
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

Storage-Aware Algorithms for Dilution and Mixture
Preparation with Flow-Based Lab-on-Chip

Sukanta Bhattacharjee, Member, IEEE, Robert Wille, Senior Member, IEEE,
Juinn-Dar Huang, Member, IEEE, and Bhargab B. Bhattacharya, Fellow, IEEE

Abstract—Lab-on-Chip (LoC) technology has emerged as one
of the major driving forces behind the recent surge in biochemical
protocol automation. Dilution and mixture preparation with flu-
ids in a desired ratio, constitute basic steps in sample preparation
for which several LoC based architectures and algorithms are
known. The optimization of cost and time for such protocols
requires proper sequencing of fluidic mix-and-split steps, and
storage-units for holding intermediate-fluids to be reused in
later steps. However, practical design constraints often limit the
amount of on-chip storage in microfluidic LoC architectures
and thus can badly affect the performance of the algorithms.
Consequently, results generated by previous work may not be
useful (in the case they require more storage-units than available)
or more expensive than necessary (in the case when storage-units
are available but not used, e.g., to further reduce the number of
mix/split operations or reactant-cost). In this paper, we propose
new algorithms for dilution and mixing with continuous-flow
based LoCs that explicitly take care of storage constraints while
optimizing reactant-cost and time of sample preparation. We
present a symbolic formulation of the problem that captures the
degree of freedom in algorithmic steps satisfying the specified
storage constraints. Solvers based on Boolean satisfiability are
used to achieve the optimization goals. Experimental results
show the efficiency and effectiveness of the solution as well as a
variety of applications where the proposed methods would prove
beneficial.

I. INTRODUCTION

Labs-on-a-Chip (LoC, [2]) are integrated devices which
exploit recent advances in microfluidics to provide an alterna-
tive to conventional and bulky lab equipment for biomedical
experiments. In fact, they realize standard lab operations such
as mixing and splitting of fluids or even heating and observing
in an automatic and low-cost fashion which offers much higher
throughput. LoCs have already been applied in areas such as
point-of-care diagnosis [3], sample preparation [4–8], DNA
analysis [9], and drug discovery [10].

Several platforms have been proposed such as digital mi-
crofluidic biochips (DMFBs) or continuous-flow microflu-

The work of B. B. Bhattacharya was supported, in part, from the grant
provided by INAE Chair Professorship, and from a special PPEC-funded grant
to Nanotechnology Research Triangle provided by Indian Statistical Institute,
Kolkata. A preliminary version of this paper has appeared in the proceedings
of DATE 2018 [1].

S. Bhattacharjee is with Center for Cyber Security, New York University,
Abu Dhabi 129188, UAE, E-mail: sb6538@nyu.edu

R. Wille is with Institute for Integrated Circuits, Johannes Kepler University
Linz, 4040 Linz, Austria, E-mail: robert.wille@jku.at

J.-D. Huang is with Department of Electronics Engineering, National Chiao
Tung University, Hsinchu 300, Taiwan. E-mail: jdhuang@mail.nctu.edu.tw

B. B. Bhattacharya is with the Department of Computer Science and
Engineering, Indian Institute of Technology Kharagpur, India. Email: bhar-
gab.bhatta@gmail.com

idic biochips (CFMBs). Traditionally, the latter class has
enjoyed wide acceptance in the engineering community as
they mimic chemical protocols more realistically [3, 9, 11].
Modern CFMBs are usually equipped with pressure-driven
micro-valves that allow for controlling the fluid flow through
a network of micro-channels [12–14]. More specifically, a
CFMB normally consists of two layers of permanently etched
micro-channels called the flow and control layer as shown in
Fig. 1(a). External pressure sources are applied to the control
layer to deflect the flexible membrane (placed at the intersec-
tion between the two layers) deep into the flow layer Fig. 1(b).
This creates a pressure-driven micro-valve that allows for
controlling the fluid flow. Based on this, more complex units
such as mixers, micro-pumps, multiplexers, and storage-units
can be built by suitably organizing micro-valves [11–13].

flow
channel

control
channel

flow layervalve flow
channel
control
channel

membrane

valve-on (no pressure applied)

control layer

membrane
(deflected)

external pressure

valve-off (pressure applied)

(a) (b)

Fig. 1: Schematic of a two-layer microfluidic device: (a) top-
view and (b) cross-sectional view of valve-states [13].

Flow-based LoCs such as CFMBs have been considered as
one of the key technologies for automatic sample preparation,
i.e., the generation of dilutions and mixtures of fluids in
certain ratios [6–8, 15, 16]. The corresponding flow-based mi-
crofluidic architectures are usually equipped with one or more
on-chip mixers and few storage-units. The mixers implement a
mixing model, e.g., a rotary mixer, commonly used in CFMB
(a detailed description of various kinds of rotary mixers and
their supporting mixing models is provided later in Section II).

A “storage-module” is needed when an intermediate
fluid-mixture needs to be stored for subsequent use. We
consider a biochip architecture as shown in Fig. 2 for sam-
ple preparation. It comprises one storage module that has a
number of storage-units arranged as parallel channels, each of
which can store unit-volume fluids, i.e., the amount contained
in one segment of the rotary mixer. The transportation of a
fluid to (from) the module is controlled by de-multiplexer
(multiplexer), and they can be interchangeably configured.
Access to (from) this module requires an additional carrier

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 2

Mixer

(implementing mixing model)

Storage cells

(store intermediate fluids)

ratio valve

pum
ping

valvega
te
va
lv
e

L
a
tc
h
va
lv
e

S
to
ra
ge
-u
n
it

se
gm

en
t

Mux/Demux

Mux/Demux

Fig. 2: Microfluidic architecture for sample preparation.

fluid to transport the payload between an on-chip mixer
segment and the storage-unit [15]. During this operation, the
carrier fluid enters through one port of a mixer-segment and
exits through the other port of the mixer – pushing out the
payload. Before transporting a payload to a segment of the
storage module (or from the module to the mixer), valves in
the interconnection network need to be configured to create
a close-loop connection between the rotary mixer and the
storage module. In this paper, we assume that such trans-
portation mechanism is supported by the underlying biochip
architecture.

Instead of using a dedicated storage module, free channels
can also store intermediate fluids. The method proposed in [17]
realizes a sequencing graph by allocating free channels for
intermediate storage during the design process. While this
method [17] utilizes free channels for storage, it will need an
accurate ‘metering’ mechanism for selecting unit-volume fluid
while loading and storing it from the channels themselves.
Furthermore, the use of free channel as storage may lead to
inaccuracies which affect the target-concentration and, hence,
is crucial particularly for sample preparation [18]. A dedicated
storage module equipped with access control can handle this
volume-control problem more conveniently at the cost of some
additional resources. Because of this and in order to ease
the following descriptions, we assume a microfluidic platform
with a dedicated storage module as shown in Fig. 2. However,
the proposed approach can also be adapted to channel storage
as used in [17].

Several approaches have been proposed for sample prepa-
ration on LoCs [4–8, 16, 19] considering different optimiza-
tion objectives such as minimization of the (1) number of
mixing operations, (2) consumption of valuable reagents, and
(3) amount of waste generation. However, most of the existing
LoC sample preparation methods only consider these three
optimization objectives, but ignore that, on most chips, the
number of available storage-units is additionally limited. This
poses a problem since results generated by previous work may
not be useful (in the case they require more storage-units than
available) or more expensive than necessary (in the case when
storage-units are available but not used, e.g., to further reduce
the number of mixing operations or reactant-cost). Besides
that, many biochemical assays often demand multiple samples

to be prepared in parallel – again, requiring a storage-aware
sample preparation.

Moreover, the explicit consideration of storage-units may
also help to improve on the other objectives. For example,
since existing methods for sample preparation do not consider
on-chip storage restrictions, a designer has to deploy a maxi-
mum number of storage-units (corresponding to the worst case
storage requirement of the underlying method) for each sample
preparation module – significantly increasing the costs. Vice
versa, in cases where sample preparation is possible without
any intermediate storage-units, possible improvements by the
fact that these units are on the chip anyway are not utilized.
Hence, either way, sample preparation methods are required
which satisfy restrictions on on-chip storage-units or exploit
their availability even if they are not necessarily required in
order to reduce the costs.

In this paper, we address these issues by proposing a
storage-aware sample preparation method for mixing two
or more biochemical reagents on a CFMB. A SAT-based
approach is proposed which allows to check several options of
generating the desired target ratio and choosing the one which
makes the best usage of the available storage-units while,
optimizing sample preparation costs and/or time. The proposed
method also guarantees that no solution is chosen which re-
quires more storage-units than available for the given platform,
and flags when such a solution does not exist. Moreover the
proposed algorithm can be generalized for applications to
other microfluidic platforms such as micro-electrode-dot-array
(MEDA) [20], FPVA [21] and PMD [22], which support even
stronger mixing models.

The organization of the rest of this paper is as follows.
Section II describes the preliminaries of sample preparation,
reviews existing sample preparation algorithms, and motivates
this work. Afterwards, an overview of the proposed methods
is presented in Section III. Based on this, detailed descriptions
for dilution and mixing are given in Section IV and Section V,
respectively. Experimental results are reported in Section VI.
Finally, the paper is concluded in Section VII.

II. BACKGROUND AND MOTIVATION

This section briefly reviews commonly used fluid mixers on
microfluidic platforms. Moreover, it details the task of sample
preparation using CFMBs as well as the available methods
proposed for this purpose. Afterwards, we are discussing how
the restriction on the number of storage-units affects the
sample preparation and requires alternative solutions for this
crucial task. Overall, this provides the necessary background
and motivation for the remainder of this work.

A. Backgrounds

1) Microfluidic mixers and mixing models: Rotary mixers
are commonly used in CFMBs for mixing two or more
fluids [6–8, 16]. More precisely, CFMBs allow to realize
multiple mixing-ratios using a Mixer-N which is divided into
N equally large segments as shown in Fig. 3(a). The term
“segment” is used to denote a unit-section of Mixer-N , and

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 3

(b)

(d)

(c)

(e)

R1

R2

R3

R4

(a)

se
gm

en
t

Fig. 3: (a) A 4-segment rotary mixer (Mixer-4), and possible
mixing models (b) (1:3) (c) (1:1) (d) (1:2:1) (e) (1:1:1:1).

the corresponding volume of the channel is defined as “unit-
volume”; thus a mixer-segment can hold unit-volume fluid.
The ratio valves allow to fill each segment with a different
fluid as illustrated in Figs. 3(b)-(e). Afterwards, those fluids
can be mixed by actuating the pumping valves in a peristaltic
sequence at a high frequency. Eventually, this allows to employ
various mixing models e.g. (1:3), (1:1), (1:2:1), or (1:1:1:1) if
Mixer-4 is deployed.

(a)

fluid vesselvalve Mixer-4

R1

R2

R3

R4

Mixer-4

(b)

valve

Fig. 4: Schematic of (a) fully programmable valve array [21]
and (b) programmable microfluidic device [22].

The same mixing models can be realized by recently pro-
posed flow-based LoC platforms such as fully programmable
valve arrays (FPVA [21]) or Programmable Microfluidic De-
vice (PMD [22]). They are flexible and highly re-configurable
and, by this, allow to realize the rotary mixers, storage cells,
and transportation channels by properly configuring valve
states (using methods such as [23–26]). For example, Fig. 4(a)
and Fig. 4(b) show a 4 × 4 FPVA platform and a 4 × 4
PMD, in which valves and fluid vessels are arranged in a
regular fashion. Fluid vessels are connected using horizontal
and vertical flow channels. As seen in Fig. 4(a), this allows
four mixers (Mixer-4) implementing various mixing models
corresponding to the rotary mixers shown in Figs. 3(b)-(e).

2) Sample Preparation: Sample preparation is the process
of mixing two or more biochemical fluids in a given volumetric
ratio through a sequence of mixing operations1. Fig. 5 depicts
the main steps involved in sample preparation. Given a target
ratio of m input fluids M = {R1 : R2 : · · · : Rm = x1 : x2 :
· · · : xm}, where 0 ≤ xi ≤ 1 and

∑m
i=1 xi = 1, we represent

the desired ratio with respect to a mixing model supported
by the microfluidic platform (here: CFMB) and a user-defined

1Note that the term dilution is used when two fluids (usually sample and
buffer) are mixed; otherwise the general term mixing is common.

tolerance 0 ≤ ε < 1. On a CFMB platform that supports multi-
ple mixing model such as a Mixer-N , and given a user-defined
tolerance ε, the target ratio M is transformed to a reachable
mixing ratio {R1 : R2 : · · · : Rm = y1 : y2 : · · · : ym},
where 0 ≤ yi ≤ Nd and

∑m
i=1 yi = Nd, d ∈ N. Note that d

is selected depending on the user-defined error tolerance limit
0 ≤ ε < 1 satisfying maxi{|xi − yi

Nd |} < ε. The following
example describes the ratio-transformation procedure.

Input ratio:

M = {R1 : R2 : · · · : Ri : · · · : Rk =

where, 0 ≤ ci ≤ 1 and
∑k

i=1 ci = 1

Mixing model:

e.g., Mixer-N

Error

0 ≤ ε < 1

Optimization obj:

e.g., minimize sample

preparation time
(mixing steps), cost

(reagent usage/waste)

Sequencing graph
representing sequence

of mixing steps

Transform M to a reachable
target ratio depending on the underlying
mixing model satisfying error-tolerance

e.g., in case of mixing model supported

{R1 : R2 : · · · : Rk = x1

Nd : x2

Nd : · · · : xk

Nd },
so that

∑k
i=1 xi = Nd, d ∈ N and

maxi{|ci − xi

Nd |} < ε

for sample preparation
CAD algorithms

tolerance:

Output:

c1 : c2 : · · · : ci : · · · : ck}

by Mixer-N ,M can be transformed as:

(dilution: k = 2, mixture: k ≥ 3)

Fig. 5: Overview of sample preparation.

Example 1. Consider a target ratio of two input
fluids {sample : buffer = 0.489 : 0.511} (note that,
0.489 + 0.511 = 1). The target ratio can be represented
as {sample : buffer = 125 : 131} (125 + 131 = 44) for
Mixer-4 (i.e., N = 4) and for ε = 0.001. Note that
max{|0.489 − 125

44 |, |0.511 − 131
44 |} = 0.0007 < ε, i.e., d is

chosen to be four. Note that, d = 4 is the smallest number
which satisfies the given error-tolerance.

For the transformed ratio {R1 : R2 : · · · : Rm =
y1 : y2 : · · · : ym}, the sample-preparation algorithm
genMixing [8] represents each yi as d-digit N -ary number
i.e., (yi)10 = (aid−1a

i
d−2 · · · ai1ai0)N . Next, these m d-digits

are scanned from right-to-left to construct a mixing tree in a
bottom-up fashion. The depth of the mixing tree is determined
by d. The mixing tree is used to represent the sequence
of mixing operations needed in order to achieve the target
ratio. Corresponding to each non-zero digit aij in the N -ary
representation of yi, aij units of input reagent Ri are fed as
input to the mixer (shown as leaf nodes of the mixing tree).

The dilution algorithm NWayMix is a special case of
genMixing for mixing only two input reagents i.e., m = 2,
it generates the mixing tree with minimum number of mixing
steps. Fig. 6 shows the mixing tree for the target ratio
{sample : buffer = 125 : 131} generated by the NWayMix.

3) State of the Art: In the recent past, Liu et al. proposed
a tree pruning and grafting method (called TPG [7]) that
starts from an initial mixing tree (based on a (1:1) mixing
model) and transforms it for obtaining a dilution graph for

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 4

1:313:361:3125:131

SSSS

BB

1

1

3

3

32

111

(125)10 = (2 3 3 1)4

(131)10 = (1 0 0 3)4

sa
m

p
le

b
u

ff
er

ta
rg

et
ra

ti
o

waste segment

S
B

Fig. 6: Dilution graph generated with NWayMix.

unequally segmented rotary mixer (Ring-N). In [6], a volume-
oriented sample preparation algorithm (called VOSPA) has
been introduced which employs a greedy strategy. Lei et
al. [27] proposed a network-flow based multi-objective dilu-
tion method that utilizes the full flexibility of the multiple
mixing model offered by Mixer-N . Later, a flow-based sample
preparation algorithm (called FloSPA) was proposed in [8] that
can handle dilution and mixing within one framework and
fully utilize the power of the multiple mixing model supported
by the Mixer-N . A summary of these existing CFMB-based
sample-preparation methods is provided in Table I.

TABLE I: Summary of CFMB sample preparation algorithms.

Method #-Input reagents Use all possible mixing ratios
of underlying mixing model?

Considers number
of storage-units?

NWayMix [8] 2 No No∗
TPG [7] 2 No No�
VOSPA [6] 2 No No�

Flow-based [27] 2 Yes† No�
FloSPA [8] ≥ 2 Yes No�
Proposed ≥ 2 Yes Yes
∗ Does not utilize any storage-unit at all (and, hence, yields rather expensive solutions
when storage-units are available).
� Provides an invalid solution when the number of storage-units is insufficient compared
to what is necessitated by the algorithm.
† Is computationally expensive when the number of segments in Mixer-N increases.

B. Motivation: Storage-aware Sample Preparation

All previously proposed methods for sample preparation using
CFMB do not explicitly take the number of available storage-
units into account (as reviewed in Table I). This leads to
severe problems and drawbacks as illustrated by the following
example.

Example 2. Suppose we need to prepare a mixing ratio
{sample : buffer = 125 : 131} on a CFMB platform that
supports only two on-chip storage-units. The mixing graph
determined with existing sample preparation methods, e.g.,
VOSPA [6] and FloSPA [8], require four and five storage-units
as shown in Fig. 7(a) and Fig. 7(b), respectively. Hence, these
results obtained by these approaches are useless. Moreover,
since a dilution problem is considered here, a mixing graph
requiring zero storage-unit as shown in Fig. 7(c) can be
determined using the NWayMix [8] approach. But since this
does not utilize the available storage-units, a total of 9 units
of the sample are required in this case (cf. Fig. 7(c)) – a very

expensive solution. In contrast, the desired mixing ratio can
be realized more efficiently as shown in Fig. 7(d). Not only the
improved solution requires no more than the available number
of storage-units (hence, it is a valid solution) but also exploits
them to reduce the total number of sample-units from 9 to 4.

17:47

B

BS

1

1
1

3

1

BS

2

125:131

1:15

13:51

125:131

1

1 1

S

B

S B

B

3

1

B

VOSPA (Mixer-4)(a)

1:1

1:3
9:7

1:3

2

1 32 2

(b) FloSPA (Mixer-4)

nm = 5

nw = 7

ns = 3
nb = 8

2

1

1
1

11

#storage-units = 4

1:3

1 3

S B

B

S

S

21:43

1

2

1

1

1

1

125:131

5:11

B
22

S
1

nm = 4

nw = 7

ns = 4
nb = 7

#storage-units = 2

(d) Proposed (Mixer-4)

1

nm = 4

nw = 4

ns = 3
nb = 5

#storage-units = 5

S B

S

S

S B

1:3

13:3

61:3

125:131

1 3

3

3

2 1
1

1

1

(c) NWayMix (Mixer-4)

nm = 4

nw = 9

ns = 9
nb = 4

#storage-unit = 0

B
b

u
ff

er
S

sa
m

p
le

nm : the number of mixing operations; nw : the number of waste segments;

ns(nb) : the number of segments filled up with sample(buffer)

waste
segment

Fig. 7: Dilution graph generated with (a) NWayMix, (b)
VOSPA, (c) FloSPA, and (d) the proposed method for
{sample : buffer = 125 : 131}.

The above-mentioned example motivates us to develop a
storage-aware sample-preparation method, which does not
generate a mixing graph exceeding the number of available
storage-units and, at the same time, fully exploits them in
order to reduce the costs. In this work, we propose such a
method.

III. OVERVIEW ON THE
PROPOSED STORAGE-AWARE METHODS

In this section, an overview of the proposed method is de-
scribed briefly. The main idea is to utilize mixing graphs
generated by earlier approaches as basis, which already pro-
vide an option how to eventually realize the desired con-
centration ratio [6, 8]. Next, the mixing tree is augmented
with additional nodes (allowing to use further input reagents)
and edges (allowing to share intermediate fluids) – eventually
providing several further options for realizing the desired
input ratio. However, in order to determine the one which
gives the minimum reagent usage and, at the same time
satisfies the limitations in storage-units is a computationally
complex task. In order to cope with this complexity, we use
the computational power of Boolean satisfiabiliy solvers [28–
30], which already have been found effective for similar tasks
in the design of LoCs (see e.g. [31–33]). The main idea is
to symbolically represent all possible options (given by the
augmented mixing graph) and to extend this representation
by constraints enforcing the storage limitation. Finally, the
resulting formulation is passed to a solving engine which either
determines a satisfying solution (out of which a mixing graph
satisfying the storage constraints can be derived) or proves
that, considering the available options, no such solution exists.

In the following, the proposed approach is described in two
steps. First, in Section IV, we consider dilution problems only,
i.e., the case where only two fluids (a sample and a buffer)
are mixed. For this case, we start with a mixing tree generated

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 5

by NWayMix [8], i.e., the resulting mixing tree will have
the minimum number of mixing steps, when all inputs to a
Mixer-N are provided as either pure sample (100%) or neutral
buffer (0%). Under such conditions, it requires no on-chip
storage for saving intermediate fluids for later use, and hence,
it constitutes an optimal starting point. Here, in fact, every
ratio can be realized without using any additional storage-unit
for saving intermediate fluid (although when storage-units are
available, they can possibly be utilized to further reduce the
cost of sample preparation). Afterwards, the general case of
mixing is covered in Section V, i.e., the case where more than
two fluids are mixed. We start here with the initial mixing tree
generated by genMixing (the only method known for Mixer-
N that builds a mixing tree from the scratch), and optimize
reagent-usage subject to the constraints on on-chip storage-
units. We also assume that only one Mixer-N is available on-
chip. Note that while a zero-storage solution always exists for
dilution, implementing a given mixing ratio may not always be
possible with a given number of storage-units under the two
assumptions stated earlier regarding the choice of initial tree
and availability of on-chip mixers. The proposed formulation
allows for exploiting further possibilities beyond the choice of
a particular initial tree, though we have not considered in this
work.

IV. PROPOSED METHOD FOR STORAGE-AWARE DILUTION

We describe the proposed method for dilution. Given a desired
ratio of sample and buffer, the method starts with a mixing
graph generated with an existing sample preparation method.
Here, the approach called NWayMix and proposed in [8] is
suitable due to two main reasons2: First, NWayMix generates a
target ratio using Mixer-N with a minimum number of mixing
steps i.e. a minimum sample preparation time. Second, the
mixing tree generated by NWayMix resembles a chain (i.e.,
a skewed graph) and, hence, can be executed on a single
CFMB-mixer without any on-chip storage-unit for interme-
diate fluids. Fig. 8(a) sketches the resulting graph.

x1

x2

x3

ydxd

y3

y2

y1
w2,1

w3,2

w4,3

wd,d−1

wd,3

wd,2

wd,1

w3,1

X1 : Y1

X2 : Y2

X3 : Y3

Xd : Ydd

3

2

1

depth

sample buffer Mixer-N

Xi : Yi

sample : buffer
S

S

S

S

S

B

B

B

B

B
sd

s3

s2

s1

S B

S

S

S B

1:3

13:3

61:3

125:131

1 3

3

3

2 1

depth

1

2

3

4

1

1

1

(a) (c)

S B

S

S

S B

(b)

B

B

Mixer-4w
as

te
se

g
m

en
t

Fig. 8: (a) Dilution tree generated by NWayMix for target
ratio {sample : buffer = 125 : 131} (b) dilution graph after
adding extra edges and reagent nodes for enabling reagent
minimization, (c) general structure of dilution graph.

2Nevertheless, the proposed method can similarly be applied using other
sample-preparation methods.

The main idea is to augment the mixing graph produced
by NWayMix with additional leaf-nodes (input reagents) and
edges – allowing for further options to realize the desired ratio.
This is sketched by means of blue leaf-nodes and edges in
the graph shown in Fig. 8(b). The general structure of such
transformation is shown in Fig. 8(c). They eventually represent
further options for mixing in which intermediate results (stored
in storage-units) are re-used. This yields the question what
inputs shall be used in each mixing step (i.e., what edges
shall remain in the mixing graph). In order to determine the
best possible result, all possibilities should be checked for
this purpose. Since doing this enumerately is infeasible, we
formulate this problem in terms of a satisfiability instance
and the resulting formulation is passed to a solving engine.
The satisfiabilty solver assigns variables satisfying storage
constraints and desired dilution graph can be produced from
the assignment. Fig. 9 summarizes the overall flow of the
proposed dilution algorithm.

Φ← symbolic
representation of T ′

{sample : buffer
= x : y}

Φ′ ← Φ∧
storage constraint(k)

SMT solve(Φ′) using an
optimizing SMT solver
for minimizing reactant

Storage: kDilution
graph

Output:

T ′ ← add extra
edges on T for
enabling reagent
minimization

Input:
T ← dilution tree

generated with
earlier method

Fig. 9: Flowchart of the proposed algorithm for dilution.

A. Symbolic Formulation

In this subsection, we describe our proposed modeling in
detail. We introduce the following free variables for symbolic
modeling of general dilution graph.
Node variables: For each mixing node at depth i in the mixing
graph, we define two rational variables Xi and Yi (1 ≤ i ≤ d)
that denote the ratio between sample and buffer of the resulting
mixing operation at depth i.
Reagent variables: The input reagents (sample and buffer) can
be used in any mixing node at depth i, where 1 ≤ i ≤ d. For
denoting the number of segments filled with sample and buffer
in a Mixer-N at depth i, two integer variables xi and yi are
associated, respectively.
Segment sharing variables: The integer variables wi,j repre-
sent the number of segments that are used in Mixer-N at depth
j from Mixer-N at depth i, where 1 ≤ j < i ≤ d.
Storage variables: An integer variable si is associated with
each mixing node at depth i (1 ≤ i ≤ d) for denoting
the number of on-chip storage-units required for executing
the portion of induced subgraph containing mixing nodes at
depth j, where i ≤ j ≤ d. Note that s1 denotes the storage
requirement for the entire mixing graph.

The annotations in Fig. 8(c) provide all variables used in
this case. However, passing this representation to a solving
engine would yield an arbitrary assignment to all variables
and, hence, a mixing tree that realizes arbitrary ratios in each
depth using an arbitrary number of storage-units – obviously
a solution which is neither valid nor desired. Hence, we need
to further constrain the introduced variables so that indeed the
desired result is determined.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 6

Enforcing the Desired Ratio

First, the correctness of the respective mixing ratios is en-
forced. Note that in the mixing step represented by a node at
depth i, the mixer can fill its segments with sample, buffer,
or any unused fluids produced at depth j > i. The desired
ratio of sample and buffer at depth i i.e., {Xi : Yi} can be
determined with the following equations.

xi + wd,iXd + wd−1,iXd−1 + · · ·+ wi+1,iXi+1 = NXi (1)
yi + wd,iYd + wd−1,iYd−1 + · · ·+ wi+1,iYi+1 = NYi (2)

The above two equations computes the contribution of sample
(buffer), i.e., Xi (Yi), in the ratio generated at depth i using
the contribution of sample (buffer) used at depth i, i.e., xi

N
(yi

N) and the contributions of sample (buffer) in the ratio
produced at depth j = i+1, i2, · · · , d, i.e., 1

N

∑d
j=i+1 wj,iXj

(1
N

∑d
j=i+1 wj,iYj). Furthermore, we can remove the non-

linearity of above equations by adding few extra constraints
as carried out in [8]. This transformation helps to run powerful
sound and complete SMT-solvers [28, 30] and speed up the
computation significantly. Additionally, we need to ensure that
all N input segments for a Mixer-N must be filled with
intermediate fluids or reagents (Eqn. 3), whereas, Mixer-N
can serve at most N segments to other mixers (Eqn. 4). The
required consistency constraints at depth i are enforced by:

xi + yi + wd,i + wd−1,i + · · ·+ wi−1,i = N (3)
wi,i−1 + wi,i−2 + · · ·+ wi,i ≤ N (4)

Besides that, all weights must satisfy 0 ≤ wi,j ≤ N − 1,
for 1 ≤ j < i ≤ d. Analogously, 0 ≤ xi, yi ≤ N − 1 for
1 ≤ i ≤ d. Finally, the constraint (X1 = x) ∧ (Y1 = y)
guarantees that the desired target ratio of sample and buffer
{x : y} is produced.

B. Enforcing the Available Number of Storage-Units

Next, we have to enforce that not more than the available
number of storage-units is used. To this end, we compute
the number of requires storage-units which would be needed
according to a particular assignment of the variables by
traversing the mixing nodes in a bottom-up fashion. For depth
i, the storage variable si denotes the number of on-chip
storage-units required for executing the portion of induced
subgraph containing mixing nodes at depth i, i + 1, · · · , d.
This amount is determined by the following equation:

si =

{
si+1 + wd,i + wd−1,i + · · ·+ wi+2,i, 1 ≤ i < d

0, i = d
(5)

Accordingly, s1 denotes the storage requirement for the
entire mixing graph. Restricting this variable to the number k
of available storage-units, i.e., enforcing s1 ≤ k, only allows
assignments for all other variables which eventually represent
solutions that do not use more than k storage-units.
Fig. 10 shows the induced subgraph of the general mixing
graph from Fig. 8(b) used in the storage calculation. Note
that no storage-unit is required for subgraph containing mixing
node at depth d only. Hence sd = 0 (basis of the induction).

Assume that, si+1 be the minimum number of on-chip storage-
units required to execute the subgraph induced by the nodes at
depth i+1, i+2, · · · , d (induction hypothesis). For computing
storage requirement of the induced subgraph given in Fig. 10,
i.e., si, we need to add si+1 and the total number of on-
chip storage-units used for storing unused segments at depth
i+ 2, i+ 3, · · · , d, that are used in the mixing node at depth
i. Hence, si = si+1 + wd,i + wd−1,i + · · · + wi+2,i. This
proves the correctness of Eqn. (5). Therefore, the bottom-
up computation of s1 gives the minimum number of on-chip
storage-units for executing a dilution graph on the CFMB
platform (Fig. 1(b)) equipped with a single mixer. Note that
it is up to the optimizing SMT-solver [28, 30] that gives a
minimal-reagent solution satisfying storage constraint.

Xi : Yi

si wi+1,i

wi+2,i

wi+3,i

wd,i

i i+ 1

d
ep
th

Xi+2 : Yi+2

si+2

Xi+3 : Yi+3

si+3

Xd : Yd

sd = 0

i+ 2 i+ 3 d

Xi+1 : Yi+1

si+1

Fig. 10: Structure of the induced subgraph in the general
dilution tree, containing mixing nodes at depth i, i+ 1, · · · , d,
used for storage computation.

Example 3. Fig. 11 shows solutions realizing the target ratio
{sample : buffer = 125 : 131} with the least reactant-cost
based on the graph of Fig. 8(a) and considering the avail-
ability of a different number of on-chip storage-units on
the considered architecture given in Fig. 1(b). The proposed
algorithm modifies the graph based on the number of available
storage-units (#storage-units = 0, 1, · · · , 5).

V. PROPOSED METHOD FOR STORAGE-AWARE MIXING

Mixture preparation with microfluidic chips where more than
two fluids are involved, poses a significant challenge compared
to dilution when storage constraints are enforced. This is due
to the inherent tree structure showing up in the baseline mixing
algorithm genMixing [8] and the underlying graph structure
considered by the reagent saving mixing algorithm FloSPA [8],
which minimizes the reagent usage by facilitating the sharing
of intermediate fluids between non-adjacent levels. To enforce
the storage constraint on the mixture preparation, we need
to investigate the general structure of an underlying mixing
trees/graphs and devise suitable constraints for it. We also
need to ensure correctness of the mixing ratio and storage
constraints. Moreover, existing mixing algorithms (genMixing
and FloSPA) do not account for storage constraint. Hence, the
number of storage-units needed by them may not be available
on-chip. The following example demonstrates the need for
storage-aware mixing algorithm.

Example 4. On-chip implementation of the mixing tree gen-
erated with genMixing (Fig. 12) uses twenty five units of input
reagents and two storage elements for storing intermediate

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 7

3:1

3 1

S B

S

S

S B

61:3

21

1

3

1

3

1

125:131

13:3

nm = 4

nw = 7

ns = 8
nb = 3

#storage-unit = 0

3:1

3 1

S B

B

S

S B

25:39

11

1

1

1

3

1

125:131

9:7

B
21

nm = 4

nw = 6

ns = 5
nb = 5

#storage-unit = 1

1:3

1 3
S B

B

S

S

21:43

1

2

1

1

1

1

125:131

5:11

B
22

nm = 4

nw = 7

ns = 4
nb = 7

#storage-units = 2

S
1

1:3

1 3

S B

B

S

S

25:39

1

2

1

1

1

1

125:131

5:11

B
11

nm = 4

nw = 6

ns = 4
nb = 6

#storage-units = 3

S
1

1

1

1:3

1 3

S B

21:43

1

1

1

125:131

13:3

B
1

2

nm = 4

nw = 5

ns = 4
nb = 5

#storage-units =4

S
3

2

B
1

1:3

1 3

S B

17:47

1

1

1

125:131

9:7

B
1

3

nm = 4

nw = 4

ns = 3
nb = 5

#storage-units ≥ 5

S
2

2

B

1

nm: number of mixing steps nw: number of waste segments ns(nb): number of segments filled with sample (buffer)

w
as

te
se

g
m

en
t

Fig. 11: Reagent minimal solution for the target ratio {sample : buffer = 125 : 131} considering the availability of different
number of available on-chip storage-units on the CFMB architecture having one Mixer-4.

R3 R4

1 1

0:0:1:
1:2

R1 R2

3 1

3:1:0:
0:0

R5

2

R3 R4

2 1

0:0:2:
1:1

R5

1

3:1:1:
1:10

R5

1 2 1
R1 R2

2 2

2:2:0:
0:0

R3

11:9:25:
5:14

R1 R2

1 1

1:1:2:
0:0

R3

2

27:25:57:
69:78

R4 R5

1 1

1 1 1 1

1 1waste segment Mixer-4

nm = 8 nw = 21 nr = 25 #storage-units =2

Fig. 12: Mixing tree for the target ratio {R1 : R2 : R3 : R4 :
R5 = 27 : 25 : 57 : 69 : 78} produced by genMixing [8].

fluids. On the other hand, FloSPA reduces the consumption
of input reagent significantly (Fig. 13(c)) but it needs four
on-chip storage elements. The proposed storage-aware mixing
algorithm can produce the desired mixing ratio considering
the limited availability of on-chip storage. Fig. 13(a) shows
the mixing graph that use only one storage and Fig. 13(b)
shows the same when the available number of storage is two or
three. Moreover, the proposed method guarantees no solution
for zero storage. It can be observed that, we can achieve
comparable performance with the best known reagent-saving
algorithm FloSPA by deploying only two on-chip storage
elements.

In the following, we describe how, starting with this mixing
tree generated with an existing sample preparation algorithm
genMixing [8], the proposed method determines a storage-
aware solution. To this end, we first review the differences
between dilution and mixing. Afterwards, we describe how to
augment the corresponding mixing tree so that a storage-aware
solution can be derived.

A. Overview of Storage-Aware Mixture Preparation

In order to describe the proposed method for storage-aware
mixing, we first review the differences between dilution and
mixing. To keep the descriptions accessible, we illustrate the
respective contents with the following example:

Example 5. Consider the target mixing ratio of four input
reagents {R1 : R2 : R3 : R4 = 0.34 : 0.22 : 0.22 : 0.22},
where 0.34+3×0.22 = 1. The target ratio can be transformed
as {R1 : R2 : R3 : R4 = 22 : 14 : 14 : 14}
(22 + 3 × 14 = 43) for Mixer-4 (i.e., N = 4) and the user-
defined error-tolerance limit might be set to ε = 0.004. Note
that max{|0.34 − 22

43 |, |0.22 − 14
43 |} = 0.003 < ε, i.e., d is

chosen to be 3.
For the transformed ratio, genMixing represents each ratio

component as a d-bit base-N number and scans the digits
from right-to-left in order to create a mixing tree in a bottom-
up fashion (see Fig. 14). Note that the numbers 22 and 14
are represented in base-4 (112)4 and (032)4, respectively.
Two units of each input reagent are used in the mixing node
at depth 3 as the least significant digit of each ratio is 2.
Similarly, one unit of R1 and three units of R2, R3, and R4 are
used at depth 2. Moreover, only one unit of intermediate fluid
is shared between the mixing nodes that appear in adjacent
depth of the mixing tree.

In contrast to dilution, it may not always be possible to
perform mixing of three or more reagents without using any
on-chip storage-units. Moreover, each intermediate mixing
node has N − 1 units of waste. The method proposed in
[8] used a SAT-based technique that significantly reduced
the intermediate waste, by augmenting the basis tree (gener-
ated by genMixing) with additional nodes (representing input
reagents), and edges between non-adjacent levels. However,
the SAT modeling proposed in [8] was oblivious to storage
limitation on a microfluidic platform. Here, we propose an
advanced SAT formulation addressing storage constraints dur-
ing mixture preparation.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 8

R2 R3

1 1

0:1:1:
2:0

R1 R4

1 1

1:0:0:
1:2

R4

2

R2 R3

1 1

1:1:1:
0:1

R5

1

3:1:1:
5:6

1 3

R1

27:9:9:
5:14

R2 R3

1 3

0:1:3:
0:0

27:25:57:
69:78

1 1

1

nm = 7 nw = 15 nr = 19

R5

2

R1

1

2

1

R1 R3

1 2

1:0:2:
1:0

R4

1

1:3:3:
7:2

27:9:9:
5:14

3

1

nm = 6 nw = 10 nr = 14

1

R2 R3

1 1

1:1:1:
1:0

R4

1

R1

1
R3 R4

1 1

0:1:1:
1:1

R5

1

R2

1

R4

1 1 2

1

R5

1

27:25:57:
69:78

1

#storage-units = 2, 3#storage-units = 1

R4 R5

1 1

R2 R3

1 1

0:1:1:
2:0

R1 R4

1 1

1:0:0:
1:2

R4

2

3:1:1:
5:6

1 3

1

R5

2

R3 R4

2 1

0:0:2:
1:1

R5

1

3:17:17:
13:14

R2

1 2

27:25:57:
69:78

2 1 1

nm = 6 nw = 9 nr = 13

#storage-units = 4

(a) (b) (c)

w
a
st
e
se
gm

en
t

Fig. 13: Mixing tree for the target ratio {R1 : R2 : R3 : R4 : R5 = 27 : 25 : 57 : 69 : 78} produced by the proposed storage
aware mixing algorithm: (a) #storage-units = 1, (b) #storage-units = 2, 3, and (c) #storage-units ≥ 4 and FloSPA [8].

22:14:14:14

2:2:2:10 0:0:3:1 1:3:0:0

0:0:2:2 2:2:0:0

R3 R4 R1 R2

R1

2 2 2 2

R4

2 11

11

nri = the number of segments filled with Ri, i = 1, 2, 3, 4

nm = 6

nw = 15

(nr1 , nr2 , nr3 , nr4) = (4, 5, 5, 5)

#storage-units = 2

depth

1

2

3

Mixer-4

{R1 : R2 : R3 : R4 = 22 : 14 : 14 : 14}
1

1

2

0

3

2

0

3

2

0

3

2

(22)10 = (112)4

(14)10 = (032)4

R3 R4

3 1

R1 R2

1 3

1
1

waste segment

Fig. 14: Mixing tree for the target ratio {R1 : R2 : R3 : R4 =
22 : 14 : 14 : 14} produced by genMixing [8].

T ′ ← add extra
reagent nodes as

leaf nodes in T

T ′ ← add extra
edges on T

{R1 : R2 : · · · : Rm

= x1 : x2 · · · : xm}

Φ′ ← Φ∧
storage constraint(k)

SMT solve(Φ′) using an
optimizing SMT solver

for reactant minimization

Satisfiable
?

k = k + 1N

Storage: k

Φ← symbolic
representation of T ′

T ← mixing tree
generated with

existing algorithm

Mixing
tree/graph

Y

optional activity

Fig. 15: Flowchart of the proposed algorithm for mixing.

As before, we start with a basis mixing tree (T) produced by
genMixing [8] and it is augmented with additional leaf-nodes
(input reagents) and edges (optional) – allowing for further
options to realize the desired ratio. We denote the augmented
mixing tree (after adding additional reagent nodes) or graph
(after adding additional reagent nodes and edges between non-

adjacent mixing nodes) graph as T ′.
Then, we introduce variables and constraints on T ′ to

provide a symbolic representation (Φ) of all possible options of
T ′ out of which the best one satisfying the storage limitation is
determined by the solving engine. To this end, we particularly
adjust the storage constraints over Φ in order to generate a
storage-constrained symbolic representation (Φ′).

After that, Φ′ is passed to the SAT-solver for checking
whether the desired input ratio can be generated with a mixing
tree/graph that uses at most k on-chip storages. If Φ′ is
satisfiable, then the desired mixing tree/graph can be obtained
from the satisfying assignment to all variables. Otherwise (Φ′

is unsatisfiable), no such mixing tree/graph exists with only
k on-chip storage elements. In this case, k is incremented
by one and the process is repeated until a satisfying solution
and, hence, a corresponding mixing tree/graph is obtained.
Following this flow, a minimal number of on-chip storages
is guaranteed3. Fig. 15 summarizes this overall flow.

In the remainder of this section, we now describe the
detailed modeling of the proposed storage-aware mixture
preparation. We divide the descriptions into two parts: First,
we cover the detailed SAT modeling (including the addition
of storage constraints) for a simpler case where the basis
graph is augmented with extra reagent nodes, i.e., restricting
the sharing of intermediate fluids between adjacent levels.
Afterwards, we consider the more general case where the basis
graph is augmented with extra reagent nodes and edges, i.e.,
intermediate fluids can be shared between nonadjacent mixing
nodes. For the sake of clarity, we intentionally skip of detailed
coverage of the original SAT modeling Φ and, instead, focus
on the enforcement of the desired storage constraints.

B. Augmenting the Tree for Adjacent-Level Sharing

We start with the simplest case, in which we augment the
basis mixing graph with extra input reagents only, i.e. how to

3Note that designers might not necessarily be interested in the minimum
number of on-chip storages, but just want to make sure that their aspect ration
can be realized with an upper bound of them. Then, he/she can simply check
whether this is possible by setting k to this upper bound.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 9

get from the basis tree (generated with genMixing [8]) to the
augmented tree. For example, the mixing tree for the target
ratio {R1 : R2 : R3 : R4 = 22 : 14 : 14 : 14} generated by
genMixing [8] (and as discussed before in Fig. 14) shall be
augmented with all missing reagents as shown in Fig. 16(a).

R1
1(1):R

1
2(1):R

1
3(1):R

1
4(1)

R3 R4R2R1 R3 R4R2R1

r
2 1
(1
)

r
2 2
(1
)

r2 3
(1
)

r2 4
(1
)

r2 1
(3
)

r2 2
(3
)

r2 3
(3
)

r2 4
(3
)

R2
1(1):R

2
2(1):R

2
3(1):R

2
4(1)

R3 R4R2R1

r3 1
(2
)

r3 2
(2
)

r3 3
(2
)

r3 4
(2
)

R3
1(2):R

3
2(2):R

3
3(2):R

3
4(2)

R3 R4R2R1

r3 1
(1
)

r3 2
(1
)

r3 3
(1
)

r3 4
(1
)

R3
1(1):R

3
2(1):R

3
3(1):R

3
4(1)

w2,1,1,1 w2,2,1,1 w2,3,1,1

R3 R4R2R1

r2 1
(2
)

r2 2
(2
)

r2 3
(2
)

r2 4
(2
)

w3,1,2,1 w3,2,2,1

index = 1

index = 1

index = 1

index = 2

index = 2

index = 3

R2
1(2):R

2
2(2):R

2
3(2):R

2
4(2) R2

1(3):R
2
2(3):R

2
3(3):R

2
4(3)

(a)

depth

1

2

3

(b)

Rl
1(i):R

l
2(i):· · ·:Rl

k(i)

R2R1 Rk

Rl+1
1 (i1):R

l+1
2 (i1):· · ·:Rl+1

k (i1) Rl+1
1 (i2):R

l+1
2 (i2):· · ·:Rl+1

k (i2)

rl 1
(i
)

rl k
(i
)

Rl+1
1 (it):R

l+1
2 (it):· · ·:Rl+1

k (it)

wl+1,i1,l,i wl+1,it,l,i

rl 2
(i
)

wl,i,l−1,∗

wl+1,i2,l,i

* denotes the index of the parent node

t ≤ N

R3 R4R2R1
r
1 2
(1
)

r1 3
(1
)

r1 4
(1
)

r
1 1
(1
)

Fig. 16: (a) Mixing tree for the target ratio {R1 : R2 : R3 :
R4 = 22 : 14 : 14 : 14} after adding extra reagents nodes
for enabling reagent minimization (b) general structure of a
mixing node.

Symbolic Formulation

The symbolic formulation is defined over the following vari-
ables:

Node variables: For every mixing node of the mixing tree, k
rational node variables Rl

1(i), Rl
2(i), · · · , Rl

k(i) are assigned
for denoting the portion of input reagents R1, R2, · · · , Rk,
respectively, where l is the depth of that node and i is
the index of the node at depth l. Note that, at each depth,
the index of a mixing node is assigned in a left-to-right
fashion starting with 1. For example, the node variables
corresponding to the leftmost node of depth 2 in Fig. 16(a)
are R2

1(1), R2
2(1), R2

3(1), R2
4(1).

Reagent variables: We define rational reagent variables
rlj(i), where j = 1, 2, . . . , k, to denote the number of
segments filled with reagent Rj , where l is the depth of
the mixing node where reagent Rj is used, and i is the
index of the mixing node. For example, the reagent variables
corresponding to the leftmost node on depth 2 in Fig. 16(a)
are r21(1), r22(1), r23(1), r24(1).

Segment-sharing variables: An edge (u, v) between two
mixing nodes denotes the sharing of intermediate fluids from
node u to node v in the mixing tree. A rational edge variable
wl1,i1,l2,i2 denotes the number of segments shared between
a node with index i1 at depth l1, and a node with index i2
at depth l2. For example, edge weight w3,2,2,1 in Fig. 16(a)
denotes the number of segments shared from the node indexed
as 2 at depth 3 (the rightmost node at depth 3) to the node
with index 1 at depth 2 (the leftmost node at depth 2).
Passing this formulation to a SAT solver will result an arbitrary
assignments to the variables (since they are not restricted).
Hence, as a next step, we add constraints which enforce that
desired target ratio is achieved, and afterwards, the number of
storage-units is considered.

Enforcing the Desired Ratio
In order to enforce the desired target ratio at the root node of
the augmented mixing tree, we need to ensure that the mixing
ratio generated at each internal node is correct. Consider the
general structure of a node in the augmented mixing tree as
shown in Fig. 14. Note that a segment of intermediate fluid can
be shared between adjacent levels. Moreover, on the mixing
tree, a mixing node may receive a segment of fluid from one
of its subtrees (second part of the left hand side of Eqns. 6) or
it may take input reagents to fill one of its N segments (first
part of the left hand side of Eqns. 6). Hence, there can be at
most N subtrees possible for a mixing node.

The ratio consistency conditions of the mixing node at depth
l and index i are given as follows:

rl1(i) +
∑

j∈{i1,i2,··· ,it}

Rl+1
1 (j) · wl+1,j,l,i = N ·Rl

1(i)

rl2(i) +
∑

j∈{i1,i2,··· ,it}

Rl+1
2 (j) · wl+1,j,l,i = N ·Rl

2(i)

. . .
...

rlk(i) +
∑

j∈{i1,i2,··· ,it}

Rl+1
k (j) · wl+1,j,l,i = N ·Rl

k(i)

(6)

Moreover, we need to ensure that all N input segments for
a Mixer-N are filled with intermediate fluids/input reagents
(otherwise, the concerned mixing operations are not neces-
sary for generating the desired target ratio). This yields the
following consistency conditions:

 k∑
j=1

rlj(i) +
∑

j∈{i1,i2,··· ,it}

wl+1,j,l,i = N

∨
 k∑

j=1

rlj(i) +
∑

j∈{i1,i2,...,it}

wl+1,j,l,i = 0

 ,

0 ≤ wl,i,l−1,∗ ≤ N − 1 (7)

All weights must satisfy 0 ≤ wl+1,j,l,i ≤ N − 1, for j ∈
{i1, i2, . . . , it}. Analogously, 0 ≤ rlj(i) ≤ N − 1 for j =
1, 2, . . . , k.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 10

Passing the resulting formulation to a SAT solver yields a
satisfying assignment out of which a mixing tree realizing the
desired aspect ratio can be obtained or proves that no such
solution exist.

Enforcing the Number of Storage-Units

We consider the generic node structure, and for sake of sim-
plicity, use a simplified notation for the reagent and segment-
sharing variables. Fig. 17 sketches a generic node in a mixing
graph as well as a simplified notation of the variables that are
used in storage calculation. In Fig. 17, wi (segment sharing
variable) and ri (reagent variable) denote the number of
segments of a Mixer-N is filled with fluids taken from the
root node of subtree-i and the input reagent Ri, respectively.
Besides that, si denotes the storage requirement of subtree-i.
Then, the number of storage-units (s) can be determined with
the following equation:

s =

t∨
j=1

j−1∑
i=1

wi + sj +
t∑

i=j+1

wi

 (8)

R1 R2 Rk

subtree-1
subtree-2

subtree-t

s1 s2 st

s

w1 w2 wt

Mixer-N

r1 r2 rk

t ≤ N

Fig. 17: Structure of a node in the mixing tree used in storage
computation.

Note that Equation 8 symbolically represents various schedul-
ing issues for each node. As in dilution, enforcing the corre-
sponding s-variables of all mixing nodes in the mixing tree
to be smaller or equal than k denoting the available storage-
units, will eventually allow only those solutions, which can be
realized under this restriction.

Example 6. Figs. 18(a)-(b) show the mixing graphs for the
target ratio {R1 : R2 : R3 : R4 = 22 : 14 : 14 : 14} obtained
without enforcing storage limitation, i.e., by using FloSPA [8]
and by the proposed method, respectively. Moreover, Fig. 14
shows the same ratio generated with genMixing [8], which
requires two storage-units. Fig. 18(a) shows a cheaper solution
by the proposed method. Note that FloSPA also returns this
solution, which is oblivious to storage restriction. On the other
hand, the proposed method ensures that no solution exists with
zero storage-unit when Fig. 14 is used as the base graph; it
also provides a solution with one storage-unit (Fig. 18(b)).

C. Augmenting the Tree for Non-Adjacent Level Sharing

So far we have considered sharing of intermediate fluids
between adjacent levels only. However, more reagents can

22:14:14:14

7:3:3:3 1:1:1:1

R1 R2 R3 R4

1 1 1 1

R1

1 3

2 2

nm = 4
nw = 5

(nr1 , nr2 , nr3 , nr4)

= (3, 2, 2, 2)

22:14:14:14

10:2:2:2

R1

2 2

1 3

nm = 4
nw = 6

(nr1 , nr2 , nr3 , nr4)

= (4, 2, 2, 2)

(b)(a)

#storage-units ≥ 2 #storage-unit = 1

1:1:1:1

R1 R2 R3 R4

1 1 1 1

w
as
te

se
gm

en
t

1:1:1:1

R1 R2 R3 R4

1 1 1 1

1:1:1:1

R1 R2 R3 R4

1 1 1 1

Fig. 18: Mixing tree for the target ratio {R1 : R2 : R3 :
R4 = 22 : 14 : 14 : 14} generated by (a) FloSPA [8] and by
the proposed method for #storage-units ≥ 2 and (b) by the
proposed method when #storage-unit = 1.

be saved if we allow sharing of intermediate fluids between
ancestors. In order to enable such reagent sharing, additional
edges have to be introduced into the basis tree. Fig. 19 shows
the basis graph after augmenting reagent nodes and edges for
enabling intermediate fluid sharing between a node and its
ancestors in the basis tree. Extra edges and their corresponding
variables are shown by blue color in Fig. 19.

R1
1(1):R

1
2(1):R

1
3(1):R

1
4(1)

R3 R4R2R1 R3 R4R2R1

r
2 1
(1
)

r
2 2
(1
)

r2 3
(1
)

r2 4
(1
)

r2 1
(3
)

r2 2
(3
)

r2 3
(3
)

r2 4
(3
)

R2
1(1):R

2
2(1):R

2
3(1):R

2
4(1)

R3 R4R2R1

r3 1
(2
)

r3 2
(2
)

r3 3
(2
)

r3 4
(2
)

R3
1(2):R

3
2(2):R

3
3(2):R

3
4(2)

R3 R4R2R1

r3 1
(1
)

r3 2
(1
)

r3 3
(1
)

r3 4
(1
)

R3
1(1):R

3
2(1):R

3
3(1):R

3
4(1)

w2,1,1,1 w2,2,1,1 w2,3,1,1

R3 R4R2R1

r2 1
(2
)

r2 2
(2
)

r2 3
(2
)

r2 4
(2
)

w3,1,2,1 w3,2,2,1

index = 1

index = 1

index = 1

index = 2

index = 2

index = 3

R2
1(2):R

2
2(2):R

2
3(2):R

2
4(2) R2

1(3):R
2
2(3):R

2
3(3):R

2
4(3)

depth

1

2

3

R3 R4R2R1

r
1 2
(1
)

r1 3
(1
)

r1 4
(1
)

r
1 1
(1
)

w3,2,1,1w3,1,1,1

Fig. 19: Augmenting basis tree generated by genMixing [8]
with extra reagent nodes and edges for the target ratio {R1 :
R2 : R3 : R4 = 22 : 14 : 14 : 14}.

Before adding storage constraints on the augmented graph,
we need to enforce the correctness of the mixing ratio at each
mixing node. The modeling will be similar to that used in
the case of mixing tree (Section V-B), with certain modifica-
tions to ratio condition (Equation 6), and mixer consistency
(Equation 7).

Enforcing the Number of Storage-Units

Deriving the constraints corresponding to the storage require-
ment for this case is more complex, and to incorporate them,
we start with the general structure of a mixing node. Fig. 20
shows the generic structure of a mixing node in the augmented
graph.

Note that each subtree in Fig. 20 has a similar general
structure as the dilution graph (cf. Fig. 8). In case of Fig. 20,

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 11

R1 R2 Rk

subtree-1
subtree-2

subtree-t

s1 s2 st

s

w1
1 w1

2
w1

t

Mixer-N

r1 r2 rk

t ≤ N

w2
1

w3
1

wh1
1

w2
2

w3
2 wh2

2

w2
t

w3
t

wht
th1 + 1 h2 + 1

ht + 1

Fig. 20: Structure of a node in the mixing graph used in storage
computation.

we need to consider multiple subtrees – each of them sharing
the same structure as in dilution. The following constraint
calculates the storage requirement:

s =

t∨
j=1

j−1∑
i=1

w1
i + sj +

t∑
i=j+1

w1
i

+

h1∑
i=2

wi
1 +

h2∑
i=2

wi
2 + · · ·+

ht∑
i=2

wi
t (9)

In order to define storage requirement (s) of the root node,
we consider all possible ordering of its subtree execution. The
first part of Equation 9 models this. Moreover, for each edge
arriving from its grandchildren (highlighted in blue), we need
to store intermediate fluids into on-chip storage cells. The
second part of Equation 9 represents this.

22:14:14:14

1:5:5:5

R1

1 1

2

nm = 3
nw = 5

(nr1 , nr2 , nr3 , nr4)

= (2, 2, 2, 2)R3

1
R4

1

R1

1 1
#storage-unit ≥ 1

1:1:1:1

R1 R2 R3 R4

1 1 1 1

Fig. 21: Mixing tree for the target ratio {R1 : R2 : R3 : R4 =
22 : 14 : 14 : 14} generated by the proposed method.

Example 7. Fig. 21 shows the mixing tree for the target ratio
{R1 : R2 : R3 : R4 = 22 : 14 : 14 : 14}, when the basis
graph is augmented with additional reagent nodes and edges.
Note that the resultant mixing graph has a cheaper solution
compared to the mixing trees shown in Figs. 18(a)-(b).

VI. EXPERIMENTAL RESULTS

The methods described above have been implemented and
compared with several state-of-the-art sample-preparation
methods, namely NWayMix [8] and VOSPA [6] for dilution as

well as with FloSPA [8] for dilution and general mixing. All
experiments have been performed on an Intel machine with 3.5
GHz and 16 GB of main memory running an Ubuntu 16.04
LTS operating system. In order to solve the proposed storage-
aware dilution/mixing instances, we invoke Z3OPT [28, 30],
an optimized SMT solver. In the following, the results for both
cases are summarized and discussed.

A. Performance for Dilution

VOSPA [6] and FloSPA [8] provide efficient solutions for
dilution problems. They focus on reagent minimization and do
not take the number of available storage-units into account.
This can have crucial consequences as illustrated by a first
series of experiments summarized in Fig. 22. Here, we sum-
marized the results obtained by these methods for all possible
target ratios with d = 4, 5 and N = 4 and report the data
for number of storage-units required by different ratios. As
can be seen, for the vast majority of ratios, both approaches
require a substantial amount of storage-units. If this amount
is not available on the available microfluidic platform, these
results may not be useful. In contrast, the approach proposed
in this work is capable of determining a mixing graph for
all ratios and for all given numbers of available storage-units
(even zero). This is a clear improvement compared to VOSPA
and FloSPA since the desired dilution can always be realized
using the method proposed in this work.

Moreover, even with respect to cost, significant improve-
ments can be observed as shown in Table II. Here, we have
generated dilution graphs for all possible target ratios consid-
ering {sample : buffer = x : 256 − x}, where 1 ≤ x ≤ 255,
i.e., N = 4, d = 4; we list the average number of mixing steps
(n̄m), waste segments (n̄w), number of segments filled with
sample (n̄s) and buffer (n̄b) as well as the average running
time4 (tavg) of each target ratio for different values of on-chip
storage-units (k). For previously proposed approaches, we list
the best results, i.e., those obtained with zero storage-unit for
NWayMix, with seven storage-units in case of VOSPA, and
with six storage-units for FloSPA.

Several issues can be observed here: First, NWayMix always
uses zero storage-units. By this, other potential solutions are
missed out since a few storage-units are usually available on
any platform which, as shown by the numbers in Table II,
can be exploited to reduce reactant usage. Either way, even
with zero storage-unit, the proposed approach still determines
better results than NWayMix. It can also be observed from
Table II that the proposed approach only needs two (four)
storage-units in order to get a comparable performance with
respect to VOSPA (FloSPA) requiring a total of seven (six)
storage-units.

B. Performance for Mixing

Finally, we have experimented with the proposed storage-
aware mixing algorithms by considering several synthetic as
well as real-life mixing ratios for various values of available

4dilution graph can be generated within a minute on the average.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 12

TABLE II: Performance of the proposed dilution algorithm.

Proposed approach NWayMix [8] VOSPA [6] FloSPA [8]
k n̄m n̄w n̄s n̄b tavg #storage-unit = 0 #storage-units = 7 #storage-units = 6
0 3.68 5.39 4.22 5.18 0.07 sec. n̄m = 3.68 n̄m = 4.13 n̄m = 3.68
1 3.68 4.19 3.51 4.67 0.26 sec. n̄w = 8.04 n̄w = 6.70 n̄w = 3.66
2 3.68 3.80 3.40 4.40 0.52 sec. n̄s = 6.02 n̄s = 3.34 n̄s = 3.36
3 3.68 3.71 3.38 4.32 0.67 sec. n̄b = 6.02 n̄b = 7.36 n̄b = 4.30
≥ 4 3.68 3.66 3.36 4.30 0.74 sec.

k: number of storage.
n̄m/n̄w/n̄s/n̄b/tavg: average mix/waste/sample/buffer/CPU-time.

0 1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

90

#storage (k)

#t
ar

ge
t

ra
tio

s

VOSPA
FloSPA

(a) N = 4, d = 4

0 1 2 3 4 5 6 7 8
0

50

100

150

200

250

300

#storage (k)

#t
ar

ge
t

ra
tio

s

VOSPA
FloSPA

(b) N = 4, d = 5

Fig. 22: Histogram of the number of storage-units required by
VOSPA and FloSPA for all target ratios corresponding to (a)
{sample : buffer = x : 256 − x}, where 1 ≤ x ≤ 255, i.e.,
N = 4, d = 4 and (b) {sample : buffer = x : 1024−x}, where
1 ≤ x ≤ 1023, i.e., N = 4, d = 5.

on-chip storage-units (k) and summarized the results in Ta-
ble III. Here, we list the number of mixing steps (nm), waste
segments (nw), the total number of segments filled with input
reagents (nr), and the CPU-time required to generate a mixing
tree/graph, for a number of mixing ratios.

It can be observed that the proposed method based on

fluid sharing exclusively between adjacent levels can perform
mixture preparation using only a few on-chip storage-units. In
fact, all ratios can be realized with at most two storage-units
– in many cases even only one is sufficient. Moreover, it not
only takes the same or fewer number of on-chip storage-units
compared to genMixing but also produces the target ratio with
a smaller number of mixing steps, waste, and input segments.

Adoption of non-adjacent level sharing of intermediate fluid
units can save reagents further. The enhancement in quality of
the solution comes with the increase of running time. One
may easily observe from Table III that the SMT-solver finds
the best solutions quickly for most of the instances. Note that
we generate the mixing tree offline, so we can afford a little
longer time to get a solution that runs faster and cheaper in
the microfluidic platform in real-time.

Note that FloSPA when used for mixture preparation, re-
duces the cost of input reagents disregarding the availability of
on-chip storage-units. In the case of Mixture 5 and Mixture 11,
both FloSPA and the proposed method for non-adjacent level
sharing (highlighted with yellow color in Table III) require
four on-chip storage-units when the optimization objective is
to minimize reagent-usage. However, the latter can produce the
same mixture at the cost of more input reagents even when a
smaller number of storage-units (k = 2) is made available.

VII. CONCLUSIONS

In this work, we have proposed a storage-aware sample-
preparation method for continuous-flow microfluidic biochips.
To this end, we augmented mixing graphs determined by
previously proposed algorithms providing several further op-
tions for realizing the desired input ratio. Afterwards, Boolean
satisfiabiliy solvers are utilized to determine the option that
gives the minimum reagent-usage and, at the same time,
satisfies the limitations in storage elements. This provides
significant benefits as it can be ensured that a generated mixing
graph indeed can be executed on the biochip device (compared
to previously proposed solutions which may generate mixing
graphs that require more storage than available). Moreover,
the proposed approach explicitly allows to fully exploit the
available number of storages, e.g., in order to reduce the use
of reagents. Although we have used an equally-segmented
mixer in the proposed method, the SAT-based method can
be extended, in principle, to handle mixers with unequal
segments. Such generalization can be investigated as a future
research problem.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 13

TABLE III: Performance of the proposed mixing algorithms.

Synthetic mixing ratio

Mixing ratio genMixing [8] Prop. method (adj. level sharing) Proposed method (non-adjacent level sharing)
(nm,nw ,nr) k k = 0 k = 1 k ≥ 2 k = 0 k = 1 k = 2 k = 3 k ≥ 4

1 90:90:76 (5, 12, 16) 1 (4, 8, 12) (5, 6, 10) (5, 6, 10) (4, 8, 12) (4, 3, 7) (4, 2, 6) (4, 2, 6) (4, 2, 6)
0.00 sec. 0.07 sec. 0.30 sec. 0.45 sec. 0.14 sec 1.19 sec. 2.73 sec. 4.33 sec. 5.77 sec.

2 20:14:16:14 (4, 9, 13) 1 NA (4, 6, 10) (4, 5, 9) NA (3, 3, 7) (3, 3, 7) (3, 3, 7) (3, 3, 7)
0.00 sec. 0.18 sec 0.15 sec. 0.15 sec. 0.21 sec. 0.21 sec. 0.22 sec.

3 27:7:13:17 (5, 12, 16) 1 NA (5, 8, 12) (5, 8, 12) NA (5, 8, 12) (4, 6, 10) (4, 6, 10) (4, 6, 10)
0.00 sec. 0.28 sec. 1.48 sec. 0.44 sec. 0.85 sec. 1.55 sec. 1.31 sec.

4 68:86:56:46 (6, 15, 19) 1 NA (5, 9, 13) (5, 9, 13) NA (4, 5, 9) (4, 5, 9) (4, 5, 9) (4, 5, 9)
0.00 sec. 1.35 sec. 3.82 sec. 2.33 sec. 11.16 sec. 20.90 sec. 20.14 sec.

5 27:25:57:69:78 (8, 21, 25) 2 NA (7, 15, 19) (7, 13, 17) NA (7, 15, 19) (6, 10, 14) (6, 10, 14) (6, 9, 13)
0.00 sec. 0.90 sec 7.90 sec. 3.08 sec. 1553.52 sec. 3719.85 sec. 4094.46 sec.

6 30:24:55:68:79 (8, 21, 25) 2 NA (6, 13, 17) (6, 12, 16) NA (6, 13, 17) (5, 9, 13) (5, 7, 11) (5, 7, 11)
0.00 sec. 1.34 sec. 10.31 sec 5.60 sec. 1601.56 sec. 2831.40 sec. 6391.80 sec.

7 30:24:155:38:9 (8, 21, 25) 2 NA (7, 15, 19) (7, 13, 17) NA (7, 15, 19) (6, 10, 14) (6, 10, 14) (6, 10, 14)
0.00 sec. 1.68 sec. 8.59 sec. 5.31 sec. 269.07 sec 1434.89 sec. 2018.36 sec.

Mixing ratios from real-life bio-protocols

Mixing ratio genMixing [8] Prop. method (adj. level sharing) Proposed method (non-adjacent level sharing)
(nm,nw ,nr) k k = 0 k = 1 k ≥ 2 k = 0 k = 1 k = 2 k = 3 k ≥ 4

8 Plasmid DNA by alkaline lysis with (7, 18, 22) 1 (5, 4, 8) (5, 4, 8) (5, 4, 8) (5, 4, 8) (5, 4, 8) (5, 4, 8) (5, 4, 8) (5, 4, 8)
SDS miniprep. [34] 300:499:225 0.00 sec. 0.10 sec. 1.96 sec. 2.13 sec. 0.29 sec. 12.02 sec. 455.92 sec. 777.81 sec. 1414.57 sec.

9 Plasmid DNA [35] (9, 24, 28) 2 NA (6, 10, 14) (6, 10, 14) NA (6, 10, 14) (6, 10, 14) (6, 10, 14) (6, 10, 14)
57:28:6:6:6:3:150 0.00 sec 1.76 sec. 11.14 sec. 5.41 sec. 208.10 sec. 904.18 sec. 1023 sec.

10 Splinkerette PCR [35] (8, 21, 25) 2 NA (7, 12, 16) (7, 12, 16) NA (7, 12, 16) (5, 7, 11) (5, 7, 11) (5, 7, 11)
102:26:3:3:122 0.00 sec. 2.39 sec. 5.08 sec. 8.07 sec. 34.71 sec. 78.77 sec. 117.29 sec.

11 PCR master mix [36] (10, 27, 31) 3 NA NA (7, 14, 18) NA NA (7, 14, 18) (7, 14, 18) (6, 12, 16)
4:6:10:14:22:26:174 0.00 sec. 84.44 sec. 985.81 sec. 1085.87 sec. 7132.16 sec.

12 Touchdown PCR [35] (12, 33, 37) 3 NA NA (10, 24, 28) NA NA (8, 16, 20) time out* time out*26:15:51:26:5:5:1:127 0.00 sec. 6.93 sec. 1572.46 sec.

13 Silver-Restriction Digest [35] (8, 21, 25) 3 NA NA (8, 18, 22) NA NA (6, 11, 15) (6, 11, 15) (6, 11, 15)
180:26:26:5:5:14 0.00 sec. 16.25 sec. 21.55 sec. 102.54 sec. 136.42 sec.

Each entry shows the parameter values (nm,nw ,nr) and the CPU time for finding the mixing tree/graph.
The best parameter values (total number of reagents i.e., nr) are highlighted with yellow color.

* Time out was set to two hours.

REFERENCES

[1] S. Bhattacharjee, R. Wille, J.-D. Huang, and B. B. Bhattacharya,
“Storage-aware sample preparation using flow-based microfluidic labs-
on-chip,” in Proc. of DATE, 2018, pp. 1399–1404.

[2] Introduction to lab-on-a-chip 2015 : review, history and
future. [Online]. Available: http://www.elveflow.com/microfluidic-
tutorials/microfluidic-reviews-and-tutorials/introduction-to-lab-on-a-
chip-2015-review-history-and-future/

[3] C. D. Chin, V. Linder, and S. K. Sia, “Commercialization of microfluidic
point-of-care diagnostic devices,” Lab Chip, vol. 12, pp. 2118–2134,
2012.

[4] S. Roy, B. B. Bhattacharya, and K. Chakrabarty, “Optimization of
dilution and mixing of biochemical samples using digital microfluidic
biochips,” IEEE Trans. on CAD, vol. 29, no. 11, pp. 1696–1708, 2010.

[5] J.-D. Huang, C.-H. Liu, and T.-W. Chiang, “Reactant minimization
during sample preparation on digital microfluidic biochips using skewed
mixing trees,” in Proc. of ICCAD, 2012, pp. 377–383.

[6] C.-M. Huang, C.-H. Liu, and J.-D. Huang, “Volume-oriented sam-
ple preparation for reactant minimization on flow-based microfluidic
biochips with multi-segment mixers,” in Proc. of DATE, 2015, pp. 1114–
1119.

[7] C.-H. Liu, K.-C. Shen, and J.-D. Huang, “Reactant minimization for
sample preparation on microfluidic biochips with various mixing mod-
els,” IEEE Trans. on CAD, vol. 34, no. 12, pp. 1918–1927, 2015.

[8] S. Bhattacharjee, S. Poddar, S. Roy, J.-D. Huang, and B. B. Bhat-
tacharya, “Dilution and mixing algorithms for flow-based microfluidic
biochips,” IEEE Trans. on CAD, vol. 36, no. 4, pp. 614–627, 2017.

[9] S. W. Dutse and N. A. Yusof, “Microfluidics-based lab-on-chip systems
in DNA-based biosensing: An overview,” Lab Chip, vol. 11, pp. 5754–
5768, 2011.

[10] P. Neuz̆i, S. Giselbrecht, K. Länge, T. J. Huang, and A. Manz, “Re-
visiting lab-on-a-chip technology for drug discovery,” Nat. Rev. Drug
Discovery, vol. 11, pp. 620–632, 2012.

[11] D. Mark, S. Haeberle, G. Roth, F. von Stetten, and R. Zengerle,
“Microfluidic lab-on-a-chip platforms: Requirements, characteristics and
applications,” Chem. Soc. Rev., vol. 39, pp. 1153–1182, 2010.

[12] P. Pop, I. E. Araci, and K. Chakrabarty, “Continuous-flow biochips:
Technology, physical-design methods, and testing,” IEEE Design & Test,
vol. 32, no. 6, pp. 8–19, 2015.

[13] J. Melin and S. Quake, “Microfluidic large-scale integration: The evo-

lution of design rules for biological automation,” Annual Reviews in
Biophysics and Biomolecular Structure, vol. 36, pp. 213–231, 2007.

[14] I. E. Araci and P. Brisk, “Recent developments in microfluidic large
scale integration,” Current Opinion in Biotechnology, vol. 25, pp. 60 –
68, 2014.

[15] J. P. Urbanski, W. Thies, C. Rhodes, S. P. Amarasinghe, and T. Thorsen,
“Digital microfluidics using soft lithography,” Lab Chip, vol. 6, pp. 96–
104, 2006.

[16] W. Thies, J. P. Urbanski, T. Thorsen, and S. P. Amarasinghe, “Abstrac-
tion layers for scalable microfluidic biocomputing,” Natural Computing,
vol. 7, no. 2, pp. 255–275, 2008.

[17] C. Liu, B. Li, H. Yao, P. Pop, T. Ho, and U. Schlichtmann, “Transport
or store? synthesizing flow-based microfluidic biochips using distributed
channel storage,” in Proc. of DAC, 2017, pp. 1–6.

[18] S. Poddar, S. Ghoshal, K. Chakrabarty, and B. B. Bhattacharya, “Error-
correcting sample preparation with cyberphysical digital microfluidic
lab-on-chip,” ACM Trans. Design Autom. Electr. Syst., vol. 22, no. 1,
pp. 2:1–2:29, 2016.

[19] S. Poddar, R. Wille, H. Rahaman, and B. B. Bhattacharya., “Error-
oblivious sample preparation with digital microfluidic lab-on-chip,”
IEEE Trans. on CAD, 2018.

[20] S. Saha, D. Kundu, S. Roy, S. Bhattacharjee, K. Chakrabarty, P. P.
Chakrabarti, and B. B. Bhattacharya, “Factorization based dilution of
biochemical fluids with micro-electrode-dot-array biochips,” in Proc. of
ASP-DAC, 2019, pp. 462–467.

[21] L. M. Fidalgo and S. J. Maerkl, “A software-programmable microfluidic
device for automated biology,” Lab Chip, vol. 11, pp. 1612–1619, 2011.

[22] E. C. Jensen, B. P. Bhat, and R. A. Mathies, “A digital microfluidic
platform for the automation of quantitative biomolecular assays,” Lab
Chip, vol. 10, pp. 685–691, 2010.

[23] A. Grimmer, B. Klepic, T.-Y. Ho, and R. Wille, “Sound valve-control
for programmable microfluidic devices,” in Proc. of ASP-DAC, 2018,
pp. 40–45.

[24] T.-M. Tseng, B. Li, T.-Y. Ho, and U. Schlichtmann, “Reliability-
aware synthesis for flow-based microfluidic biochips by dynamic-device
mapping,” in Proc. of DAC, 2015, pp. 141:1–141:6.

[25] Y. Zhu, B. Li, T.-Y. Ho, Q. Wang, H. Yao, R. Wille, and U. Schlicht-
mann, “Multi-channel and fault-tolerant control multiplexing for flow-
based microfluidic biochips,” in Proc. of ICCAD, 2018, pp. 123–128.

[26] Q. Wang, H. Zou, H. Yao, T.-Y. Ho, R. Wille, and Y. Cai, “Physical co-

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 14

design of flow and control layers for flow-based microfluidic biochips,”
IEEE Trans. on CAD, vol. 37, no. 6, pp. 1157–1170, 2018.

[27] Y.-C. Lei, T.-H. Lin, and J.-D. Huang, “Multi-objective sample prepa-
ration algorithm for microfluidic biochips supporting various mixing
models,” in Proc. of SOCC, 2016, pp. 96–101.

[28] L. M. de Moura and N. Bjørner, “Z3: An efficient SMT solver,”
in Proc. of TACAS, 2008, pp. 337–340, [Z3 is available at
https://github.com/Z3Prover/z3].

[29] R. Wille, G. Fey, D. Große, S. Eggersglüß, and R. Drechsler, “SWORD:
A SAT like prover using word level information,” in Proc. of VLSI-SoC,
2007, pp. 88–93.

[30] N. Bjørner, A.-D. Phan, and L. Fleckenstein, “vZ - an optimizing SMT
solver,” in Proc. of TACAS, 2015, pp. 194–199.

[31] O. Keszocze, R. Wille, T.-Y. Ho, and R. Drechsler, “Exact one-pass
synthesis of digital microfluidic biochips,” in Proc. of DAC, 2014.

[32] A. Grimmer, Q. Wang, H. Yao, T.-Y. Ho, and R. Wille, “Close-to-optimal
placement and routing for continuous-flow microfluidic biochips,” in
Proc. of ASP-DAC, 2017, pp. 530–535.

[33] A. Grimmer, W. Haselmayr, A. Springer, and R. Wille, “Design of
application-specific architectures for networked labs-on-chips,” IEEE
Trans. on CAD, vol. 37, no. 1, pp. 193–202, 2018.

[34] Y.-L. Hsieh, T.-Y. Ho, and K. Chakrabarty, “A reagent-saving mixing
algorithm for preparing multiple-target biochemical samples using digi-
tal microfluidics,” IEEE Trans. on CAD, vol. 31, no. 11, pp. 1656–1669,
2012.

[35] S. Bhattacharjee, Y.-L. Chen, J.-D. Huang, and B. B. Bhattacharya,
“Concentration-resilient mixture preparation with digital microfluidic
lab-on-chip,” ACM Trans. Embed. Comput. Syst., vol. 17, no. 2, pp.
49:1–49:12, 2018.

[36] S. Roy, P. P. Chakrabarti, S. Kumar, K. Chakrabarty, and B. B. Bhat-
tacharya, “Layout-aware mixture preparation of biochemical fluids on
application-specific digital microfluidic biochips,” ACM Trans. Design
Autom. Electr. Syst., vol. 20, no. 3, pp. 45:1–45:34, 2015.

Sukanta Bhattacharjee (M’18) received the
B.Tech. degree in computer science and engineer-
ing from the University of Calcutta, India and the
M.Tech. and Ph. D. degrees in computer science
from the Indian Statistical Institute, Kolkata, India.
He is currently working as a post-doctoral associate
in Center for Cyber Security, New York University,
Abu Dhabi. His research interests include design au-
tomation algorithms for microfluidic biochip, formal
methods, and security.

Robert Wille (M’06-SM’09) is Full Professor at
the Johannes Kepler University Linz, Austria. He
received the Diploma and Dr.-Ing. degrees in com-
puter science from the University of Bremen, Ger-
many, in 2006 and 2009, respectively. Since then,
he worked at the University of Bremen, the German
Research Center for Artificial Intelligence (DFKI),
the University of Applied Science of Bremen, the
University of Potsdam, and the Technical University
Dresden. Since 2015, he is working in Linz. His
research interests are in the design of circuits and

systems for both conventional and emerging technologies. In these areas, he
published more than 250 papers in journals and conferences and served in
editorial boards and program committees of numerous journals/conferences
such as TCAD, ASP-DAC, DAC, DATE, and ICCAD. For his research, he
was awarded, e.g., with a Best Paper Award at ICCAD, a Google Research
Award, and more.

Junin-Dar Huang (M’96) received the B.S. and
Ph.D. degrees in electronics engineering from Na-
tional Chiao Tung University, Hsinchu, Taiwan, in
1992 and 1998, respectively. He is currently a
Professor and the Curriculum Committee Chair in
the Department of Electronics Engineering, National
Chiao Tung University, Taiwan. He received an
Outstanding Teaching Award of the University in
2014.

His research interests include behavioral and logic
synthesis, design automation for biochips, and syn-

thesis for single-electron transistor arrays. He received the Best Paper Award
in IEEE Computer Society Annual Symposium on VLSI 2011. He was the
Technical Program Committee Chair of SASIMI 2015. Dr. Huang is a member
of the IEEE, ACM, IEICE, and Phi Tau Phi.

Bhargab B. Bhattacharya (F’07) is currently Dis-
tinguished Visiting Professor of Computer Science
and Engineering at the Indian Institute of Technol-
ogy Kharagpur, India. Prior to that he had been on
the faculty of Indian Statistical Institute, Kolkata,
India, for more than 35 years. He received the
B.Sc. degree in physics from the Presidency College,
Kolkata in 1971, the B.Tech. and M.Tech. degrees
in radiophysics and electronics in 1974 and 1976,
respectively, and the Ph.D. degree in computer sci-
ence in 1986, all from the University of Calcutta.

He held visiting professorship at the University of Nebraska-Lincoln, and at
Duke University, USA, at the University of Potsdam, Germany, at the Kyushu
Institute of Technology, Iizuka, Japan, at Tsinghua University, Beijing, China,
and at IIT Guwahati, India. His current research interest includes design and
test of microfluidic chips and integrated circuits. He has published more than
400 technical articles, and he holds 10 United States Patents. He is a Fellow
of the Indian National Academy of Engineering and a Fellow of the National
Academy of Sciences (India). He is on the editorial board of the Journal of
Electronic Testing: Theory and Applications (JETTA).

