to
64.2%, as shown in the column Imp.

The numbers of control patterns used in the control logic are
shown in the column #Ap, which are larger than the numbers
of control channels in the column #Nc due to the additional
control patterns for multi-channel switching for cases R0, R1
and R2, while being slightly smaller in cases RA30, CPA and
mRNA since several flow valves in these cases always activate
simultaneously with other valves so that their control patterns
are shared. It can be observed that with a limited increase
of the number of control patterns, a significant reduction of
switching times (42.4% on average) from #Ts to #Tm can be
achieved. Moreover, the number of control ports used in the
control logic are reported in the column #Cp.

In MMCA, compared with the single-channel switch-
ing mode, the proposed multi-channel switching mechanism
achieves a 26.1%–76.4% time-slice reduction, with an average
reduction of 61.3%. Furthermore, in all benchmarks, the
numbers of control patterns used in the control logic are fewer
than the numbers of control channels, this is achieved by a
slight increase of the number of control ports. This result,
on one hand, demonstrates the high efficiency of our multi-
channel switching scheme, and meanwhile further confirms the
effectiveness of the proposed MMCA.

The CPU time to synthesize the control logic by the
proposed method is reported in the columns Time. It can be
seen that all results can be generated within a reasonable time.

In addition, in determining multi-channel switching patterns,

17

12

29%

22
20

26
28

51

13

18
20

24

46

41% 10%

23%
14%

10%

Average reduction=21%

Fig. 16: Comparison on the number of applied control patterns.

Fig. 17: Reduction of total channel switching times under
different multiplexing distances.

the maximum number of control channels that can be switched
together is bound to a given number to increase the imple-
mentation efficiency. The reduction of valve-switching times
with different bounds is shown in Fig. 17. As expected, the
reduction increases as the number of channels that can be
switched together increases. However, a further increase from
3 to 4 does not lead to significant performance improvement,
justifying the bound set in our method. For case R2 the reduc-
tion even decreases slightly due to the heuristics introduced in
the proposed formulation to improve computing efficiency.

C. Validation of control logic construction

In the proposed heuristic for control-logic construction, as
we compute the fitness value of a particle, two logic simplifi-
cation strategies based on merging and canceling operations,
i.e., logic reduction for flow valves (internal simplification)
and logic forest construction, are proposed to eliminate those
redundant control valves. In this part, we first validate the
effectiveness of the two methods by comparing the numbers
of control valves in each phase. Fig. 18 shows the comparison
results without considering fault tolerance. It can be seen
that the internal simplification achieves a 13%–33% control-
valve reduction, with an average reduction of 22%. On the

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 13

TABLE III: Comparison on the cost of control logic.

Bench
Control architecture with individual mixing Control architecture with mixing multiplexing

ILP [1] Our method Imp (%) Time (s) ILP [1] Our method Imp (%) Time (s)
#Cv #Cl #Cv #Cl #Cv #Cl ILP [1] Ours #Cv #Cl #Cv #Cl #Cv #Cl ILP [1] Ours

RA30 137 443 135 386 1.4 12.9 1307.0 0.1 75 323 67 209 10.7 35.3 559.5 0.1
CPA 179 629 159 431 11.2 31.5 2146.7 0.1 104 464 98 301 5.8 35.1 846.3 0.0

mRNA 212 949 202 738 4.7 22.2 3159.5 0.1 213 820 205 523 3.8 36.2 2303.6 0.0
R0 274 948 242 691 11.7 27.1 3981.4 0.2 172 740 156 616 9.3 16.8 2465.5 0.1
R1 330 942 218 584 33.9 38.0 4002.9 0.1 332 1110 217 628 34.6 43.4 3942.3 0.1
R2 812 2292 503 1278 38.1 44.2 10171.2 0.2 1170 2669 766 1476 34.5 44.7 9541.8 0.3

Average — — — — 16.8 29.3 3.1× 104X 1.0 — — — — 16.5 35.3 3.3× 104X 1.0

Average=22%

165

127

81

195

131
98

216
189

151

320

213

139

260

198

128

552

461

351

23%

36%

23%

35%

13%

31%

33%

24%

35%

16%

24%

35%

Average=33%

Fig. 18: Validation of the proposed logic reduction methods.

other hand, through the construction of logic forest, control
valves that can be merged together among the paths connected
to different flow valves can be identified efficiently, thereby
leading to a 33% control-valve reduction on average.

Moreover, we compare the proposed heuristic with the ILP
method in [1] in terms of the cost of the final control logic,
including the number of control valves and the total channel
length. Table III shows the comparison results. In IMCA,
the proposed heuristic achieves a 1.4%–38.1% control-valve
reduction and a 12.9%–44.2% channel-length reduction across
all benchmarks, and the average reduction rates reach up to
16.8% and 29.3%, respectively. In MMCA, the number of
control valves and the total channel length can also be reduced
by 16.5% and 35.3% on average. In other words, our heuristic
notably outperforms the ILP method in [1].

The runtimes of the two methods are also reported in
Table III. Since the ILP method suffers from the drawback
of low efficiency, our heuristic runs much faster than [1] in
the benchmarks. The last row of Table III with respect to the
CPU time is normalized to our heuristic. It can be seen that
our method achieves 3×104 times speedup on average in both
IMCA and MMCA. In other words, the proposed method is
more practical for the microfluidic logic design.

VI. CONCLUSION

We have studied the control-logic design problem consider-
ing both control multiplexing and fault-tolerance in flow-based
microfluidic biochips and presented a systematic method to
efficiently solve it. By introducing the multi-channel switching
mechanism, the time slices required for switching valves
can be reduced significantly. Moreover, independent backup
paths have also been introduced to improve the reliability of
automatically generated control logic. With these concepts, a
synthesis framework based on Particle Swarm Optimization,
Boolean logic simplification, grid routing, together with mix-

ing multiplexing has been presented. Simulation results have
shown that our method can generate a control logic with high
efficiency, low cost, and fault tolerance within a short time.

ACKNOWLEDGMENT
The work of Ying Zhu, Bing Li and Ulf Schlichtmann was supported in part

by Deutsche Forschungsgemeinschaft (DFG) through TUM International Graduate
School of Science and Engineering (IGSSE). The work of Ulf Schlichtmann was
also supported in part by Technical University of Munich - Institute for Advanced
Study, funded by the German Excellence Initiative and the European Union Seventh
Framework Programme under grant agreement N◦ 291763.

REFERENCES

[1] Y. Zhu, B. Li, T.-Y. Ho, Q. Wang, H. Yao, R. Wille, and U. Schlichtmann,
“Multi-channel and fault-tolerant control multiplexing for flow-based mi-
crofluidic biochips,” in Proc. Int. Conf. Comput.-Aided Des., 2018, pp. 123:1–
8.

[2] K. Hu, K. Chakrabarty, and T.-Y. Ho, Computer-Aided Design of Microfluidic
Very Large Scale Integration (mVLSI) Biochips. Springer, 2017.

[3] J. M. Perkel, “Microfluidics: Bringing new things to life science,” Science, vol.
322, no. 5903, pp. 975–977, 2008.

[4] X. Huang, T.-Y. Ho, W. Guo, B. Li, and U. Schlichtmann, “Minicontrol:
Synthesis of continuous-flow microfluidics with strictly constrained control
ports,” in Proc. Design Autom. Conf., 2019, pp. 145:1–6.

[5] I. E. Araci and S. R. Quake, “Microfluidic very large scale integration (mVLSI)
with integrated micromechanical valves,” Lab Chip, vol. 12, pp. 2803–2806,
2012.

[6] T.-M. Tseng, B. Li, U. Schlichtmann, and T.-Y. Ho, “Storage and caching:
Synthesis of flow-based microfluidic biochips,” IEEE Design & Test, vol. 32,
no. 6, pp. 69–75, 2015.

[7] T.-M. Tseng, B. Li, M. Li, T.-Y. Ho, and U. Schlichtmann, “Reliability-
aware synthesis with dynamic device mapping and fluid routing for flow-based
microfluidic biochips,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 35, no. 12, pp. 1981–1994, 2016.

[8] M. Li, T. Tseng, B. Li, T. Ho, and U. Schlichtmann, “Sieve-valve-aware
synthesis of flow-based microfluidic biochips considering specific biological
execution limitations,” in Proc. Design, Autom., and Test Europe Conf., 2016,
pp. 624–629.

[9] C. Liu, B. Li, H. Yao, P. Pop, T.-Y. Ho, and U. Schlichtmann, “Transport or
store? Synthesizing flow-based microfluidic biochips using distributed channel
storage,” in Proc. Design Autom. Conf., 2017, pp. 49:1–49:6.

[10] T. Tseng, M. Li, D. N. Freitas, T. McAuley, B. Li, T. Ho, I. E. Araci, and
U. Schlichtmann, “Columba 2.0: A co-layout synthesis tool for continuous-
flow microfluidic biochips,” IEEE Trans. Comput.-Aided Design Integr. Cir-
cuits Syst., vol. 37, no. 8, pp. 1588–1601, 2018.

[11] Q. Wang, H. Zou, H. Yao, T.-Y. Ho, R. Wille, and Y. Cai, “Physical co-design
of flow and control layers for flow-based microfluidic biochips,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 37, no. 6, pp. 1157–1170,
2018.

[12] Z. Chen, X. Huang, W. Guo, B. Li, T.-Y. Ho, and U. Schlichtmann, “Physical
synthesis of flow-based microfluidic biochips considering distributed channel
storage,” in Proc. Design, Autom., and Test Europe Conf., 2019, pp. 1525–
1530.

[13] C.-X. Lin, C.-H. Liu, I.-C. Chen, D. T. Lee, and T.-Y. Ho, “An efficient bi-
criteria flow channel routing algorithm for flow-based microfluidic biochips,”
in Proc. Design Autom. Conf., 2014, pp. 141:1–141:6.

[14] X. Huang, T.-Y. Ho, K. Chakrabarty, and W. Guo, “Timing-driven flow-
channel network construction for continuous-flow microfluidic biochip-
s,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., 2019,
doi:10.1109/TCAD.2019.2912936.

[15] A. Grimmer, Q. Wang, H. Yao, T.-Y. Ho, and R. Wille, “Close-to-optimal
placement and routing for continuous-flow microfluidic biochips,” in Proc.
Asia and South Pacific Des. Autom. Conf., 2017, pp. 530–535.

[16] K. Hu, F. Yu, T.-Y. Ho, and K. Chakrabarty, “Testing of flow-based microflu-
idic biochips: Fault modeling, test generation, and experimental demonstra-
tion,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 33, no. 10,

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 14

pp. 1463–1475, 2014.
[17] C. Liu, B. Li, B. B. Bhattacharya, K. Chakrabarty, T.-Y. Ho, and U. Schlicht-

mann, “Testing microfluidic fully programmable valve arrays (FPVAs),” in
Proc. Design, Autom., and Test Europe Conf., 2017, pp. 91–96.

[18] K. S. Elvira, X. C. i Solvas, R. C. R. Wootton, and A. J. deMello, “The
past, present and potential for microfluidic reactor technology in chemical
synthesis,” Nature Chemistry, no. 5, pp. 905–915, 2013.

[19] L. M. Fidalgo and S. J. Maerkl, “A software-programmable microfluidic device
for automated biology,” Lab Chip, vol. 11, pp. 1612–1619, 2011.

[20] K. Hu, T. A. Dinh, T.-Y. Ho, and K. Chakrabarty, “Control-layer routing and
control-pin minimization for flow-based microfluidic biochips,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 36, no. 1, pp. 55–68, 2017.

[21] H. Yao, T.-Y. Ho, and Y. Cai, “PACOR: practical control-layer routing flow
with length-matching constraint for flow-based microfluidic biochips,” in Proc.
Design Autom. Conf., 2015, pp. 142:1–142:6.

[22] Q. Wang, S. Zuo, H. Yao, T.-Y. Ho, B. Li, U. Schlichtmann, and Y. Cai,
“Hamming-distance-based valve-switching optimization for control-layer
multiplexing in flow-based microfluidic biochips,” in Proc. Asia and South
Pacific Des. Autom. Conf., 2017, pp. 524–529.

[23] J. Melin and S. Quake, “Microfluidic large-scale integration: the evolution of
design rules for biological automation,” Annu. Rev. Biophys. Biomol. Struct.,
vol. 36, pp. 213–231, 2007.

[24] W.-L. Huang, A. Gupta, S. Roy, T.-Y. Ho, and P. Pop, “Fast architecture-level
synthesis of fault-tolerant flow-based microfluidic biochips,” in Proc. Design,
Autom., and Test Europe Conf., 2017, pp. 1671–1676.

[25] R. Eberhart and J. Kennedy, “Particle swarm optimization,” in Proc. of IJCNN,
vol. 4, 1995, pp. 1942–1948.

[26] X. Huang, G. Liu, W. Guo, Y. Niu, and G. Chen, “Obstacle-avoiding algorithm
in x-architecture based on discrete particle swarm optimization for vlsi design,”
ACM Trans. Design Auto.Elect. Syst., vol. 20, no. 2, pp. 1–28, 2015.

[27] G. Liu, X. Huang, W. Guo, Y. Niu, and G. Chen, “Multilayer obstacle-
avoiding x-architecture steiner minimal tree construction based on particle
swarm optimization,” IEEE Trans. on Cyber., vol. 45, no. 5, pp. 1003–1016,
2014.

[28] T. K. Jain, D. S. Kushwaha, and A. K. Misra, “Optimization of the quine-
mccluskey method for the minimization of the boolean expressions,” in Proc.
of ICAS, 2008, pp. 165–168.

[29] W. V. Quine, “The problem of simplifying truth functions,” The American
mathematical monthly, vol. 59, no. 8, pp. 521–531, 1952.

[30] K. Mikami, “A computer program for optimal routing of printed circuit
connectors,” IFIPS Proc., 1968.

[31] J. S. Marcus, W. F. Anderson, and S. R. Quake, “Microfluidic single-cell
mRNA isolation and analysis,” Analytical Chemistry, vol. 78, no. 9, pp. 3084–
3089, 2006.

Ying Zhu received the B.S. degree in optoelectronic
information engineering from Huazhong University
of Science and Technology, Wuhan, China, in 2013,
and the M.S. degree in communications engineering
from Technical University of Munich Munich, Ger-
many in 2016.

She is currently pursuing the Ph.D degree with the
Chair of Electronic Design Automation, Technical
University of Munich. Her research interest is the
design automation for emerging computing system.

Xing Huang received the B.S. degree in comput-
er science and technology and the Ph.D. degree
in electronic science and technology from Fuzhou
University, Fuzhou, China, in 2013 and 2018, respec-
tively. He was a joint Ph.D. with the Department of
Electrical and Computer Engineering, Duke Univer-
sity, Durham, NC, USA, supported by the Chinese
Scholarship Council.

He is currently a Postdoctoral Research Fellow
with the Department of Computer Science, National
Tsing Hua University, Hsinchu, Taiwan. His current

research interests include design automation for microfluidic biochips and
integrated circuits.

Bing Li received the Dr.-Ing. degree from Technical
University of Munich (TUM), Munich, Germany, in
2010 and finished the Habilitation there in 2018. He
is currently a researcher with the Chair of Electron-
ic Design Automation, TUM. His current research
interests include high-performance and lower-power
design, design automation for microfluidic biochips,
as well as emerging systems.

Tsung-Yi Ho (M’08–SM’12) received his Ph.D. de-
gree in Electrical Engineering from National Taiwan
University, Taipei, Taiwan, in 2005.

He is a Professor with the Department of Com-
puter Science of National Tsing Hua University,
Hsinchu, Taiwan. His research interests include de-
sign automation and test for microfluidic biochips
and nanometer integrated circuits.

Dr. Ho was a recipient of the Best Paper Awards at
the VLSI Test Symposium (VTS) in 2013 and IEEE
TCAD in 2015. Currently he serves as an ACM

Distinguished Speaker, a Distinguished Lecturer of the IEEE Circuits and
Systems Society, and Associate Editor of the ACM JETC, ACM TODAES,
ACM TECS, and IEEE TVLSI, and the Technical Program Committees of
major conferences, including DAC, ICCAD, DATE, ASP-DAC, ISPD, etc.

Qin Wang received the B.S. degree in software
engineering from the Beijing University of Posts and
Telecommunications, Beijing, China, in 2013, and
the Ph.D. degree in computer science and technology
from Tsinghua University, Beijing, China, in 2018.
His current research interests include design automa-
tion for microfluidic biochips.

Hailong Yao (M’09–SM’15) received the B.S.
degree in computer science and technology from
Tianjin University, Tianjin, China, in 2002, and the
Ph.D. degree in computer science and technology
from Tsinghua University, Beijing, China, in 2007.

From 2007 to 2009, he was a postdoctoral re-
search scholar in the Department of Computer Sci-
ence and Engineering, University of California at
San Diego, La Jolla. He is an associate professor
in the Department of Computer Science and Tech-
nology in Tsinghua University. His research interests

include computer-aided design for microfluidic biochips and very large scale
integration (VLSI) physical design.

Dr. Yao received two Best Paper Award Nominations at ICCAD in 2006
and 2008, respectively. He received the ISQED Best Paper Award Nomination
in 2011, and received the SASIMI Best Paper Award in 2016.

Robert Wille (M’06–SM’15) is Full Professor at
the Johannes Kepler University Linz, Austria. He
received the Diploma and Dr.-Ing. degrees in com-
puter science from the University of Bremen, Ger-
many, in 2006 and 2009, respectively. Since then,
he worked at the University of Bremen, the German
Research Center for Artificial Intelligence (DFKI),
the University of Applied Science of Bremen, the
University of Potsdam, and the Technical University
Dresden. Since 2015, he is working in Linz. His
research interests are in the design of circuits and

systems for both conventional and emerging technologies. In these areas, he
published more than 250 papers in journals and conferences and served in
editorial boards and program committees of numerous journals/conferences
such as TCAD, ASP-DAC, DAC, DATE, and ICCAD. For his research, he
was awarded, e.g., with a Best Paper Award at ICCAD, a DAC Under-40
Innovator Award, a Google Research Award, and more.

Ulf Schlichtmann (M’90–SM’18) received the
Dipl.-Ing. and Dr.-Ing. degrees in electrical engi-
neering and information technology from Technical
University of Munich (TUM), Munich, Germany, in
1990 and 1995, respectively.

He is Professor and the Head of the Chair of
Electronic Design Automation at TUM. He joined
TUM in 2003, following 10 years in industry. His
current research interests include computer-aided
design of electronic circuits and systems, with an
emphasis on designing reliable and robust systems.

Increasingly, he focuses on emerging technologies such as lab-on-chip and
photonics.

