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Abstract—Despite recent progress in physical implementations
of quantum computers, a significant amount of research still
depends on simulating quantum computations on classical com-
puters. Here, most state-of-the-art simulators rely on array-based
approaches which are perfectly suited for acceleration through
concurrency using multi- or many-core processors. However,
those methods have exponential memory complexities and, hence,
become infeasible if the considered quantum circuits are too
large. To address this drawback, complementary approaches
based on decision diagrams (called DD-based simulation) have
been proposed which provide more compact representations in
many cases. While this allows to simulate quantum circuits that
could not be simulated before, it is unclear whether DD-based
simulation also allows for similar acceleration through concur-
rency as array-based approaches. In this work, we investigate
this issue. The resulting findings provide a better understanding
about when DD-based simulation can be accelerated through
concurrent executions of sub-tasks and when not.

I. INTRODUCTION

Quantum computers [1] provide a promising technology
which bears a disruptive potential for many areas. For example,
quantum algorithms to factorize integers (Shor’s algorithm [2])
or to conduct database search (Grover’s algorithm [3]) are
capable of breaking limits imposed by today’s conventional
technologies—even if practically relevant realizations are
not within reach yet. Other applications such as quantum
chemistry [4] may utilize their potential in the near future.
In fact, quantum computers are currently used to find new,
and more efficient catalysts for chemical processes such as
ammonia production in the Haber-Bosch process—optimizing
an application that consumes 2% of the worlds yearly energy
supply. Besides that, machine learning, cryptography, quantum
simulation or solving systems of linear equations are areas
where quantum computers may prove very beneficial as
well [5]–[7].

The momentum of quantum computers is further shown by
impressive accomplishments in their physical implementations
and ongoing commercialization. Recently, IBM presented
the first commercially available quantum computer with
20 qubits [8]. Before, they already launched their project
IBM Q—providing public access to quantum processors
through cloud access [9]. Similarly, Google is working on
a 72 qubit chip that it hopes will be able to demonstrate
quantum supremacy [10]. And also further companies such as
Intel, Rigetti, Microsoft, and Alibaba work on this technology.

However, quantum computing is still an emerging technology.
Since physically available quantum computers are limited
and restricted in their applications, a significant amount of
research still depends on simulating quantum computations
on classical computers. Furthermore, simulations based on
classical technology are still necessary to verify current
quantum computer implementations. And, finally, simulation
capabilities provide an estimate on quantum supremacy [11].
Accordingly, how to efficiently simulate quantum circuits is
an important research topic.

From a mathematical perspective, quantum circuit simulation
boils down to several multiplications of vectors (representing

the current state of the considered quantum system) and
matrices (representing the respectively applied quantum op-
erations). Accordingly, most state-of-the-art simulators use
representations like 1- and 2-dimensional arrays for vectors and
matrices, respectively (see, e.g., [12]–[17]). Since matrix-vector
multiplication can be easily divided into independent sub-tasks,
the performance of those methods can be significantly boosted
by concurrency using multi- or many-core processors. Hence,
the state-of-the-art in quantum circuit simulation heavily relies
on concurrent computations.

At the same time, however, these methods suffer from
memory explosion since both, the respective vectors and
the matrices, grow exponentially with the number of con-
sidered qubits—severely limiting their application. In order
to overcome this problem, complementary approaches have
been proposed that aim for a more compact representation
of those vectors/matrices by exploiting redundancies (which
frequently occur). This led to quantum circuit simulators based
on Decision Diagrams (DDs) [18]–[22] that allow to keep the
memory requirement far below the theoretical maximum in
many practically relevant cases. This enabled the simulation
of several quantum computations that could not be simulated
before and established DD-based quantum circuit simulation
as a complementary alternative to array-based simulators.

However, while array-based simulations are perfectly suited
for concurrency (and, as reviewed above, make substantial
use of it), it is unclear whether DD-based simulation allows
for similar improvements. In fact, the DD-based approaches
introduced thus far only utilize a single CPU core and no inves-
tigation on concurrent DD-based quantum circuit simulation
has been conducted yet—raising the question whether there is
further potential in improving DD-based simulation through
concurrency.

In this work, we shed light on this issue and investigate the
potential and challenges of concurrent simulation of quantum
circuits based on decision diagrams. To this end, we first
recapitulate the basics of quantum computations as well as the
mode of operation of state-of-the-art array-based simulators in
Section II and Section III, respectively. Afterwards, Section IV
reviews the concepts of DD-based simulation and discusses
challenges that emerge when employing those concepts in
a concurrent fashion—including the description of a corre-
sponding concurrent implementation. The main goal of these
investigations and discussions is to eventually gain an under-
standing about when DD-based simulation can be accelerated
through concurrency and when not. The findings made are
confirmed by evaluations on representative cases (including the
simulation of Shor’s algorithm, Grover’s algorithm, a quantum
chemistry instance, and quantum supremacy instances) which
are discussed in Section V. Finally, the paper is concluded in
Section VI.

II. QUANTUM COMPUTING

Computations in the quantum realm utilize
quantum bits (qubits) [1], which can assume more states than
just 0 and 1 known from conventional logic. In fact, while
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the basis states (denoted by |0〉 and |1〉 in Dirac-notation)
are equal, a qubit |ψ〉 can be in any linear combination
|ψ〉 = α · |0〉+ β · |1〉 described through amplitudes α, β ∈ C
with |α|2 + |β|2 = 1. If both amplitudes α and β are
non-zero, the qubits state is also referred to as being in
superposition. A second exploitable quantum effect is called
entanglement, where the measurement of a qubit influences
the state of another qubit. On a quantum computer, the values
of α and β cannot be observed. Instead, a measurement
of a qubit collapses the state of the qubit back to one of
the basis states |0〉 (with probability |α|2) and |1〉 (with
probability |β|2). Afterwards, superposition of the measured
qubit is destroyed. For systems with more than one qubit, the
amplitudes apply to each of the possible basis states, e.g., for
two qubits |ψ〉 = α0 · |00〉+ α1 · |01〉+ α2 · |10〉+ α3 · |11〉,
where the sum

∑
i |αi|2 has to equal 1. To allow a more

compact representation, the amplitudes are commonly written
as vector for all possible states, e.g., ψ = [α0, α1, α2, α3]

T

for two qubits.

Example 1. Consider a quantum system com-
posed of two qubits which is in the state
|ψ〉 = 1/

√
2 |00〉+ 0 |01〉+ 0 |10〉+ 1/

√
2 |11〉. This represents

a valid state, since (1/
√
2)

2
+ 02 + 02 + (1/

√
2)

2
= 1. The

corresponding state vector is ψ = [1/
√
2, 0, 0, 1/

√
2]
T
.

Measuring this system yields one of the two basis states |00〉
or |11〉, both with probability of |1/√2|2 = 1/2. That is, after
the measurement, the state vector is either ψ = [1, 0, 0, 0]

T or
ψ = [0, 0, 0, 1]

T (each measured with a probability of 1/2).

The current state of a quantum system can be manipulated
using quantum operations, which are inherently reversible with
the exception of measurement. Quantum operations are defined
through unitary matrices, i.e., square matrices whose inverse is
their conjugate transposed [1]. Examples of important quantum
operations on a single qubit are

NOT =

[
0 1
1 0

]
, H = 1√

2

[
1 1
1 −1

]
, and Z =

[
1 0
0 −1

]
,

where NOT negates the state of the qubit, H sets the qubit
into superposition, and Z shifts the phase of the qubit. Besides
that, quantum operations that span more than one qubit exist
as well. The most prominent example is the CNOT operation,
which negates a target qubit, iff the chosen control qubit is in
the state |1〉. This is defined through the matrix

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .
The effect of a quantum operation (represented by a matrix)
to a quantum state (represented by a vector) can be described
through matrix-vector multiplication as illustrated in the
following example:

Example 2. Consider a quantum system composed of two
qubits which is currently in state |ψ〉 = |10〉. Performing a
CNOT operation yields1 0 0 0

0 1 0 0
0 0 0 1
0 0 1 0


︸ ︷︷ ︸

CNOT

×

001
0


︸︷︷︸
ψ

=

0 + 0 + 0 + 0
0 + 0 + 0 + 0
0 + 0 + 0 + 0
0 + 0 + 1 + 0

 =

000
1

 ≡ |11〉 .

III. CONCURRENT ARRAY-BASED SIMULATION

Utilizing concurrent calculations is a key aspect of today’s
state-of-the-art quantum circuit simulation approaches. This
is due to the structure of the task which is well-suited for
acceleration through concurrency. This section briefly reviews
this aspect and the corresponding related work—providing a
motivation for the following considerations in this work.

In general, simulating a quantum computation can be carried
out in a straight-forward fashion on a classical computer by
performing matrix-vector multiplication as illustrated before
in Example 2. Since each quantum state and each quantum
operation can be represented by a matrix and a vector,
respectively, many existing solutions for quantum circuit
simulation directly realize these multiplications through arrays
(see, e.g., [12]–[17]). However, since most quantum operations
work on a small number of qubits, their matrices frequently
have to be expanded to match the size of a considered multi-
qubit system. This can be conducted by applying the Kronecker-
product with an appropriately sized identity matrix as illustrated
by the following example:

Example 3. Consider the application of a
Hadamard-operation on a single qubit in a two-qubit
system. To describe that, the 2 × 2 single-qubit operation
has to be defined for a two-qubit system, i.e., in terms of
a 4 × 4 matrix. Here, the resulting matrix describes the
application of the Hadamard-operation on the first qubit while
the second qubit remains unchanged afterwards—realized by
the Kronecker product of H and I2, i.e.,

H⊗I2 =
1√
2

[
1 1
1 −1

]
⊗
[
1 0
0 1

]
=

1√
2

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

 .
If the respectively expanded matrix is available, simulation

can be conducted as illustrated above. Moreover, the structure
of the task, i.e., the matrix-vector multiplication, additionally
allows for substantial speedups if a concurrent consideration
is employed. In fact, the multiplication can be decomposed
into the following sub-tasks:[

M00 M01

M10 M11

]
×
[
V0
V1

]
=

[
M00 × V0 +M01 × V1
M10 × V0 +M11 × V1

]
(1)

Here, M00 × V0, M01 × V1, M10 × V0, M11 × V1, as well
as the additions can be computed independently with no
or only negligible synchronization overhead. Afterwards, the
respectively obtained results can easily be combined to the
final result. This allows for the utilization of several CPU
cores in modern computers as well as the utilization of
“supercomputers” providing means for highly parallelized com-
putations. Accordingly, state-of-the-art methods for quantum
circuit simulation exploit this potential and heavily rely on
concurrent computations [12]–[17]. Due to the rather moderate
synchronization overhead1, this frequently yields speedups that
scale with the number of utilized cores.

IV. CONCURRENT DD-BASED SIMULATION

State-of-the-art approaches for quantum circuit simulation as
reviewed above can easily be accelerated through concurrent
executions. However, they suffer from memory explosion since
both, the state vectors as well as the operation matrices grow

1In fact, hardly any synchronization is required and most overhead is only
caused by the management of tasks and threads.



exponentially with respect to the number of qubits2. This
severely limits the application of those approaches for many
relevant cases. In fact, even though concurrency may be heavily
utilized, simulation is bounded by whether the matrices/vectors
still can be represented by the available memory.

In order to address this problem, complementary approaches
for quantum circuit simulation have been proposed which
rely on decision diagrams (called DD-based simulation in
the following; [18]–[22]). While this allows for a much more
compact representation of matrices and vectors in many cases—
allowing for simulations of quantum circuits that could not
be simulated before—it also completely changes the way how
simulation is conducted. This raises the question whether the
benefits of concurrent computations as reviewed above can also
be utilized for this complementary approach. In the following,
we investigate this question. To this end, we first briefly review
the basic concepts of DD-based simulation followed by a
discussion of how this affects the possibilities to conduct those
simulations in a concurrent fashion. Based on that, a concurrent
implementation of DD-based quantum circuit simulation is
presented.

A. DD-based Simulation
DD-based simulation has been proposed in [18]–[22] and

rests on the main idea to represent matrices (vectors) in terms
of decision diagrams [23] that allow to exploit redundancies
in order to obtain a more compact representation. More pre-
cisely, consider a quantum system with qubits q0, q1, . . . , qn−1,
whereby q0 represents the most significant qubit. Then, the
first 2n−1 entries of the corresponding state vector represent
the amplitudes for the basis states with q0 set to |0〉; the
other entries represent the amplitudes for states with q0 set
to |1〉. This decomposition is represented in a decision diagram
structure by a node labeled q0 and two successors leading
to nodes representing the two sub-vectors. By convention,
the left (right) edge indicates the 0-successor (1-successor).
The sub-vectors are recursively decomposed further until
vectors of size 1 (i.e., complex numbers) result. During this
decomposition, equivalent sub-vectors can be represented by
the same nodes—reducing the complexity of the representation.
Then, instead of having a terminal node for every distinct
value in the state vector, common factors of the amplitudes
are stored in the edge weights. The value can be reconstructed
by multiplying the edge weights along the desired path in the
decision diagram.

Example 4. Consider the state vector in Fig. 1a—the anno-
tations sketch how the vector is decomposed (left) and which
base state corresponds to each entry in the vector (right).
Fig. 1b shows the corresponding decision diagram. Here, e.g.,
the amplitude of the state |110〉 is accessed by following the
path in the decision diagram for q0 = 1, q1 = 1, q2 = 0 (bold
lines) and multiplying the edge weights along the path, i.e.,
1/2 · 1 · (−

√
2) · 1 = −1/

√
2.

The representation of matrices follows a similar scheme.
However, instead of splitting the matrix in two, it is split into
four equal parts. Considering again a quantum system with
qubits q0, q1, . . . qn−1 and a unitary matrix U = [ui,j ]. The
matrix U is decomposed into four sub-matrices with dimension
2n−1×2n−1: The entries in the sub-matrices provide the values
describing the operation on the basis states in q0 (top left
|0〉 to |0〉; top right |1〉 to |0〉; bottom left |0〉 to |1〉; and

2Actual implementations (such as [12]) may realize the operation in a
different way, but still require an exponential amount of memory to store the
state vector.
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(c) Matrix representation
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Fig. 1: DD representations of state vector and matrix

bottom right |1〉 to |1〉). This decomposition is represented in
a decision diagram structure by a node labeled q0 and four
successors leading to nodes representing the sub-matrices. The
sub-matrices are recursively decomposed further until a 1× 1
matrix (i.e., a complex number) results. This eventually repre-
sents the value ui,j for the corresponding mapping. Also during
this decomposition, equivalent sub-matrices are represented by
the same nodes and a corresponding normalization scheme (as
applied for the representation of state vectors) is employed.
Note that for a simpler graphical notation, zero stubs are used
to indicate zero matrices (i.e., matrices that contain zeros only)
and edge weights equal to one are omitted.

Example 5. Fig. 1c shows the matrix representing the quantum
operation U = H ⊗ I2 ⊗ I2. The same operation is depicted
in Fig. 1d as decision diagram.

Having those representations for quantum states (vectors)
and quantum operations (matrices), quantum circuit simulation
can be conducted as illustrated on top of Fig. 2. This basically
follows the scheme as provided in Eq. (1) above, i.e., the
given matrix M and vector V are split into sub-matrices M00,
M01, M10, M11 and sub-vectors V0, V1. This is recursively
conducted until terminal nodes in the decision diagrams are
reached. During this process redundancies are exploited to
avoid unnecessary computations, i.e., operations with identical
operands are only performed once—the main difference to
array-based simulations. The complexity is therefore not
bounded by the number of entries in the matrix and the state
vector, but by the number of nodes in their respective repre-
sentations. While this still leads to an exponential complexity
in the worst case, in many cases complexity and memory
requirements can be significantly reduced. This allowed for
significant speedups, e.g., from 30 days to 2 minutes or for the
simulation of quantum circuits that could not been simulated
before [20].
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Fig. 2: Sketch of DD-based matrix-vector multiplication with operation M and state V

B. Concurrency in DD-based Simulation

Apparently, DD-based simulation offers significant advan-
tages compared to array-based simulation. However, all imple-
mentations of DD-based simulators conduct the respective tasks
in a sequential fashion. To date, it remains unknown whether
accelerations through concurrency are possible in a similarly
simple way as shown above with array-based simulators. In
general, the main approach is the same: As shown before
by means of Eq. (1) for array-based simulation, DD-based
simulation decomposes the matrix-vector multiplication into
sub-tasks. This is sketched in Fig. 2. However, as it turns out,
the amount of sharing which can be exploited significantly
affects the possible potential of a concurrent consideration of
DD-based simulation.

More precisely, if no sharing is exploited at all (similar to
array-based simulation), all sub-tasks can be independently
considered—yielding perfect conditions for utilizing concur-
rency, but also requiring an exponential amount of memory. In
contrast, if sharing is exploited (as sketched by colors in Fig. 2,
i.e., sub-DDs which represent the same sub-matrix/sub-vector
are colored equally), those conditions drastically deteriorate.
While sharing allows for substantial reductions in the needed
amount of memory (all sub-DDs with the same color need
to be present in memory only once), they also destroy the
independence of the sub-tasks. This affects the potential of
concurrent DD-based simulation particularly in two ways:
• Substantially more processing time has to be spent on

synchronization: When using the same memory region for
two or more threads, proper synchronization is required to
guarantee reading and writing the correct values in case
of simultaneous access. That is, concurrent executions in
DD-based simulations first have to deal with a substantial
overhead to overcome before any improvements might be
possible.

• Besides that, improvements are not always guaranteed.
In fact, due to sharing, it may happen that identical
calculations are simultaneously conducted on several cores,
obviously leading to the same sub-DD. In these cases,
there is no benefit in performance compared to a sequential
DD-based approach, since those cases can also be covered
by caching (in other words, a sequential calculation
is able to identify previously conducted calculations,
e.g., by means of compute tables [24] and, based on
that, would never start the tasks for certain calculations

which eventually would lead to the same sub-DDs again).
For example, in the calculations sketched in Fig. 2, three
threads might be busy recursively determining the results
for M00×V0, M01×V1, and M10×V1, while all results
eventually turn out to be equivalent (a sequential approach
would detect that after determining the result for the first
sub-DD and would not start calculations for the other
two, i.e., parallelization provides no improvement in this
scenario).

Hence, a concurrent consideration of DD-based simulation
would not only cause substantial overhead for managing
the threads and keeping memory consistent, it additionally
is not even guaranteed that this eventually does increase
the performance—in particular in cases which provide lots
of potential for sharing (usually wanted in order to reduce
memory consumption but suddenly posing a problem for
a concurrent consideration). Having this understanding, the
following challenges need to be addressed when aiming for
concurrent DD-based simulation:

How to efficiently access results from previous calculations?:
In sequential simulation, results of previous calculations are
effortlessly exploited by storing these results in the compute
table and consulting this table before starting the next calcula-
tion. Concurrent execution on the other hand has to frequently
synchronize the corresponding read and write operations to
the compute table—leading to a potential bottleneck, which
becomes worse as the number of utilized cores increases.

How to avoid computing identical operations more than
once at the same time during concurrent execution?: While
the previous challenge in essence also occurs in sequential
DD-based simulation (although with much less overhead),
avoiding the simultaneous computation of identical tasks is
novel to the concurrent approach. If more than one task is
executed simultaneously and the result of the sub-task is not yet
stored in the compute table, several threads may run identical
calculations—wasting processing time that could instead be
utilized to compute other tasks. This voids the advantage of
concurrent execution compared to a sequential approach.

How to determine the order in which tasks are executed?:
As sketched in Fig. 2, the task graph can grow exponentially
when sharing is not possible, thus completely storing all (sub-
)tasks requires an exponential amount of memory with respect
to the number of qubits. This can be mitigated by employing a
scheduling which executes the tasks in an order that minimizes
the number of tasks kept in memory at once. Ideally, only the



currently executed tasks are kept in memory. However, this is
not possible, as the depending tasks have to be kept as well.
Moreover, the scheduling heavily influences the aforementioned
challenges. If simultaneous execution of tasks on the same level
can be avoided during scheduling, performing the same task
on several cores will be avoided as well. Unsuitable scheduling
strategies on the other hand will load every task into memory,
i.e., resulting again in exponential memory usage.

In the following, strategies to tackle these challenges are
presented. Based on them, a study on representative cases
for quantum circuit simulation evaluates the possible benefit
(or drawbacks) of a concurrent consideration of DD-based
simulation.

C. Implementation
In this section, we present an implementation of a concurrent

DD-based quantum circuit simulation. To this end, a sequential
version (based on [25]) has been taken as starting point
and equipped with the capability to execute the single tasks
in a concurrent fashion. In order to address the challenges
discussed above, the following solutions have additionally
been employed:

Caching completed results: Caching the results of completed
calculations in terms of a compute table provides a signifi-
cant advantage in current (sequential) DD-based simulation.
Therefore, it is desirable to retain this advantage as best as
possible in a concurrent implementation. Since the compute
table is a global structure, the reads and writes have to be
synchronized—usually a severe bottleneck in concurrent execu-
tions. Furthermore, before each task is executed, the thread has
to read from the compute table once and, if the result was not
available, the task has to write it back after the calculation. In
order to reduce the resulting synchronization efforts, we tried
to “localize” the global structure of the compute table a bit.
More precisely, we used several independent instances of the
compute table: one for each type of operation. This allows to
simultaneously write the results of tasks for different operations,
e.g., multiplication and addition, into different compute tables
and, by this, reduces the synchronization overhead.

Waiting for ongoing calculations: Unnecessarily performing
identical calculations on several cores as discussed above
should be avoided. While the solution to this challenge is
conceptionally straight-forward (simply check if the next
task is currently executed by another thread), the actual
implementation is more complicated as this requires extended
communication between the involved threads. Our implementa-
tion uses a synchronized data structure that maps from a tuple
of operation and the respective operands to a flag indicating
if this task is currently executed. Before a thread creates a
sub-task, it does not only check if the result is already available,
but also if the sub-task is marked as currently running as a
dependency of another task. If this is the case, the thread is
suspended until the result becomes available.

Naturally, this check comes with a runtime overhead for
synchronization due to the extended communication required to
suspend a thread and, then, resume its work at an appropriate
time. Compared to the compute table, this scheme requires at
least one read operation (more if the thread is suspended) and
two write operations for each task (flagging the task as currently
running and finally removing this flag). Measurements showed
that this additional synchronization imposes a significant
overhead—leading to worse runtime behavior, even more so
in combination with the scheduling described next.

To overcome this problem, the concurrent execution of tasks
operating on the same variable should be avoided. Moreover,

tasks which are close to the terminal nodes are computationally
less expensive than the locking mechanism, i.e., in these cases
the check and suspend procedure should be dropped (even if
it leads to concurrent calculations of the same tasks). Overall,
this is realized by scheduling the execution of tasks in a depth
first fashion up to a certain level.

Scheduling using priorities: As discussed above, a clever
scheduling is capable of mitigating several of the aforemen-
tioned problems. To achieve a strategy akin to depth first
traversal, the tasks are assigned according to a priority which
corresponds to the depth in the task graph, i.e., the sub-tasks
have a higher priority than their parent task. This avoids a fan
out where tasks on the same level are executed simultaneously
(akin to breadth-first traversal), which would result in an
exponential amount of tasks in memory at the same time.

In our implementation, the priority of a task is not determined
by traversing the task graph, but rather by tracking the indices i
of the nodes qi. Therefore operations involving nodes farther
from the root node, i.e., i = 0, are preferred when scheduling
the next task to be executed. Additionally, for nodes of the same
level (i.e., the same i), multiplication is executed preferably
over addition. This scheme eventually employs a depth-first-like
traversal, where tasks farther from the root node are executed
first.

These solutions eventually aim to address and/or mitigate the
challenges of DD-based quantum circuit simulation discussed
above. However, they cannot completely avoid the principle
obstacles that are caused by DDs using sharing and, hence,
require substantial synchronization while, at the same time,
may provide limited potential for improvements due to the fact
that tasks are executed which yield the same result. Hence,
how concurrent DD-based simulation eventually performs is
considered using representative examples in the next section.

V. REPRESENTATIVE CASES

In order to investigate concurrent DD-based quantum circuit
simulation also on some representative quantum algorithms,
we implemented a concurrent simulator equipped with the
strategies described in Section IV-C (based on [25]). To this
end, we used C++ as programming language and OpenMP to
introduce parallel execution. The simulations themselves were
then conducted on a server providing a 64-bit machine with
32 cores running at 2.3GHz and 64GiB memory using Linux
4.13 as kernel.

As representatives, we used quantum algorithms from typical
application areas currently considered for quantum computers,
namely
• quantum algorithms factorizing integers (i.e., a realization

of Shor’s factorization algorithm [2]; denoted by shor_x,
where x represents the factored number),

• quantum algorithms conducting a database search (i.e., a
realization of Grover’s search algorithm [26]; denoted by
grover_x, where x represents the number of qubits in the
oracle),

• a quantum algorithm implementing functionality from
quantum chemistry (as provided in [27]; denoted
by qua_chem), and

• quantum circuits used to conduct quantum supremacy
experiments (as provided by researchers from Google [11];
denoted by supremacy_5_4_x, where x represents the
depth of the circuit on a 5× 4 surface).

The results are summarized in Fig. 3. Here, the graphs show
the effect on the runtime for each algorithm when conducting
a concurrent DD-based simulation (with up to 32 cores)
compared to conducting a sequential DD-based simulation.
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Fig. 3: Performance of concurrent DD-based simulation

Note that each group of algorithms is denoted with the same
color. Furthermore, we categorized the respective instances
according to the compaction which became possible through
sharing (cf. Section IV). More precisely, almost no sharing and,
hence, only low compaction is achievable for the supremacy
algorithms. In contrast, high compaction through sharing
is possible for the shor-, grover-, and qua_chem-instances.
Those are also the instances where DD-based simulation offers
substantial improvements compared to array-based simulation
(exactly because of the compact representation).

The results clearly confirm the discussions from Section IV.
If no or almost no sharing is possible in the DDs, sub-tasks can
be independently considered—yielding better conditions for
concurrent execution. In contrast, if a high degree of sharing
is possible (yielding a much more compact representation and,
hence, efficient simulation), no further gains can be realized
through concurrent execution. Moreover, as already discussed
above, this does not only lead to no further improvements,
but the additional overhead for managing the threads and
synchronizing memory accesses causes an actual decrease in
the performance. In fact, in all of these cases no improvement
but a significant degradation of performance is reported.

Overall, this confirms the understanding about concurrency
of DD-based quantum circuit simulation as developed above:
DD-based simulation offers great potential as an alternative
to array-based simulation when lots of sharing is possible
(then, DD-based simulation can overcome a possible memory
explosion as already observed in [18]–[22]). In these cases,
however, further accelerations due to concurrent executions
become much harder. Vice versa, if no or only few sharing
is possible, DD-based simulation can be accelerated through
concurrent execution (basically, using the same principles as
concurrent array-based simulation). In the cases considered
here, improvements up to a factor of 3 (for the supremacy
circuits using 14 cores) can be achieved.

VI. CONCLUSION

Quantum circuit simulation is an important research area
where most of the existing solutions rely on array-based
approaches. They can be perfectly accelerated by concurrent
execution, but suffer from memory explosion problems. As
an alternative, complementary solutions based on decision dia-
grams have been proposed. However, whether these approaches
can also be nicely improved by a concurrent consideration of
sub-tasks has not been investigated yet. In this work we shed
light on this issue. We discussed the concepts of DD-based
quantum circuit simulation and the corresponding challenges
when aiming for a concurrent execution of the respective
sub-tasks. This unveiled that the potential of concurrent

DD-based simulation heavily depends on the amount of
sharing exploited by the DDs. Evaluations on representative
quantum algorithms confirmed these findings. By this, a better
understanding about DD-based quantum circuit simulation and
particularly its potential for acceleration through concurrency
has been developed.

ACKNOWLEDGMENTS

This work has partially been supported by the LIT Secure
and Correct Systems Lab funded by the State of Upper Austria.

REFERENCES
[1] M. Nielsen and I. Chuang, Quantum Computation and Quantum

Information. Cambridge Univ. Press, 2000.
[2] P. W. Shor, “Algorithms for quantum computation: discrete logarithms

and factoring,” Foundations of Computer Science, pp. 124–134, 1994.
[3] L. K. Grover, “A fast quantum mechanical algorithm for database search,”

in Symp. on Theory of Computing, 1996, pp. 212–219.
[4] Y. Cao, J. Romero, J. P. Olson, M. Degroote, P. D. Johnson, M. Kieferová,

I. D. Kivlichan, T. Menke, B. Peropadre, N. P. Sawaya et al., “Quantum
chemistry in the age of quantum computing,” arXiv:1812.09976, 2018.

[5] A. Montanaro, “Quantum algorithms: an overview,” npj Quantum
Information, vol. 2, p. 15023, 2016.

[6] J. Preskill, “Quantum computing in the NISQ era and beyond,” Quantum,
vol. 2, p. 79, 2018.

[7] P. J. Coles, S. Eidenbenz, S. Pakin, A. Adedoyin, J. Ambrosiano,
P. Anisimov, W. Casper, G. Chennupati, C. Coffrin, H. Djidjev et al.,
“Quantum algorithm implementations for beginners,” arXiv:1804.03719,
2018.

[8] “IBM unveils world’s first integrated quantum computing system for
commercial use,” https://newsroom.ibm.com/2019-01-08-IBM-Unveils-
Worlds-First-Integrated-Quantum-Computing-System-for-Commercial-
Use, Accessed: 2019-04-05.

[9] “IBM Q,” https://research.ibm.com/ibm-q/, Accessed: 2019-04-05.
[10] J. Kelly, “Engineering superconducting qubit arrays for quantum

supremacy,” in APS Meeting Abstracts, 2018, p. A33.001.
[11] S. Boixo, S. V. Isakov, V. N. Smelyanskiy, R. Babbush, N. Ding, Z. Jiang,

M. J. Bremner, J. M. Martinis, and H. Neven, “Characterizing quantum
supremacy in near-term devices,” Nature Physics, vol. 14, no. 6, p. 595,
2018.

[12] D. Wecker and K. M. Svore, “LIQUi|>: A software design architecture
and domain-specific language for quantum computing,” CoRR, vol.
abs/1402.4467, 2014.

[13] M. Smelyanskiy, N. P. D. Sawaya, and A. Aspuru-Guzik, “qHiPSTER:
The quantum high performance software testing environment,” CoRR,
vol. abs/1601.07195, 2016.

[14] N. Khammassi, I. Ashraf, X. Fu, C. Almudever, and K. Bertels, “QX:
A high-performance quantum computer simulation platform,” in Design,
Automation and Test in Europe, 2017.

[15] A. Cross, “The IBM Q experience and QISKit open-source quantum
computing software,” in APS Meeting Abstracts, Mar 2018, p. L58.003.

[16] D. S. Steiger, T. Häner, and M. Troyer, “ProjectQ: an open source
software framework for quantum computing,” Quantum, vol. 2, p. 49,
2018.

[17] “Cirq: A python framework for creating, editing, and invoking Noisy Inter-
mediate Scale Quantum (NISQ) circuits,” https://github.com/quantumlib/
cirq, Accessed: 2019-04-05.

[18] V. Samoladas, “Improved BDD algorithms for the simulation of quantum
circuits,” in European Symposium on Algorithms, 2008, pp. 720–731.

[19] G. F. Viamontes, I. L. Markov, and J. P. Hayes, “High-performance
QuIDD-based simulation of quantum circuits,” in Design, Automation
and Test in Europe, 2004, p. 21354.

[20] A. Zulehner and R. Wille, “Advanced simulation of quantum computa-
tions,” IEEE Trans. on CAD of Integrated Circuits and Systems, 2018.

[21] A. Zulehner and R. Wille, “Matrix-vector vs. matrix-matrix multiplication:
Potential in DD-based simulation of quantum computations,” in Design,
Automation and Test in Europe, 2019.

[22] A. Zulehner, P. Niemann, R. Drechsler, and R. Wille, “Accuracy and
compactness in decision diagrams for quantum computation,” in Design,
Automation and Test in Europe, 2019.

[23] P. Niemann, R. Wille, D. M. Miller, M. A. Thornton, and R. Drechsler,
“QMDDs: Efficient quantum function representation and manipulation,”
IEEE Trans. on CAD of Integrated Circuits and Systems, vol. 35, no. 1,
pp. 86–99, 2016.

[24] K. S. Brace, R. L. Rudell, and R. E. Bryant, “Efficient implementation
of a BDD package,” in Design Automation Conf., 1990, pp. 40–45.

[25] A. Zulehner, S. Hillmich, and R. Wille, “How to efficiently handle
complex values? implementing decision diagrams for quantum com-
puting,” Int’l Conf. on CAD, 2019, The implementation is available at
http://iic.jku.at/eda/research/quantum_dd/.

[26] L. K. Grover, “A fast quantum mechanical algorithm for database search,”
in Theory of computing, 1996, pp. 212–219.

[27] R. Babbush, N. Wiebe, J. McClean, J. McClain, H. Neven, and G. K.-L.
Chan, “Low-depth quantum simulation of materials,” Phys. Rev. X, vol. 8,
p. 011044, 2018.

https://newsroom.ibm.com/2019-01-08-IBM-Unveils-Worlds-First-Integrated-Quantum-Computing-System-for-Commercial-Use
https://newsroom.ibm.com/2019-01-08-IBM-Unveils-Worlds-First-Integrated-Quantum-Computing-System-for-Commercial-Use
https://newsroom.ibm.com/2019-01-08-IBM-Unveils-Worlds-First-Integrated-Quantum-Computing-System-for-Commercial-Use
https://research.ibm.com/ibm-q/
https://github.com/quantumlib/cirq
https://github.com/quantumlib/cirq
http://iic.jku.at/eda/research/quantum_dd/

