
Improved Look-ahead Approaches for

Nearest Neighbor Synthesis of 1D Quantum Circuits

Anirban Bhattacharjee1, Chandan Bandyopadhyay1, Robert Wille2, Rolf Drechsler3, Hafizur Rahaman1
1Indian Institute of Engineering Science and Technology Shibpur, India-711103

2Institute for Integrated Circuits, Johannes Kepler University Linz, A-4040 Linz, Austria
3Institute of Computer Science, University of Bremen & Cyber-Physical Systems, DFKI GmbH, 28358 Bremen, Germany

Email: anirbanbhattacharjee330@gmail.com, chandanb@it.iiests.ac.in, robert.wille@jku.at, drechsle@uni-bremen.de,

rahaman_h@it.iiests.ac.in

Abstract—In the present era of computation, quantum computing

may offer a new direction as it allows to solve certain problems

significantly faster than classical solutions. But it also has been

found that there are several constrains in performing a successful

realization of quantum circuits. One such constraint is the

nearest neighbor (NN) criterion which states that qubits which

interact with each other have to be adjacent. Motivated by this

objective, in this work we propose a linear qubit placement

technique that effectively rearranges the qubits and transforms

quantum circuits to improved NN-based designs by inserting

SWAPs. Furthermore, for placing these SWAPs in appropriate

positions, we implemented a look-ahead strategy that considers

the effect of the rest of the gates and computes a corresponding

impact value which guides the insertion of the SWAP gates. To

this extent, we consider three different strategies to evaluate the

corresponding “look-ahead effects” and their influence on

existing gates. At the end of this work, we have evaluated the

developed methodology over a wide range of benchmarks and

compared the results with existing related works. In this

comparison, we have seen that the proposed technique

outperforms the related works and provides substantial

reductions in SWAP overhead.

Keywords— Quantum Circuit, quantum gate, Nearest
Neighbour(NN), SWAP gate.

I. INTRODUCTION

Quantum computing has emerged as an advanced computing

platform, which, unlike classical circuits that follow the

principle of classical mechanics, is driven by the principles of

quantum mechanics. This enables such circuits to solve certain

problems significantly faster. For example, quantum circuits

have shown its capacity in solving some of the most complex

problems like prime factorization in RSA cryptosystems [1],

discrete logarithm problems [1], or database search [2] much

faster than classical solutions.

More importantly, the concept of quantum circuits is not
limited to the theoretical domain only, but in the recent years,

technologies like ion-trap [3], quantum dots [4], nuclear

magnetic resonance [5], or superconducting qubits [6] have

successfully shown their ability to realize such circuits.

However, here several technological constraints arise which

have to be considered. One such restriction comes in form of

the Nearest Neighbour (NN) [7] criteria which demands the

qubits in a circuit to be adjacent.

As many quantum circuit implementing technologies demand
NN complaint designs, it becomes necessary to develop

algorithms that can transform quantum circuits to NN based

designs. In general, the simplest way of performing such

transformations is by embedding SWAP gates in between non-

adjacent qubits [7]. However, here it is of the essence to keep

the number of inserted SWAP gates small in order to reduce

the overhead and, there with, the cost of the design.

More importantly, it is seen that in most of the NN related

works this parameter has emerged as main metric to evaluate

the efficiency of the design scheme. Since a couple of years,

several investigations are reported on the efficient design

strategies for NN circuits. More precisely, the problem has
been addressed in the work [7], which rearranges the original

qubit positions using various strategies. Further to improve the

design structure, a circuit transformation technique has been

introduced in [8], where the authors have converted the design

problem into an intermediate task assignment problem and

then administered a meta-heuristic based search technique to

obtain the equivalent NN-based design. In [9], the authors

have demonstrated a synthesis method based on mapping of

the entire circuit on a lattice structure. For making more

efficient realization, a graph-partitioning approach has been

considered in [10], where optimized NN based designs have
been formed by reducing SWAP gate count significantly.

Despite of applying a global reordering strategy for gate

rearrangements [20, 21], an exact design solution based on a

local scheme is introduced in [11] and this approach has

showed promising results for small benchmark circuits. In

[12], the authors introduced a local reordering strategy that

employs a look-ahead scheme to obtain an improved design

structure. Again, for large scale synthesis of NN circuits, a

heuristic based look-ahead scheme has been presented in [13].

Albeit, all the works that we have stated so far are on linear

representation of NN circuits, nowadays investigations have

also been conducted on 2D [18, 19], 3D [22] and even
multidimensional architectures [14]. However, in this work,

we focus on 1D architectures. For this, we introduce a

heuristic look-ahead design methodology consisting of three

distinct cost estimation models to obtain a linear NN based

representations. Although the notion of look-ahead scheme

has already been discussed in the earlier works, the way it has

been implemented there differs from the one used here which

have shown significant improvements over the reported

works.

In the next section (Section II), we have discussed on the

fundamentals of Quantum circuit and nearest neighbor

representation. Problem formulation and motivation of the

work is summarized in Section III. The proposed methodology

with examples is stated in Section IV. Section V contains the

experimental results with the reported works. Finally, the

concluding remarks appear in Section VI.

II. BACKGROUND

Quantum gates perform operations by modifying the states of

qubits rather than its value. A qubit can exist in the basis states

of | 0 and | 1 , which are same as that of 0 and 1 in classical

computing. Besides these basis states, it can also occur in

states which can be expressed as a linear superposition of the

basis states represented by the state vector  as:

10  

 (1)
where the notations α and β are the complex numbers that

specify the probability amplitudes of the basis states and hold

the condition α2 + β2 = 1. However, this state vector cannot be

detected directly as measurement causes the vector to

degenerate into one of the basis states of | 0 and | 1 with
probabilities α2 and β2 respectively.

The states of the qubit can be manipulated by executing

quantum gates whose operations are described through unitary

matrices. To this extent, quantum operations on an n-qubit

system can be realized by multiplying various 2n × 2n unitary

matrices.

Schematic representation of some of the most commonly used

quantum gates (both 1-qubit and 2-qubits) have been

summarized in chart 1.

In general, the transformation operations of 2-qubit quantum

gates viz. CNOT, Controlled-V, Controlled-V
+
 can be

described by the following matrix representation

M =

1 0
0 1

0 0
0 0

0 0
0 0

𝑎 𝑏
𝑐 𝑑

where the variables a, b, c, d denotes the generic values which

varies with different 2-qubit quantum gate operations. To

compact the representation further, such generic values can be

combined in a separate matrix form as shown below

 U=
𝑎 𝑏
𝑐 𝑑

The notation (U) defined in the above matrix represents the

operations performed by two qubit quantum gates and

henceforth we used this notation in the rest of the work.

Definition1. A circuit designed with a cascade of quantum

gates over a set of control and target lines is known as

quantum circuit.

The cost of a quantum circuit is basically determined by four

parameters – quantum cost [15], T-count, T-depth [16] and

NN cost. As in our technique, we have considered the fourth

cost metric only, here we are discussing on that metric and its

related terms.

Definition 2: The nearest neighbor cost of a two-qubit gate

g(c,t) with control input on line c and target input on line t can

be determined by computing the difference between the lines c

and t.

Mathematically, this difference value can be expressed as

follows:
NNCg = 𝑐 − 𝑡 − 1 (2)

For 1-qubit gate like NOT, the NN cost is 0.The overall NN

cost of a circuit (NNCC) is considered as the cumulative sum

of NN cost contributed by each gate (g) in the circuit. This
relation can be expressed as follows:

NNCC = 𝑁𝑁𝐶𝑔𝑔 (3)

If in a circuit 𝑁𝑁𝐶𝑔𝑔 becomes 0, then the circuit can be

declared as an NN compliant circuit. But if the circuit does not

satisfy the NN criteria then a special kind of gate namely

SWAP gate (the structure of the gate is given in Fig. 1) is
inserted in-between non-adjacent qubits to make them

adjacent.

For clear understanding, let us consider a circuit as given in

Fig. 2(a). The given design has a NN cost of 6 as qubits in all

the four gates are non-adjacent. So, to make them adjacent, 12

SWAP gates have been embedded in specific positions and the

equivalent NN compliant representation is finally obtained in

Fig. 2(b).

III. MOTIVATION AND PROBLEM FORMULATION

Basically, nearest neighbor designs can be obtained by
following either of the two reordering strategies – global

[7,8,10,11,20,21] and local [6,7,11,12,13,22]. As local

reordering strategy implements less SWAP gate count, we

considered this design approach in our work. Despite its

advantages, there occur some issues regarding appropriate

placement of SWAP gates which have been discussed in [12]

and thereby addressed by incorporating look-ahead policy.

In this work, we have modified the implementation process of

the look-ahead policy from the earlier works [12-13] and

thereby introduced an improved version of it. Here, in this

paper three different look-ahead strategies have been

considered that estimates the effect of SWAP gate insertion
before non-adjacent gates by formulating the look-ahead

estimation models generically based on the number of gates to

be evaluated. However, the previous look-ahead works have

Chart 1:Well known quantum gates and their

schematic representations

Gates Notation Gates Notation

NOT Contro

lled -V

 CNOT

V Contro

lled -

V
†
 V

†

 V
†

 V

 V
†

V

Fig. 1: Design of
SWAP gate

Fig. 2(a): Input circuit

with NN Cost 6

q1

q2

q3

q4

U
 U

U

U

U

Fig. 2(b): NN equivalent design

corresponding to Fig. 2(a)

q1

q2

q3

q4 U

U
 U

U
 U

q1

q2

q3

q4

considered direct and straight-forward approaches where the

cost estimation has been made by evaluating a specified

number of gates for nearest neighbor synthesis of quantum

circuits.

As permutation of qubits has an impact over SWAP gate

optimization, so to determine the best possible option for

moving the non-adjacent qubits of any gate for NN based

design has been discussed next.

IV. PROPOSED METHOD

To determine the best possible option for moving the

interacting qubits of any non-adjacent gate, here we have

presented a heuristic design based on look-ahead strategy to

estimate the impact for any option over the remaining gates of

the circuit. In the design process, we evaluate all the possible

options of any non-adjacent gate by estimating the impact in
terms of SWAP gate count on the remaining gates. Based on

this estimated impact, the best possible option is chosen. For

this purpose, we compute the following cost metric:

 T.C: F.C + V.C (4)

where T.C, F.C, V.C denotes total cost, fixed cost and variable

cost. However, fixed cost can further be expressed as follows.

 F.C: GR * CR (5)

where GR and CR represent the remaining gates and

implementation cost of the respective gates (here, we have

considered each quantum gate to be of unit cost).The variable
cost (V.C) used in (4) is expressed below.

V.C: ∑ci *ni/GR = c1*n1/GR +c2*n2/GR +...+cm*nm/GR (6)

where the notations ci, ni, indicates the nearest neighbor costs
and number of GR gates that possesses the corresponding cost

ci.

The above variable cost expression indicates the computation

of nearest neighbor cost of the following gates that can be

expressed further in terms of contribution factor, r as follows.

V.C: c1 * r1 + c2 * r2 + … + cm * rm = 𝑐𝑖 ∗ 𝑟𝑖
𝑚
𝑖=1 (7)

where ri is represented as ri = ni/ GR

The symbol GR (remaining gates) used in all the previous

mathematical expressions can be obtained for any gate gi of a

given circuit as follows.

GR = (N - gi) mod N (8)

where the notation N denotes the total gate count of a given

circuit.
As the fixed cost (F.C) does not have any influence over

nearest neighbor optimization, so we haven’t considered it in

our design policy. Therefore, only variable cost estimation

determines how to insert SWAP gates in appropriate positions.

Consequently, the mathematical expression shown in (4) can

be rewritten as follows:

 T.C≈V.C (9)

Henceforth, variable cost has been considered equivalent to

that of total cost. In our design methodology, we have

implemented three different schemes concerning on how we

should observe (look-ahead) the following gates to determine

the suitable option for SWAP gate implementation is

described next.

A. Collective Look-ahead Policy: The basic purpose of this

scheme is to observe the target/control qubit positions of all

the gates following any non-adjacent gate viz.gi in a collective

manner. As per this strategy, we choose that qubit order that

results in a least possible variable cost over the remaining

gates of a given circuit. In other words, we scan each gate

g(c,t) of a given circuit C to determine whether its control

(c)/target (t) qubits are placed adjacent or not. If its inputs are

not placed adjacent (NNC (g(c,t)) > 0), then we evaluate all

possible rearrangements of the qubits by estimating the impact
over the remaining gates, which can transform the gate g(c,t)

into an NN-compliant one otherwise we proceed to next gate.

Repeat this procedure until the last gate has been processed.

To elaborate it in more detail, we have described the entire

algorithm formally as follows:

1) Consider the initial ordering of qubits as Л of a given
circuit C.

2) For each gate gi(c,t) ∈ C , if (NNC(gi(c,t)) > 0) then

a) Determine the all possible permutations (pi) of qubits that

can make the corresponding gate adjacent (NNC(gi(c,t)) = 0)

and record them on a set P (denoted as permutation set).

b) For each pi ∈ P

i) Compute variable cost (V.C) for all GR gates of C.

c) Identify pmin that leads to a smallest overall cost (variable

cost), V.Cmin obtained in the previous step for a given circuit.

d) Insert SWAP gates before gi(c,t) such that the permutation
pmin has been established.

3) Return NN-compliant circuit, CNNC for given circuit C.

The permutation pmin obtained by following this scheme may

not be unique i.e. many such permutations (pmin) can be found

that leads to identical smallest cost (variable) value. In such

scenario, we resolve the conflict by randomly choosing any

one of those permutations.

Example 1: For the circuit shown in Fig. 2(a) with initial

qubit ordering Л = {q1, q2, q3, q4 } where the first gate g1(4,

1)has control/target inputs at lines 4 and 1 respectively. It

does not hold the nearest neighbor criteria as NNC (g1) = 2 >

0. Hence, a permutation that can make g1 NN-complaint needs

to be determined. There are three possible options in which

SWAP gates can be added to make it adjacent viz. p1 = {q2, q3,

q1, q4}, p2 = {q1, q4, q2, q3} and p3 = {q2, q1, q4, q3} by

evaluating the impact on the remaining gates (GR = (6 – 1)

mod 6 = 5) of the circuit as depicted in Fig. 3(a), 3(b), 3(c).

Following permutation p1 leads to a variable cost of 1.2 (V.C
= 2 * 3/5+0 * 2/5 = 1.2) whereas p2, p3 results in a variable

cost of 0.8 (V.C = 2 * 2/5+0 * 3/5 = 0.8) and 1 (V.C = 1 * 5/5

= 1) respectively. As p2 is having a less impact compared to

other permutations thereby it has been chosen for

implementation. Literally, SWAP gates are added accordingly

so as to establish the permutation order p2 and the process

repeats till the end of the circuit. The corresponding NN-

compliant circuit has been represented in Fig. 4.

Fig. 3(a): Reordered circuit of Fig.

2(a) with p1 permutation (V.C = 1.2)

U

U

U

U

U
 U

 q2

q3

q1

q4

q1

q2

q3

q4

Fig. 3(c): Reordered circuit of Fig.

2(a) with p3 permutation (V.C = 1)

q1

q2

q3

q4

q2

q1

q4

q3

U

U

U

U

U

U

Fig. 4: NN based design of Fig. 2(a) by

following collective look-ahead policy

(using p2)

q1

q2

q3

q4

U

U

q4

q2

q1

q3

U

U

U

U

q1

q2

q3

q4

Fig. 3(b): Reordered circuit of Fig.

2(a) with p2 permutation (V.C = 0.8)

U

U

U
 U

U
 U

q1

q4

q2

q3

B. Bounded Windowing Policy: It is considered as an

alternative look-ahead policy that estimates the impact on a

limited number of gates rather than over all the following

gates collectively. To have a restricted view over the

following gates, the concept of window size has been applied

under this scheme. More specifically, instead of considering

all the following gates only a certain number of gates as

dictated by the window size are considered to choose a

suitable permuted order of qubits. The number of gates needed

to observe is determined by employing the following heuristic
window size estimation as follows:

Gsize = 𝑁 (10)

The above expression determines the circuit window size

(Gsize) based on the total number of gates (N) of any given

circuit. In order to arrange the qubits in a specific order,

variable cost over Gsize gates is estimated, which is obtained by

replacing GR with Gsize in equation (6) as expressed below.

V.C:∑ci*ni/Gsize = c1*n1/Gsize+ c2*n2/Gsize+…+ cm*nm/Gsize (11)

Similar to equation 7, the above expression can be represented

further by replacing ni /Gsize with contribution factor ri.

The prime motivation behind using this and the following

look-ahead scheme is to prevent the impacts of gates
appearing much late in the circuit to affect the decision on

how to move the non-adjacent qubits of any gate. However,

such an approach may turn out to be more beneficial for large

benchmark circuits.

Furthermore, a formal specification of the corresponding

approach has been provided for better understanding as

follows:

1) Consider the initial ordering of qubits as Л of a given

circuit C.

2) For each gate gi(c,t) ∈ C , if (NNC(gi(c,t)) > 0) then
a) Determine all possible permutations (pi) of qubits that can

make the corresponding gate adjacent (NNC(gi(c,t)) = 0) and

store them on a set P (denoted as permutation set).

b) For each pi ∈ P

i) Estimate Gsize of circuit C with N gates.

 ii) Compute variable cost (V.C) for only Gsize gates of C.

c) Identify pmin that leads to a smallest cost (variable cost)

value, V.Cmin obtained in the previous step for a given circuit.

d) Insert SWAP gates before gi(c,t) in such a way that the

permutation pmin is established.

3) Return NN-compliant circuit, CNNC for given circuit C.

Example 2: Consider again the circuit shown in Fig. 2(a) and

the look-ahead scheme discussed in Section B has been

applied to assess all the possible options for moving the qubits

of gate g1 (4, 1)into adjacent positions. Instead of evaluating

all the remaining gates (GR), only for a certain number of

gates the variable cost (V.C) has been estimated as Gsize=

 𝐍 = 𝟔 = 3(using equation 10) of the corresponding

circuit. Similar to example 1, there are three options (p1, p2,

p3) in which the first gate can be made NN-complaint but this

time the costs (using eq. 11) has been computed by

considering only the next 3 gates to choose the one for SWAP

gate implementation as depicted in Fig. 5(a), Fig. 5(b) and

Fig. 5(c) (where dashed rectangle represents the circuit

window). As the option p2 holds least variable cost thereby it

has been chosen for implementation and the process continues

for the rest of the gates which ultimately leads to an NN based

design as shown in Fig. 6.

C. Dynamic Windowing Policy: Unlike, the previous

windowing scheme (introduced in Section B), here a different

windowing concept has been considered in which the window

size differs for each non-adjacent gate g (NNC (g) > 0) of the

given circuit. Basically, nearest neighbor cost of a current
processing gate (say gc) is considered as the essential driving

factor that determines the dynamic nature of the window size.

In other words, the change (increase/decrease) in size of the

circuit window directly varies with the change

(increase/decrease) in nearest neighbor cost of gate gc, which

in turn alters with the exactly previous non-adjacent gate gp

but while adapting this strategy, we have to set the initial

window size of the circuit to previously computed window

value i.e. Gsize (used in Section B). Mathematically, this

windowing policy can be expressed as follows:

W∞ C (12)

W =K. C (13)

 W/C= K (14)

Wc/Cc = K (15)

Wp/Cp = K (16)

Replacing the constant K from Eq. (16) into Eq. (15) derives

the following mathematical relation.

 Wc/Cc = Wp/Cp (17)

 Wc= 𝑊𝑝/𝐶𝑝 ∗ 𝐶𝑐 (18)

The expression written in Eq. 18 derives the window size of

the current gate gc. The notations Wc, Wp, Cc, Cp represents the

window sizes and nearest neighbor costs of the current and

previous non-adjacent gates viz. gc, gp respectively.

In this algorithm, we have considered nearest neighbor cost as
the pivotal element to determine the window size dynamically.

The change (increase/decrease) in nearest neighbor cost

proportionally affects the number of possible qubit

permutations needed to obtain a NN-compliant gate. Such a

relationship between cost and permutation in turn influence

the search space for determining the best possible option in

which SWAP gates can be inserted. Consequently, we have

adjusted the window size according to the change in nearest

Fig. 5(a): Reordered circuit of Fig.

2(a) with p1 permutation (V.C = 1.33)

U

U

U

U

U

U
 q1

q2

q3

q4

q2

q3

q1

q4

Fig. 5(b): Reordered circuit of Fig.

2(a) with p2 permutation (V.C =

0.66)

U

U

U
 U

U
 U

q1

q4

q2

q3

q1

q2

q3

q4

Fig. 7(a): original circuit with

NNC=6

q1

q2

q3

q4

U
 U

U

U

U

U

Fig. 5(c): Reordered circuit of Fig.

2(a) with p3 permutation (V.C = 1)

U

U

U

U

U
 U

q2

q1

q4

q3

q1

q2

q3

q4

Fig. 6: NN based design of Fig. 1(a) by

following bounded windowing policy

(using p2)

q1

q2

q3

q4 U

q4

q2

q1

q3

U

U

U

U

U

Fig. 7(b): Reordered circuit

with option p1(V.C = 1)

q1

q2

q3

q4

U
 U

U

U

U

U

q1

q4

q2

q3

neighbor costs of gates of the given circuit. Suppose, if the

nearest neighbor cost of a gate gc increases/decreases with

respect to the previous one gp then we would define the

window size of gc by adjusting the window value of gp

proportionally with the change in cost value of gc otherwise

the previous window value of gp is set for gate gc.

To apprehend the idea more clearly, we have explained it with

the help of an illustrative example as discussed next.

Example 3: Consider the circuit shown in Fig. 7(a) having

overall nearest neighbor cost of 7. The first gate g1 has cost of

2, so it needs to be made NN-complaint by evaluating all the

possible permutation order. There are three options viz. p1, p2,

p3 available to make g1 adjacent by inserting SWAP gates as

represented in Fig. 7(b) - 7(d). To evaluate these options, the

variable costs have been estimated over the initial circuit

window set as Gsize (same as the one used in bounded policy).
Hence, the costs has been computed over the next 3 gates

(Gsize= N = 6 = 3) and option p3 has been implemented

due to least cost. By examining the resulting circuit obtained

after establishing p3 shown in Fig. 7(d), find that gate g3 has a

cost of 1. To make this gate NN-compliant, there are two

possible permutations viz. p1 = {q2, q4, q1, q3}, p2 = {q2, q1, q3,

q4} that are evaluated by observing the number of gates

obtained using equation 18 which is 2 (W3 = W1/C1 * C3 =

3

2
∗ 1 =2). Unlike g1, now the impact over the next two gates

of g3 i.e g4 and g5 has been considered. In this manner the

procedure continues till the last gate has been processed and

finally the resultant NN-compliant circuit is obtained in Fig. 8.

IV. EXPERIMENTAL RESULTS

In this section, the experimental results from our design

methodology have been summarized. The scheme has been

implemented in C and executed on a machine with Intel core

i5 processor with 3.30 GHZ clock and 4GB RAM.

The performance evaluation of our methodology has been

carried out over various benchmark suites [17] and all the

computed results have summarized in Table1 and Table2.

From the experimental evaluations, it can be observed that our

design methodology provides significant improvements over

SWAP gate count against the related works results. Overall, an

average improvement of about 19.54% (35% in the best case)
over [13], 24.27% (64.86% in the best case) over [7] and

5.54%, 25% (12.5% and 42.10% in the best case) over [12]

has been registered (from Table 1). On the other hand, our

design approach also turns out to be feasible for large sized

benchmarks as summarized in Table 2. An exception to be

mentioned that in Table2, the results from bounded and

dynamic technique are same and it might be due to the fact

that the benchmarks considered there are our defined ones

which follow a symmetrical pattern while the employed

heuristics and applied strategies are quite different in all the

three schemes.

VI. CONCLUSION

In this work, a look-ahead based design methodology has been

developed to transform quantum circuits to their equivalent

nearest neighbor structures. Transforming the quantum circuits

to NN structures was not only our sole objective, but how to

minimize the SWAP usages in the circuits also was under

consideration. In order to explore the possible ways to reduce

this parameter further, we have shown three different look-

ahead policies (Collective, Bounded and Dynamic) and all the

design techniques have been successfully tested over different
benchmark circuits. While comparing with state-of-art NN

techniques, this scheme has shown significant improvement in

SWAP overhead. Future work will now focus on investigating

the proposed policies for optimizing quantum circuits for

further physical realizations such as IBM QX Architectures

[23].
 VI. REFERENCES

[1] P.W Shor,‖Polynomial-time algorithms for prime factorization and

discrete logarithms on a quantum computer,‖SIAM J. Comput. 26 (5),
1484-1509 (1997).

[2] L.K Grover, ―A fast quantum mechanical algorithm for database

search,‖In. Symposium on the Theory of Computing, pp. 212-219 (1996).

[3] D. Kielpinski, C. Monroe, and D. J. Wineland. Architecture for a
largescale ion-trap quantum computer,Nature, 417(6890):709–711,

2002.

[4] J. Taylor, J. Petta, A. Johnson, A. Yacoby, C. Marcus, and M. Lukin.
Relaxation, dephasing, and quantum control of electron spins in double

quantum dots. Physical Review B, 76(3):035315, 2007.

[5] B. Criger, G. Passante, D. Park, and R. Laflamme. ―Recent advances in
nuclear magnetic resonance quantum information processing‖.

Philosophical Transactions of the Royal Society of London A:
Mathematical,Physical and Engineering Sciences, 370(1976):4620–

4635, 2012.

[6] Y. Hirata, M. Nakanishi, S. Yamashita and Y. Nakashima, ―An efficient
conversion of quantum circuits to a linear nearest neighbor architecture‖,

Quantum Info. Comput., vol. 11, no. 1, pp. 142-166, Jan 2011.

[7] M. Saeedi, R. Wille, R. Drechsler. Synthesis of quantum circuits for

linear nearest neighbor architectures. Quant. Inf. Proc., 10(3):355–377,
2011.

[8] M. Alfailakawi, L. Alterkawi, I. Ahmad, and S. Hamdan, ―Line ordering

of reversible circuits for linear nearest neighbor realization,‖ Quant.
Info. Proc., vol. 12, no. 10, pp. 3319–3339, Oct 2013.

[9] M. Perkowski, M. Lukac, D. Shah, and M. Kameyama. Synthesis of

quantum circuits in linear nearest neighbor model using positive Davio
lattices. 2011.

[10] A. Chakrabarti, S. Sur-Kolay, and A. Chaudhury. Linear nearest

neighbour synthesis of reversible circuits by graph partitioning. arXiv
preprint arXiv:1112.0564, 2011.

[11] R. Wille, A. Lye, and R. Drechsler, ―Exact reordering of circuit lines for

nearest neighbor quantum architectures,‖ IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 33, no.

12, pp. 1818–1831, 2014.

[12] R. Wille, O. Keszocze, M. Walter, P. Rohrs, A. Chattopadhyay, and R.
Drechsler, ―Look-ahead schemesfor nearest neighbor optimization of 1D

and 2D quantum circuits,‖ in Proc. ASP Design Autom. Conf., Jan 2016,
pp. 292–297.

[13] A. Kole, K. Datta, and I. Sengupta, ―A heuristic for linear nearest
neighbor realization of quantum circuits by SWAP gate insertion using

Fig. 7(c): Reordered circuit with

option p2(V.C=1)

q2

q3

q1

q4

U

U

U

U

U

U
 q1

q2

q3

q4

Fig. 7(d): Reordered circuit with

option p3 (V.C=0.66)

q2

q1

q4

q3

U

U
 U

U

U

U

q1

q2

q3

q4

Fig. 8: NN-compliant circuit of Fig. 8(a) after
using dynamic window scheme

q2

q4

q1

q3

U

U

U

U

U

U

q1

q2

q3

q4

N-gate lookahead,‖ IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 6, no.

1, pp. 62–72, Feb 2016.

[14] R. Wille, A. Lye and R. Drechsler, ―Optimal SWAP gate insertion for
nearest neighbor quantum circuits,‖ in Proc. ASP Design Automation

Conf. Suntec, Singapore: IEEE, 2014, pp. 489-494.

[15] M. H. A. Khan, ―Cost reduction in nearest neighbour based synthesis of
quantum boolean circuits,‖ Engineering Letters, pp. 1–5, (2008).

[16] M. Amy, D. Maslov, M. Mosca, ―Polynomial-time T-depth

Optimization of Clifford+T circuits via Matroid partitioning,‖ 6th
International Conference on Reversible Computation, Japan (2014).

[17] Revlib: An online resource for reversible functions and reversible
circuits. URL: http://www.revlib.org/.

[18] A. Bhattacharjee, C. Bandyopadhyay, R. Wille, R. Drechsler, H.

Rahaman, ―A Novel Approach for Nearest Neighbor Realization of 2D
Quantum Circuits,‖ IEEE Computer Society Annual Symposium on VLSI

(ISVLSI), 2018

[19] A. Bhattacharjee, C. Bandyopadhyay, H. Rahaman, ―A Heuristic Qubit
Placement Strategy for Nearest Neighbor Realization in 2D

Architecture‖ IEEE 22th International Symposium on VLSI Design and
Test-2018, India.

[20] R. Wille, N. Quetschlich, Y. Inoue, N. Yasuda, and S. Minato. Using

πDDs for Nearest Neighbor Optimization of Quantum Circuits. In
Conference on Reversible Computation, pages 181-196, 2016.

[21] A. Zulehner, S. Gasser, and R. Wille. Exact Global Reordering for

Nearest Neighbor Quantum Circuits Using A*. In Conference on
Reversible Computation, 185-201, 2017.

[22] A. Kole, K. Datta, I. Sengupta, ―A New Heuristic for N-Dimensional

Nearest Neighbour Realization of a Quantum Circuit‖. In: IEEE
Transactions on Computer-Aided Design of Integrated Circuits and

Systems 12 (2017), doi 10.1109/TCAD.2017.2693284.

[23] A. Zulehner, A. Paler, and R. Wille. An Efficient Methodology for
Mapping Quantum Circuits to the IBM QX Architectures. IEEE

Transactions on Computer Aided Design of Integrated Circuits and
Systems (TCAD), 2018.

Benchmark

names

No. of

qubits

Gate

count

Method 1

(collective)

SWAPs

Method 2

(bounded)

SWAPs

Method 3

(dynamic)

SWAPs

Best

result

Prev.

work

[13]

Prev.

work

[7]

Prev.

work

[12]

Prev.

work [12]

% improvement over

[13] [7] [12] [12]

 4gt4-v0_80 6 44 32 34 35 32 36 36 - - 11.11 11.11 - -

4gt10-v1_81 5 36 25 22 22 22 32 29 24 38 31.25 24.13 8.33 42.10

4mod5-v1_23 5 24 15 15 15 15 15 18 - - 0.0 16.66 - -

4gt11_84 5 7 4 4 4 4 5 5 - - 20 20 - -

rd32-v0_67 4 8 4 4 4 4 - 4 - - - 0.0 - -

3_17_13 3 14 6 6 6 6 6 5 6 6 0.0 -20 0.0 0.0

4gt13-v1_93 5 17 10 9 9 9 10 10 - - 10 10 - -

4_49_17 4 32 15 15 15 15 19 16 - - 21.05 6.25 - -

hwb4_52 4 23 13 9 9 9 10 14 - - 10 35.71 - -

4gt5_75 5 22 19 16 13 13 20 20 - - 35 35 - -

alu-v4_36 5 32 21 16 19 16 22 20 - - 27.27 20 - -

aj-e11_165 5 60 33 33 33 33 35 43 33 42 5.71 23.25 0.0 21.42

4gt12-v1_89 6 53 33 33 33 33 37 35 - - 10.81 5.71 - -

4mod7-v0_95 5 40 24 26 22 22 - 30 - - - 26.66 - -

mod5adder_128 6 87 65 53 55 53 65 79

46

85
18.46 32.91 15.21

37.64

rd53_135 7 78 75 68 66 66 82 96 66 85 19.51 31.25 0.0 22.35

ham7_104 7 87 72 70 63 63 83 86 72 84 24.09 26.74 12.5 25

mod8-10_177 6 109 77 71 77 71 77 77 - - 7.79 7.79 - -

hwb5_55 5 109 66 68 64 64 75 86 66 101 14.66 25.58 3.03 36.63

hwb6_58 6 146 111 105 98 98 127 140 111 146 22.83 30 11.71 32.87

rd73_140 10 76 64 44 55 44 63 61 - - 30.15 27.86 - -

QFT7 7 21 24 18 28 18 - 18 18 23 - 0.0 0.0 21.73

QFT8 8 28 31 31 34 31 - 41 31 33 - 24.39 0.0 6.06

QFT9 9 36 49 43 50 43 - 66 49 53 - 34.84 12.24 18.86

QFT10 10 45 64 60 67 60 - 96 64 67 - 37.5 6.25 10.44

0410184_169 14 90 39 39 39 39 - 111 - - - 64.86 - -

rd84_142 15 112 112 76 95 76 112 148 - - 32.14 48.64 - -

Table 1: Comparison with state-of-the-art NN techniques

Benchmarks

No. of

qubits

Gate

Count

Method 1

(collective)

SWAPs

Method 2

(bounded)

SWAPs

Method 3

(dynamic)

SWAPs

 add17_218 17 42 24 24 24

add18_218 18 42 27 23 23

add19_218 19 48 32 28 28

add20_218 20 50 33 29 29

add21_218 21 50 32 28 28

rdom_22 22 55 19 19 19

add23_218 23 58 38 34 34

rdom_24 24 47 44 44 44

add8_172 25 64 42 38 38

rdom_27 27 53 26 26 26

add29_218 29 74 48 44 44

rdom_30 30 59 29 30 30

rdom_33 33 65 32 33 33

add16_174 49 128 82 78 78

Table 2: Results from large size benchmarks

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6901614

