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Abstract—In the present era of computation, quantum computing 

may offer a new direction as it allows to solve certain problems 

significantly faster than classical solutions.  But it also has been 

found that there are several constrains in performing a successful 

realization of quantum circuits. One such constraint is the 

nearest neighbor (NN) criterion which states that qubits which 

interact with each other have to be adjacent. Motivated by this 

objective, in this work we propose a linear qubit placement 

technique that effectively rearranges the qubits and transforms 

quantum circuits to improved NN-based designs by inserting 

SWAPs. Furthermore, for placing these SWAPs in appropriate 

positions, we implemented a look-ahead strategy that considers 

the effect of the rest of the gates and computes a corresponding 

impact value which guides the insertion of the SWAP gates. To 

this extent, we consider three different strategies to evaluate the 

corresponding “look-ahead effects” and their influence on 

existing gates. At the end of this work, we have evaluated the 

developed methodology over a wide range of benchmarks and 

compared the results with existing related works. In this 

comparison, we have seen that the proposed technique 

outperforms the related works and provides substantial 

reductions in SWAP overhead. 
 

Keywords— Quantum Circuit, quantum gate, Nearest 
Neighbour(NN), SWAP gate. 
 

I. INTRODUCTION 

Quantum computing has emerged as an advanced computing 

platform, which, unlike classical circuits that follow the 

principle of classical mechanics, is driven by the principles of 

quantum mechanics. This enables such circuits to solve certain 

problems significantly faster. For example, quantum circuits 

have shown its capacity in solving some of the most complex 

problems like prime factorization in RSA cryptosystems [1], 

discrete logarithm problems [1], or database search [2] much 

faster than classical solutions. 

More importantly, the concept of quantum circuits is not 
limited to the theoretical domain only, but in the recent years, 

technologies like ion-trap [3], quantum dots [4], nuclear 

magnetic resonance [5], or superconducting qubits [6] have 

successfully shown their ability to realize such circuits. 

However, here several technological constraints arise which 

have to be considered. One such restriction comes in form of 

the Nearest Neighbour (NN) [7] criteria which demands the 

qubits in a circuit to be adjacent. 

As many quantum circuit implementing technologies demand 
NN complaint designs, it becomes necessary to develop 

algorithms that can transform quantum circuits to NN based 

designs. In general, the simplest way of performing such 

transformations is by embedding SWAP gates in between non-

adjacent qubits [7]. However, here it is of the essence to keep 

the number of inserted SWAP gates small in order to reduce 

the overhead and, there with, the cost of the design.  

More importantly, it is seen that in most of the NN related 

works this parameter has emerged as main metric to evaluate 

the efficiency of the design scheme. Since a couple of years, 

several investigations are reported on the efficient design 

strategies for NN circuits. More precisely, the problem has 
been addressed in the work [7], which rearranges the original 

qubit positions using various strategies. Further to improve the 

design structure, a circuit transformation technique has been 

introduced in [8], where the authors have converted the design 

problem into an intermediate task assignment problem and 

then administered a meta-heuristic based search technique to 

obtain the equivalent NN-based design. In [9], the authors 

have demonstrated a synthesis method based on mapping of 

the entire circuit on a lattice structure. For making more 

efficient realization, a graph-partitioning approach has been 

considered in [10], where optimized NN based designs have 
been formed by reducing SWAP gate count significantly. 

Despite of applying a global reordering strategy for gate 

rearrangements [20, 21], an exact design solution based on a 

local scheme is introduced in [11] and this approach has 

showed promising results for small benchmark circuits. In 

[12], the authors introduced a local reordering strategy that 

employs a look-ahead scheme to obtain an improved design 

structure. Again, for large scale synthesis of NN circuits, a 

heuristic based look-ahead scheme has been presented in [13]. 

Albeit, all the works that we have stated so far are on linear 

representation of NN circuits, nowadays investigations have 

also been conducted on 2D [18, 19], 3D [22] and even 
multidimensional architectures [14]. However, in this work, 

we focus on 1D architectures. For this, we introduce a 

heuristic look-ahead design methodology consisting of three 

distinct cost estimation models to obtain a linear NN based 

representations. Although the notion of look-ahead scheme 

has already been discussed in the earlier works, the way it has 

been implemented there differs from the one used here which 



have shown significant improvements over the reported 

works. 

In the next section (Section II), we have discussed on the 

fundamentals of Quantum circuit and nearest neighbor 

representation. Problem formulation and motivation of the 

work is summarized in Section III. The proposed methodology 

with examples is stated in Section IV. Section V contains the 

experimental results with the reported works. Finally, the 

concluding remarks appear in Section VI. 
 

 

II. BACKGROUND 
 

Quantum gates perform operations by modifying the states of 

qubits rather than its value. A qubit can exist in the basis states 

of |  0  and | 1 , which are same as that of 0 and 1 in classical 

computing. Besides these basis states, it can also occur in 

states which can be expressed as a linear superposition of the 

basis states represented by the state vector  as: 

                          
10  

                   (1) 
where the notations α and β are the complex numbers that 

specify the probability amplitudes of the basis states and hold 

the condition α2 + β2 = 1. However, this state vector cannot be 

detected directly as measurement causes the vector to 

degenerate into one of the basis states of |  0  and | 1  with 
probabilities α2 and β2 respectively. 

The states of the qubit can be manipulated by executing 

quantum gates whose operations are described through unitary 

matrices. To this extent, quantum operations on an n-qubit 

system can be realized by multiplying various 2n × 2n unitary 

matrices. 

Schematic representation of some of the most commonly used 

quantum gates (both 1-qubit and 2-qubits) have been 

summarized in chart 1. 

 
 

 

 

 

 

 

 

 

 

 

In general, the transformation operations of 2-qubit quantum 

gates viz. CNOT, Controlled-V, Controlled-V
+
 can be 

described by the following matrix representation 

 

M =  

1 0
0 1

0 0
0 0

0 0
0 0

𝑎 𝑏
𝑐 𝑑

  

 

where the variables a, b, c, d denotes the generic values which 

varies with different 2-qubit quantum gate operations. To 

compact the representation further, such generic values can be 

combined in a separate matrix form as shown below 

  U= 
𝑎 𝑏
𝑐 𝑑

  
 

The notation (U ) defined in the above matrix represents the 

operations performed by two qubit quantum gates and 

henceforth we used this notation in the rest of the work. 

 

Definition1. A circuit designed with a cascade of quantum 

gates over a set of control and target lines is known as 

quantum circuit. 
 

The cost of a quantum circuit is basically determined by four 

parameters – quantum cost [15], T-count, T-depth [16] and 

NN cost. As in our technique, we have considered the fourth 

cost metric only, here we are discussing on that metric and its 

related terms. 
 

Definition 2: The nearest neighbor cost of a two-qubit gate 

g(c,t) with control input on line c and target input on line t can 

be determined by computing the difference between the lines c 

and t.  
 

Mathematically, this difference value can be expressed as 

follows: 
NNCg = 𝑐 − 𝑡 − 1                (2) 

 
 

For 1-qubit gate like NOT, the NN cost is 0.The overall NN 

cost of a circuit (NNCC) is considered as the cumulative sum 

of NN cost contributed by each gate (g) in the circuit. This 
relation can be expressed as follows: 
 

NNCC =  𝑁𝑁𝐶𝑔𝑔  (3) 
 

If in a circuit  𝑁𝑁𝐶𝑔𝑔 becomes 0, then the circuit can be 

declared as an NN compliant circuit. But if the circuit does not 

satisfy the NN criteria then a special kind of gate namely 

SWAP gate (the structure of the gate is given in Fig. 1) is 
inserted in-between non-adjacent qubits to make them 

adjacent. 

For clear understanding, let us consider a circuit as given in 

Fig. 2(a). The given design has a NN cost of 6 as qubits in all 

the four gates are non-adjacent. So, to make them adjacent, 12 

SWAP gates have been embedded in specific positions and the 

equivalent NN compliant representation is finally obtained in 

Fig. 2(b). 
 

 

 

 
 

 

 
 

 

III. MOTIVATION AND PROBLEM FORMULATION 

Basically, nearest neighbor designs can be obtained by 
following either of the two reordering strategies – global 

[7,8,10,11,20,21] and local [6,7,11,12,13,22]. As local 

reordering strategy implements less SWAP gate count, we 

considered this design approach in our work. Despite its 

advantages, there occur some issues regarding appropriate 

placement of SWAP gates which have been discussed in [12] 

and thereby addressed by incorporating look-ahead policy. 

In this work, we have modified the implementation process of 

the look-ahead policy from the earlier works [12-13] and 

thereby introduced an improved version of it. Here, in this 

paper three different look-ahead strategies have been 

considered that estimates the effect of SWAP gate insertion 
before non-adjacent gates by formulating the look-ahead 

estimation models generically based on the number of gates to 

be evaluated. However, the previous look-ahead works have 

Chart 1:Well known quantum gates and their 

schematic representations 
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Fig.  1: Design of 
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considered direct and straight-forward approaches where the 

cost estimation has been made by evaluating a specified 

number of gates for nearest neighbor synthesis of quantum 

circuits. 

As permutation of qubits has an impact over SWAP gate 

optimization, so to determine the best possible option for 

moving the non-adjacent qubits of any gate for NN based 

design has been discussed next. 

 

IV. PROPOSED METHOD  
 

 

To determine the best possible option for moving the 

interacting qubits of any non-adjacent gate, here we have 

presented a heuristic design based on look-ahead strategy to 

estimate the impact for any option over the remaining gates of 

the circuit. In the design process, we evaluate all the possible 

options of any non-adjacent gate by estimating the impact in 
terms of SWAP gate count on the remaining gates. Based on 

this estimated impact, the best possible option is chosen. For 

this purpose, we compute the following cost metric: 
 

          T.C: F.C + V.C                       (4) 
 

where T.C, F.C, V.C denotes total cost, fixed cost and variable 

cost. However, fixed cost can further be expressed as follows. 
 

                       F.C: GR * CR         (5)  
 

where GR and CR represent the remaining gates and 

implementation cost of the respective gates (here, we have 

considered each quantum gate to be of unit cost).The variable 
cost (V.C) used in (4) is expressed below. 
 
 

V.C: ∑ci *ni/GR = c1*n1/GR +c2*n2/GR +...+cm*nm/GR    (6) 
 

where the notations ci, ni,  indicates the nearest neighbor costs 
and number of GR gates that possesses the corresponding cost 

ci. 

The above variable cost expression indicates the computation 

of nearest neighbor cost of the following gates that can be 

expressed further in terms of contribution factor, r as follows. 
 

V.C: c1 * r1 + c2 * r2 + … + cm * rm =   𝑐𝑖 ∗ 𝑟𝑖 
𝑚
𝑖=1 (7) 

 

where ri is represented as ri = ni/ GR 

The symbol GR (remaining gates) used in all the previous 

mathematical expressions can be obtained for any gate gi of a 

given circuit as follows. 
 

GR = (N - gi) mod N                  (8) 
 

where the notation N denotes the total gate count of a given 

circuit.  
As the fixed cost (F.C) does not have any influence over 

nearest neighbor optimization, so we haven’t considered it in 

our design policy. Therefore, only variable cost estimation 

determines how to insert SWAP gates in appropriate positions. 

Consequently, the mathematical expression shown in (4) can 

be rewritten as follows:    

  T.C≈V.C                (9) 
 

Henceforth, variable cost has been considered equivalent to 

that of total cost. In our design methodology, we have 

implemented three different schemes concerning on how we 

should observe (look-ahead) the following gates to determine 

the suitable option for SWAP gate implementation is 

described next. 
 

A. Collective Look-ahead Policy: The basic purpose of this 

scheme is to observe the target/control qubit positions of all 

the gates following any non-adjacent gate viz.gi in a collective 

manner. As per this strategy, we choose that qubit order that 

results in a least possible variable cost over the remaining 

gates of a given circuit. In other words, we scan each gate 

g(c,t) of a given circuit C to determine whether its control 

(c)/target (t) qubits are placed adjacent or not. If its inputs are 

not placed adjacent (NNC (g(c,t)) > 0), then we evaluate all 

possible rearrangements of the qubits by estimating the impact 
over the remaining gates, which can transform the gate g(c,t) 

into an NN-compliant one otherwise we proceed to next gate. 

Repeat this procedure until the last gate has been processed. 
 

To elaborate it in more detail, we have described the entire 

algorithm formally as follows: 

1) Consider the initial ordering of qubits as Л of a given 
circuit C. 

2) For each gate gi(c,t) ∈ C , if (NNC(gi(c,t)) > 0) then 

a) Determine the all possible permutations (pi) of qubits that 

can make the corresponding gate adjacent (NNC(gi(c,t)) = 0) 

and record them on a set P (denoted as permutation set). 

b) For each pi ∈ P 

i) Compute variable cost (V.C) for all GR gates of C. 

c) Identify pmin that leads to a smallest overall cost (variable 

cost), V.Cmin obtained in the previous step for a given circuit. 

d) Insert SWAP gates before gi(c,t) such that the permutation 
pmin has been established. 

3) Return NN-compliant circuit, CNNC for given circuit C. 

The permutation pmin obtained by following this scheme may 

not be unique i.e. many such permutations (pmin ) can be found 

that leads to identical smallest cost (variable) value. In such 

scenario, we resolve the conflict by randomly choosing any 

one of those permutations. 
 

Example 1: For the circuit shown in Fig. 2(a) with initial 

qubit ordering Л = {q1, q2, q3, q4 } where the first gate g1(4, 

1)has control/target inputs at lines 4 and 1 respectively. It 

does not hold the nearest neighbor criteria as NNC (g1) = 2 > 

0. Hence, a permutation that can make g1 NN-complaint needs 

to be determined. There are three possible options in which 

SWAP gates can be added to make it adjacent viz. p1 = {q2, q3, 

q1, q4}, p2 = {q1, q4, q2, q3} and p3 = {q2, q1, q4, q3} by 

evaluating the impact on the remaining gates (GR = (6 – 1) 

mod 6 = 5 ) of the circuit as depicted in Fig. 3(a), 3(b), 3(c). 

Following permutation p1 leads to a variable cost of 1.2 (V.C 
= 2 * 3/5+0 * 2/5 = 1.2) whereas p2, p3 results in a variable 

cost of 0.8 (V.C = 2 * 2/5+0 * 3/5 = 0.8) and 1 (V.C = 1 * 5/5 

= 1) respectively. As p2 is having a less impact compared to 

other permutations thereby it has been chosen for 

implementation. Literally, SWAP gates are added accordingly 

so as to establish the permutation order p2 and the process 

repeats till the end of the circuit. The corresponding NN-

compliant circuit has been represented in Fig. 4. 

 

      

 

 
 

 

 

 

Fig. 3(a): Reordered circuit of Fig. 

2(a) with p1 permutation (V.C = 1.2) 
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Fig. 3(c): Reordered circuit of Fig. 

2(a) with p3 permutation (V.C = 1) 
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Fig. 4: NN based design of Fig. 2(a) by 

following collective look-ahead policy 

(using p2) 
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Fig. 3(b): Reordered circuit of Fig. 

2(a) with p2 permutation (V.C = 0.8) 
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B. Bounded Windowing Policy: It is considered as an 

alternative look-ahead policy that estimates the impact on a 

limited number of gates rather than over all the following 

gates collectively. To have a restricted view over the 

following gates, the concept of window size has been applied 

under this scheme. More specifically, instead of considering 

all the following gates only a certain number of gates as 

dictated by the window size are considered to choose a 

suitable permuted order of qubits. The number of gates needed 

to observe is determined by employing the following heuristic 
window size estimation as follows: 
 

Gsize =  𝑁    (10)                                                
   

The above expression determines the circuit window size 

(Gsize) based on the total number of gates (N) of any given 

circuit.  In order to arrange the qubits in a specific order, 

variable cost over Gsize gates is estimated, which is obtained by 

replacing GR with Gsize in equation (6) as expressed below. 
 

V.C:∑ci*ni/Gsize = c1*n1/Gsize+ c2*n2/Gsize+…+ cm*nm/Gsize (11)  

 

Similar to equation 7, the above expression can be represented 

further by replacing ni /Gsize with contribution factor ri. 

The prime motivation behind using this and the following 

look-ahead scheme is to prevent the impacts of gates 
appearing much late in the circuit to affect the decision on 

how to move the non-adjacent qubits of any gate. However, 

such an approach may turn out to be more beneficial for large 

benchmark circuits. 

Furthermore, a formal specification of the corresponding 

approach has been provided for better understanding as 

follows: 

1) Consider the initial ordering of qubits as Л of a given 

circuit C. 

2) For each gate gi(c,t) ∈ C , if (NNC(gi(c,t)) > 0) then 
a) Determine all possible permutations (pi) of qubits that can 

make the corresponding gate adjacent (NNC(gi(c,t)) = 0) and 

store them on a set P (denoted as permutation set). 

b) For each pi ∈ P 

i) Estimate Gsize of circuit C with N gates. 

     ii) Compute variable cost (V.C) for only Gsize gates of C. 

c) Identify pmin that leads to a smallest cost (variable cost) 

value, V.Cmin obtained in the previous step for a given circuit. 

d) Insert SWAP gates before gi(c,t) in such a way that the 

permutation pmin is established. 

3) Return NN-compliant circuit, CNNC for given circuit C. 
 

Example 2: Consider again the circuit shown in Fig. 2(a) and 

the look-ahead scheme discussed in Section B has been 

applied to assess all the possible options for moving the qubits 

of gate g1 (4, 1)into adjacent positions. Instead of evaluating 

all the remaining gates ( GR ), only for a certain number of 

gates the variable cost (V.C) has been estimated as Gsize= 

  𝐍  =   𝟔  = 3(using equation 10) of the corresponding 

circuit. Similar to example 1, there are three options (p1, p2, 

p3) in which the first gate can be made NN-complaint but this 

time the costs (using eq. 11) has been computed by 

considering only the next 3 gates to choose the one for SWAP 

gate implementation as depicted in Fig. 5(a), Fig. 5(b) and 

Fig. 5(c) (where dashed rectangle represents the circuit 

window). As the option p2 holds least variable cost thereby it 

has been chosen for implementation and the process continues 

for the rest of the gates which ultimately leads to an NN based 

design as shown in Fig. 6. 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

C. Dynamic Windowing Policy: Unlike, the previous 

windowing scheme (introduced in Section B), here a different 

windowing concept has been considered in which the window 

size differs for each non-adjacent gate g (NNC (g) > 0) of the 

given circuit.  Basically, nearest neighbor cost of a current 
processing gate (say gc) is considered as the essential driving 

factor that determines the dynamic nature of the window size. 

In other words, the change (increase/decrease) in size of the 

circuit window directly varies with the change 

(increase/decrease) in nearest neighbor cost of gate gc, which 

in turn alters with the exactly previous non-adjacent gate gp 

but while adapting this strategy, we have to set the initial 

window size of the circuit to previously computed window 

value i.e. Gsize (used in Section B). Mathematically, this 

windowing policy can be expressed as follows: 
 

W∞ C         (12) 

W =K. C        (13)  

 W/C= K                      (14) 

Wc/Cc = K        (15) 

Wp/Cp = K                   (16) 
 

Replacing the constant K from Eq. (16) into Eq. (15) derives 

the following mathematical relation. 
 

           Wc/Cc = Wp/Cp        (17) 

                  Wc=  𝑊𝑝/𝐶𝑝 ∗  𝐶𝑐                (18) 
 

 

 

 

 

 

 

The expression written in Eq. 18 derives the window size of 

the current gate gc. The notations Wc, Wp, Cc, Cp represents the 

window sizes and nearest neighbor costs of the current and 

previous non-adjacent gates viz. gc, gp respectively. 

In this algorithm, we have considered nearest neighbor cost as 
the pivotal element to determine the window size dynamically.  

The change (increase/decrease) in nearest neighbor cost 

proportionally affects the number of possible qubit 

permutations needed to obtain a NN-compliant gate.  Such a 

relationship between cost and permutation in turn influence 

the search space for determining the best possible option in 

which SWAP gates can be inserted.  Consequently, we have 

adjusted the window size according to the change in nearest 

Fig. 5(a): Reordered circuit of Fig. 

2(a) with p1 permutation (V.C = 1.33) 
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2(a) with p2 permutation (V.C = 
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2(a) with p3 permutation (V.C = 1) 
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(using p2) 
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neighbor costs of gates of the given circuit. Suppose, if the 

nearest neighbor cost of a gate gc increases/decreases with 

respect to the previous one gp then we would define the 

window size of gc by adjusting the window value of gp 

proportionally with the change in cost value of gc otherwise 

the previous window value of gp is set for gate gc. 

To apprehend the idea more clearly, we have explained it with 

the help of an illustrative example as discussed next. 
 

Example 3: Consider the circuit shown in Fig. 7(a) having 

overall nearest neighbor cost of 7. The first gate g1 has cost of 

2, so it needs to be made NN-complaint by evaluating all the 

possible permutation order. There are three options viz. p1, p2, 

p3 available to make g1 adjacent by inserting SWAP gates as 

represented in Fig. 7(b) - 7(d). To evaluate these options, the 

variable costs have been estimated over the initial circuit 

window set as Gsize (same as the one used in bounded policy). 
Hence, the costs has been computed over the next 3 gates 

(Gsize=   N  =   6  = 3) and option p3 has been implemented 

due to least cost. By examining the resulting circuit obtained 

after establishing p3 shown in Fig. 7(d), find that gate g3 has a 

cost of 1. To make this gate NN-compliant, there are two 

possible permutations viz.  p1 = {q2, q4, q1, q3}, p2 = {q2, q1, q3, 

q4} that are evaluated by observing the number of gates 

obtained using equation 18 which is 2 (W3 = W1/C1 * C3 = 

 
3

2
∗ 1 =2). Unlike g1, now the impact over the next two gates 

of g3 i.e g4 and g5 has been considered. In this manner the 

procedure continues till the last gate has been processed and 

finally the resultant NN-compliant circuit is obtained in Fig. 8. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

IV. EXPERIMENTAL RESULTS  
 

In this section, the experimental results from our design 

methodology have been summarized. The scheme has been 

implemented in C and executed on a machine with Intel core 

i5 processor with 3.30 GHZ clock and 4GB RAM.  

The performance evaluation of our methodology has been 

carried out over various benchmark suites [17] and all the 

computed results have summarized in Table1 and Table2.  

From the experimental evaluations, it can be observed that our 

design methodology provides significant improvements over 

SWAP gate count against the related works results. Overall, an 

average improvement of about 19.54% (35% in the best case) 
over [13], 24.27% (64.86% in the best case) over [7] and 

5.54%, 25% (12.5% and 42.10% in the best case) over [12] 

has been registered (from Table 1). On the other hand, our 

design approach also turns out to be feasible for large sized 

benchmarks as summarized in Table 2. An exception to be 

mentioned that in Table2, the results from bounded and 

dynamic technique are same and it might be due to the fact 

that the benchmarks considered there are our defined ones 

which follow a symmetrical pattern while the employed 

heuristics and applied strategies are quite different in all the 

three schemes.  
 

VI. CONCLUSION 

In this work, a look-ahead based design methodology has been 

developed to transform quantum circuits to their equivalent 

nearest neighbor structures. Transforming the quantum circuits 

to NN structures was not only our sole objective, but how to 

minimize the SWAP usages in the circuits also was under 

consideration. In order to explore the possible ways to reduce 

this parameter further, we have shown three different look-

ahead policies (Collective, Bounded and Dynamic) and all the 

design techniques have been successfully tested over different 
benchmark circuits. While comparing with state-of-art NN 

techniques, this scheme has shown significant improvement in 

SWAP overhead. Future work will now focus on investigating 

the proposed policies for optimizing quantum circuits for 

further physical realizations such as IBM QX Architectures 

[23].   
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Fig. 7(d): Reordered circuit with 

option p3 (V.C=0.66) 

q2 

q1 

q4 

q3 

U
 

U
 U

 

U
 

U
 

U
 

q1 

q2 

q3 

q4 

Fig. 8: NN-compliant circuit of Fig. 8(a) after 
using dynamic window scheme 
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Benchmark 

names 

No. of 

qubits 

Gate 

count 

Method 1 

(collective) 

SWAPs 

Method 2 

(bounded) 

SWAPs 

Method 3 

(dynamic) 

SWAPs 

Best 

result 

Prev.

work 

[13] 

Prev. 

work 

[7] 

 

Prev. 

work 

[12]  

 

Prev. 

work [12]  

% improvement over 

[13] [7] [12] [12] 

               4gt4-v0_80 6 44 32 34 35 32 36 36 - - 11.11 11.11 - - 

4gt10-v1_81 5 36 25 22 22 22 32 29 24 38 31.25 24.13 8.33 42.10 

4mod5-v1_23 5 24 15 15 15 15 15 18 - - 0.0 16.66 - - 

4gt11_84 5 7 4 4 4 4 5 5 - - 20 20 - - 

rd32-v0_67 4 8 4 4 4 4 - 4 - - - 0.0 - - 

3_17_13 3 14 6 6 6 6 6 5 6 6 0.0 -20 0.0 0.0 

4gt13-v1_93 5 17 10 9 9 9 10 10 - - 10 10 - - 

4_49_17 4 32 15 15 15 15 19 16 - - 21.05 6.25 - - 

hwb4_52 4 23 13 9 9 9 10 14 - - 10 35.71 - - 

4gt5_75 5 22 19 16 13 13 20 20 - - 35 35 - - 

alu-v4_36 5 32 21 16 19 16 22 20 - - 27.27 20 - - 

aj-e11_165 5 60 33 33 33 33 35 43 33 42 5.71 23.25 0.0 21.42 

4gt12-v1_89 6 53 33 33 33 33 37 35 - - 10.81 5.71 - - 

4mod7-v0_95 5 40 24 26 22 22 - 30 - - - 26.66 - - 

mod5adder_128 6 87 65 53 55 53 65 79 
 

46 

 

85 
18.46 32.91 15.21 

 

37.64 

rd53_135 7 78 75 68 66 66 82 96 66 85 19.51 31.25 0.0 22.35 

ham7_104 7 87 72 70 63 63 83 86 72 84 24.09 26.74 12.5 25 

mod8-10_177 6 109 77 71 77 71 77 77 - - 7.79 7.79 - - 

hwb5_55 5 109 66 68 64 64 75 86 66 101 14.66 25.58 3.03 36.63 

hwb6_58 6 146 111 105 98 98 127 140 111 146 22.83 30 11.71 32.87 

rd73_140 10 76 64 44 55 44 63 61 - - 30.15 27.86 - - 

QFT7 7 21 24 18 28 18 - 18 18 23 - 0.0 0.0 21.73 

QFT8 8 28 31 31 34 31 - 41 31 33 - 24.39 0.0 6.06 

QFT9 9 36 49 43 50 43 - 66 49 53 - 34.84 12.24 18.86 

QFT10 10 45 64 60 67 60 - 96 64 67 - 37.5 6.25 10.44 

0410184_169 14 90 39 39 39 39 - 111 - - - 64.86 - - 

rd84_142 15 112 112 76 95 76 112 148 - - 32.14 48.64 - - 

        

Table 1: Comparison with state-of-the-art NN techniques   

 

Benchmarks 

 

No. of 

qubits  

 

Gate 

Count 

Method 1 

(collective) 

SWAPs 

Method 2 

(bounded) 

SWAPs 

Method 3 

(dynamic) 

SWAPs 

      add17_218 17 42 24 24 24 

add18_218 18 42 27 23 23 

add19_218 19 48 32 28 28 

add20_218 20 50 33 29 29 

add21_218 21 50 32 28 28 

rdom_22 22 55 19 19 19 

add23_218 23 58 38 34 34 

rdom_24 24 47 44 44 44 

add8_172 25 64 42 38 38 

rdom_27 27 53 26 26 26 

add29_218 29 74 48 44 44 

rdom_30 30 59 29 30 30 

rdom_33 33 65 32 33 33 

add16_174 49 128 82 78 78 

 

Table 2: Results from large size benchmarks   
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