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ABSTRACT
The complexity of today’s System on Chips (SoCs) forces designers
to use higher levels of abstractions. Here, early design decisions

are conducted on abstract models while different configurations

describe how to actually realize the desired SoC. Since those deci-

sions severely affect the final costs of the resulting SoC (in terms

of utilized area, power consumption, etc.), a fast and accurate cost

estimation is essential at this design stage. Additionally, the result-

ing costs heavily depend on the adopted logic synthesis algorithms,

which optimize the design towards one or more cost objectives. But

how to structure a cost estimation method that supports multiple

configurations of an SoC, implemented by use of different synthesis

strategies, remains an open question. In this work, we address this

problem by providing a cost estimation method for a configurable

SoC using Machine Learning (ML). A key element of the proposed

method is a data representation which describes SoC configurations
in a way that is suited for advanced ML algorithms. Experimental

evaluations conducted within an industrial environment confirm

the accuracy as well as the efficiency of the proposed method.

CCS CONCEPTS
• Hardware→ Hardware-software codesign.

KEYWORDS
Machine Learning, Design Automation, Hardware-Software co-

design

1 INTRODUCTION
The ever-increasing complexity of today’s System on Chips (SoCs)
leads to tremendous challenges for their design and implementation.

In order to tackle this complexity, designers rely on abstractions.

After the gate level, the Register Transfer Level (RTL), and the Elec-
tronic System Level (ESL) have been established in the past, now also

model-driven design flows find application in industrial practice.

Here, an abstract specification of the system to be realized is pro-

vided and hardware generation frameworks [4, 6, 11] are utilized to

create the desired design out of it. This does not only allow for an

easier implementation of SoCs, but also creates more potential for

design exploration since more design variants can be considered

through model-driven design. Following this design flow requires

the designer to define, e.g., the number of components to be used,

their attributes, as well as their structure and interplay between

each other (e.g. bus specifications, internal ports, etc.) —resulting in

a configuration that describes how to realize the SoC from a model.

The corresponding design decisions will have a severe impact on the

costs of the resulting SoC (e.g., with respect to area or power con-

sumption). Hence, in order to elaborate on whether a determined

configuration helps in satisfying given design objectives (such as

staying below a certain power consumption), designers need infor-

mation on how these decisions will eventually affect the costs. To

this end, cost estimation is essential. Unfortunately, the complexity

of the design as well as the the interdependencies and interplay

between its components makes it difficult to accurately estimate

the resulting costs. The complexity of the estimation increases even

more, when different logic synthesis strategies are applied to the

design [10]. Logic synthesis algorithms, in fact, transform an RTL

design into a gate level representation, so that one or more costs is

optimized. To date, the typical way to determine accurately what

costs a configuration will have is to completely generate the code,

synthesize it, and simulate the resulting design—a time-consuming

process particularly when several different design choices (i.e., con-

figurations) should be explored. As an alternative,Machine Learning
algorithms have been proposed in the literature for this purpose.

For example, in the work of [12], ML algorithms in the form of

Convolutional Neural Networks (CNNs) are used for estimating the

area reduction caused by changes in specific parameters of the SoC.

Others focus on problems of distinct hardware components such

as GPUs [24] or memory systems [20, 21, 25]. Furthermore, the

approach presented in [9] proposes a cost estimation method for

accelerators of heterogeneous systems. However, although these

works are valuable contributions for approaching the complexity

of cost estimation, they either present application-specific methods

(such as [12] with its focus on application-dependent parameters)

or focus on the configuration of a restricted set of devices (such as

GPUs [24], memory systems [20], or accelerators of heterogeneous

systems [9]). But SoCs are frequently used and, hence, designed in

a broader variety which is not supported by these previous works.

Additionally, the related work does not take into account different

strategies of synthesis, which clearly contribute to the final cost

in terms of area, power, etc. Therefore, a cost estimation that sup-

ports the configurability of an SoC and its components together

with different synthesis strategies is of key importance for the re-

search. Last, although High Level Synthesis tools are an alternative

for area/power/performance estimation, they do work with higher

level languages and not with low-level details of the design (i.e. not

at RTL level). In this work, we propose a cost estimation method

which addresses this drawback. To this end, a data representation

for SoC components is proposed which represents SoC configu-
rations and is suited for advanced ML algorithms. The proposed

approach well-adapts to the SoC components considered during the

model-driven design flow and, hence, is applicable to various de-

sign configurations implemented by use of different logic synthesis

algorithms. Experimental evaluations conducted within an indus-

trial environment confirm the accuracy of the proposed approach

(𝑅2 score of 0.91 on the number of Lookup Tables, of 0.93 on the

number of Slice Registers, and of 0.92 on the power consumption).

At the same time, the costs can be estimated in negligible run-time,
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Figure 1: Model for ACD components

i.e., within few seconds only (whereas the current state of the art

requires hours). Overall, this yields a fast and accurate cost esti-

mation which is applicable in an industrial contexts for multiple

SoC configurations. The remainder of this paper is structured as

follows: The next section reviews the considered model-driven de-

sign flow and discusses the resulting challenge of cost estimation.

Section 3 then presents the general idea of the proposed approach

followed by Section 4 describing its implementation. Finally, Sec-

tion 5 summarizes the obtained results and Section 6 concludes the

paper.

2 BACKGROUND AND MOTIVATION
In order to keep the work self-contained, this section first briefly

reviews the model-driven industrial design flow for SoCs as consid-

ered in this work. Afterwards, we discuss the resulting challenges

that originate from this flow.

2.1 Model-driven SoC Design
In order to increase the productivity of the design of SoCs, hard-

ware generation frameworks are utilized [1, 6, 22]. They receive an

abstract specification of the system to be realized (usually a model

provided, e.g., in terms of UML/OCL [19] or SysML [7]), which

remains flexible enough so that still different instantiations are

possible. In the following, we illustrate this flow by means of the

MetaRTL framework [6]—a hardware generation framework for con-

figuring and generating hardware designs which follow the RISC-V

architecture [23] and, nowadays, is heavily applied in industrial

contexts.

Example 1. Consider the design process of a system composed of
• processing units (denoted CPU) which allows to execute soft-
ware as well as

• synchronous communication components (denoted I2C) and
• asynchronous communication devices (denoted ACD).

In the beginning of the design process, meta models are provided that
describe the abstract structure of these SoC components and that can be
instantiated in various fashions. For example, the meta model for the
ACD is shown in Fig. 1 and describes the specification of asynchronous
communication peripherals [5, 14]. Here, each node of the model
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Figure 2: Configuration for an SoC

defines the attributes of the component; relations and cardinalities
define their structure (e.g., each ACD nodemay have one ormore UART
node defining the Universal Asynchronous Receiver/Transmitter).

Having a model, it is up to the designer to instantiate it accord-

ing to his/her respective needs and requirements. To this end, a

configuration is defined which describes a complete instantiation of

the model. The configuration is thereby organized in a hierarchical

fashion: First, the designer gets to specify general attributes of the

device as well as how many components shall be instantiated in to-

tal and how they should be connected (defining themacro-structure).
Afterwards, the precise instantiation of each component is speci-

fied (defining the micro-structure, i.e. the attributes characterizing
the single components). The resulting configuration is eventually

described in a hierarchical and recursive structure, which can be

visualized as a tree-like graph.

Example 2. Consider again the design of the SoCwith its ACD com-
ponent. The designer first instantiates the attributes of the root node
as well as the desired number of subcomponents and their structure—
defining the macro-structure of the component (e.g., that the ACD
component realizes FIFO buffers by utilizing either UART, DMX, or
both). Afterwards, he/she will select the attribute of the UART nodes
and/or DMX nodes and, recursively, all instantiated subcomponents.
Each one of the instantiated child nodes are given specific attribute
values describing their properties (e.g., each UART will have a specific
number of parity bits, etc.). This procedure is continued until a com-
plete instance of the component is specified. Overall, this results in a
configuration which can be described in terms of a tree-like graph as
shown in Fig. 2 for an entire SoC. Note that, due to space constraints,
Fig. 2 only sketches the macro-structure. Each node in Fig. 2 eventu-
ally also includes a micro-structure defining the respective attribute
values.

After choosing the configuration, hardware generation frame-

works (here: the MetaRTL framework) can be utilized to generate

the desired code (e.g., in VHDL, SystemVerilog, etc.). Once the code

is available, the resulting device can be synthesized (e.g., using tools

such as Vivado1) and eventually realized.

2.2 Resulting Challenge: Cost Estimation
The model-driven design flow as sketched above is a useful method-

ology in order to tackle the ever increasing complexity of SoC

design. However, it also requires the designer to make design de-

cisions early in the process that severely impact the costs of the

resulting SoC. In fact, defining, e.g., the number of components

and their attributes obviously affects the area and the power con-

sumption of the resulting chip. Moreover, also their structure and

interplay between each other have significant impact to the even-

tual costs. Finally, the different fashions in which synthesis can

be conducted (usually encapsulated through several optimization

1
For further information: https://www.xilinx.com/products/design-tools/vivado.html



procedures in synthesis tools that can be applied in various com-

binations at different levels of abstraction) play an important role.

Overall, the eventual costs of a design obtained from a model as

well as a respectively chosen configuration depend on a complex

interplay between various factors which are infeasible to explicitly

estimate anymore.

Example 3. Consider again the running example from above to-
gether with two different configurations for the ACD component: The
first configuration realizes it with a UART component with 9 DataBits,
1 StopBit, and 0 ParityBits; the second one uses a UART component
with 6 DataBits, 1 StopBit, and 1 ParityBit. Since a larger bitstream
requires a broader FIFO, the first configuration likely yields more
total area than the second one. While this is easy to estimate, other
aspects are harder to predict. For example, the second configuration
requires specific hardware for the control and calculation of the parity
checks (not needed in the first configuration, since no parity bits are
employed). In a similar fashion, power consumption heavily depends
on the size of the bitstream as well as the needed storage capabilities.
Considering that, additionally, the structure of the components (and
the entire SoC) as well as attribute values and relations of all other
components also contribute to the resulting costs, it becomes infeasi-
ble to explicitly predict the costs “caused” by choosing a particular
configuration.

To date, the only accurate way to know what a configuration

costs is to completely generate the code, synthesize it, and sim-

ulate the resulting design
2
—a time-intensive process particularly

when several different design choices (i.e., configurations) should

be explored. For example, the generation, synthesis, and simulation

cycle of an SoC composed of a CPU, an ACD, and an I2C takes

approximately 4-5 hours on average in our industrial environment.

Considering that usually several configurations have to be esti-

mated until one is met which satisfies certain objectives on costs

such as area or power consumption, this quickly becomes infeasi-

ble. Hence, a severe challenge within the context of model-driven

design is how to efficiently determine proper estimates on the costs

of a configuration.

3 GENERAL IDEA OF THE
PROPOSED COST ESTIMATION

Determining the costs of an SoC device obtained from a model

and a corresponding configuration prior to its synthesis and imple-

mentation is a non-trivial task. The eventual costs are caused by a

huge number of factors such as the number of components, their

attributes and structure, as well as various optimization schemes.

This leads to an enormous amount of factors to consider which

makes it infeasible to aim for a deterministic cost function. In-

stead, we propose a method that rests on the principles of Machine

Learning. Machine Learning has shown to be able to address the

problem of estimation over complex functions in various areas such

as detection of objects from images/videos (i.e. object detection,

see [28]), extracting the sentiment expressed in user generated text

(i.e. sentiment analysis, see [13]), or the translation of sentences

into different languages (i.e. machine translation, see [26]). In this

section, we describe how these principles can be employed for cost

estimation of a configurable SoC. To this end, we first review the

main advantages of ML. Afterwards, we sketch the general idea

how to utilize that for the problem considered here.

2
Note that, as discussed in Section 1, approaches proposed in [9, 12, 20, 24] are not

applicable since they focus on a dedicated application or a restricted set of devices but

not a configurable SoC.

3.1 Machine Learning Approaches
Machine Learning (ML) is a form of Artificial Intelligence (AI) that
is able to perform a certain task without being specifically pro-

grammed for it. This characteristic makes it extremely useful each

time the task involves too complex rules for being performed in a de-

terministic manner. Furthermore, in parametric ML algorithms, the

algorithm can be executed in a time-efficient fashion [16]. Typically,

a ML model learns from previous examples related to the specific

task, during a process called training. In this work, we utilize the

concept of supervised learning [16], since supervised learning algo-

rithms are trained using labeled examples, i.e., an input where the

desired output is known. Here, information from the training data is

captured as association between training samples (denoted as inputs
{x𝑖 }𝑁

𝑖=1
) and ground truth values related to each sample (denoted

as labels {y𝑖 }𝑁
𝑖=1

). This forms a set {(x1, y1), . . . , (x𝑁 , y𝑁 )}, where
each x𝑖 = (𝑥𝑖

1
, 𝑥𝑖

2
, . . . , 𝑥𝑖𝑝 )𝑇 is a vector of values of dimension 𝑝 for

each training sample and where 𝑁 corresponds to the number of

samples used for training the ML algorithm [17]. The information

contained in the vector of feature measurements (usually called

feature vector) has therefore a primary role in guiding the asso-

ciation learned by the ML algorithm. This raises the issue, how

to structure this vector (i.e. the data representation) for a particu-
lar ML algorithm. In the past, this has been heavily investigated

and led to particular innovations in data representation yielding

significant improvements in the performance of ML algorithms.

Examples include, e.g., multi-scale and augmented images for ob-

ject detection [2], character level encoding for sentiment analysis

[27], and Contextualized Word Vectors (CoVe) for machine transla-

tion [15]. Hence, determining a proper data representation (which

is in line with a corresponding ML algorithm) is key for a successful

utilization of ML for a particular application—especially, when a

generic solution is desired. Accordingly, a ML-based solution for

cost estimation of SoCs heavily depends on how to represent an

SoC configuration in terms of such vectors.

3.2 Data Representation
An SoC may be composed of several components (e.g., a CPU,

I2C, or ACD as illustrated in Example 1). Formally, those compo-

nents can be represented as a set of trees, i.e., a set 𝑆𝑜𝐶 = {𝑇𝑖 }𝑟𝑖=1
assuming that 𝑟 components can be instantiated inside the SoC.

Each tree can be represented as a set of interconnected nodes, i.e.,

𝑇𝑖 = {v𝑖, 𝑗 }𝑠𝑗=1 with 𝑠 = |𝑇𝑖 | being the total number of nodes of the

tree 𝑇𝑖 . Each node represents a subcomponent, as for instance the

subcomponent UART or DMX are nodes of the ACD tree (see, e.g.,

Fig. 2). As each one of the nodes of the tree can be instantiated with

different attribute values, each node is defined by a set of config-

urable attributes, i.e., v𝑖, 𝑗 = {𝑐𝑖, 𝑗,𝑘 }𝑑𝑘=1 with 𝑑 = |v𝑖, 𝑗 |. Setting these
attributes as well as defining the connections between the nodes

will eventually describe a configuration of the SoC.

Example 4. Consider again the SoC example from above together
with the configuration sketched in Fig. 2. This configuration can
be represented by a set of trees 𝑆𝑜𝐶 = {𝑇𝐴𝐶𝐷 ,𝑇𝐼2𝐶 ,𝑇𝐶𝑃𝑈 }, where,
e.g., the ACD tree is represented by a set of connected nodes, so that
𝑇𝐴𝐶𝐷 = {v1, v2, .., v9} (as shown in Fig. 3a). Here, v1 corresponds
to the rootnode, v2 to a DMX node, etc. Further, each node pro-
vides values to its corresponding attributes (e.g., a DMX node could
have the value 𝑐1 corresponding to dynamic_length = true, 𝑐2 being
dynamic_start_address = false, etc.).

However, as discussed above, ML approaches usually process

data in terms of feature vectors. Accordingly, the tree represen-

tation has to be transformed into a vector representation. In this

work, we are proposing doing that by considering each path of the

tree from the root node to the maximum depth reached by its leaves.
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Figure 3: ACD component tree and alternative feature vec-
tors

Then, each one of these paths represents a set of nodes at a different

hierarchical level, thus preserving the spatial information within

the tree. The nodes themselves again also include the respective at-

tribute values. This way, all the information needed for structuring

each feature vector used by the ML approach is available.

Example 5. Consider again the formal representation of a compo-
nent configuration as shown in Fig. 3a. Alternative vector representa-
tions of that are shown in Fig. 3c and Fig. 3b.

Of course, mapping the given configuration (provided in terms of

trees) to the required feature vector representation can be conducted

in different fashions (as shown in Fig. 3). Furthermore, also the

precise architecture of the ML approach has a severe impact on the

accuracy of the eventually obtained results. Hence, the next section

describes in more detail how the corresponding data representation

is generated and how the ML algorithm is afterwards applied to

obtain a fast and accurate cost estimation from it. The resulting

solution will eventually be applicable to various configurations and,

hence, a configurable SoC design.

4 IMPLEMENTATION
In this section, we describe in more detail how the proposed ap-

proach represents each configuration as a set of feature vectors.

Based on that, we then describe how we select the ML algorithm

and how it is exactly designed.

4.1 Generating the Data Representation
Given a configuration in terms of a tree representation, a translation

to feature vectors has to be conducted. As sketched in Section 3.2,

this can be done by considering all paths of the tree from the root

node to the leaves. However, explicitly generating corresponding

vectors can be conducted in different fashions.

For example, one way is to consider each path separately and

create a set of vectors where each vector represents all nodes of the
respective path. This could be easily implemented using a reverse

order depth first traversal. However, this would lead to a description

in which single nodes occurs in more than one vector—even if it is

only instantiated once. This can easily lead to wrong associations in

the ML algorithm and, consequently, wrong cost estimations, since

it is not uniquely represented anymore whether a node indeed has

been instantiated more than once or simply is part of more than

one path. In order to avoid this, we employ a modified reverse order

depth first traversal in which, (1) each time the traversal backtracks,

a new feature vector is instantiated and (2) values of the vectors

are initialized with zero up to the currently considered backtrack

level. The following example illustrates the respective concepts.

Example 6. Consider again the SoC configuration represented
by the tree shown in Fig. 3a. Following the reverse order depth first
traversal and representing each path by its own vector leads to a

representation as shown in Fig. 3b. Here, the node v1 occurs a total of
four times in the representation—even if it is only instantiated once.
An ML algorithm may likely derive wrong associations and, hence,
wrong cost estimations. In contrast, the modified reverse order depth
first traversal leads to a representation as shown in Fig. 3c. Here, every
node only occurs as often as it is indeed instantiated. Additionally,
the structure and the dependencies are still represented in a fashion
which is suitable for ML algorithms.

Following this method, a set of feature vectors {f𝑖,𝑙 }𝑠
′

𝑙=1
is gener-

ated from each SoC configuration represented by a tree 𝑇𝑖 , where
𝑠 ′ is the number of feature vectors, or equivalently the number

of paths, for the component 𝑇𝑖 (therefore in general 𝑠 ′ ≤ 𝑠 holds).
Using Fig. 3c, we can visualize how the algorithm for creating

the feature vectors works. Starting from the root node of the tree

𝑇𝐴𝐶𝐷 , the algorithm iteratively pushes the nodes of each path in a

corresponding vector f𝐴𝐶𝐷,𝑙—creating a set of vectors {f𝐴𝐶𝐷,𝑙 }4𝑙=1
representing the tree. Once the algorithm encounters common

nodes in paths, it substitutes the attribute values of the common

nodes iteratively with a vector of values zero (denoted by (0)), in
order to avoid attribute repetition (and so, additional impact on the

SoC cost) in the ML estimation of objectives.

Overall, this method allows to represent SoC configurations in a

fashion suitable for ML algorithms. In fact, a faithful representation

is guaranteed because each vector preserves the spatial information

of its path and, by this, the hierarchy of the nodes. For example,

the first attribute values in the feature vectors shown in Fig. 3c

correspond to the attribute values of the root node in the SoC

configuration shown in Fig. 3a. Similarly, the hierarchy and, hence,

spatial information, of all other nodes is preserved. Furthermore,

as pointed out in Fig. 3c, the order of each feature vector in the

set determines common paths of the feature vectors, representing

uniquely the structure of the tree. Hence, when employing the ML

algorithm afterwards, this information is properly represented. Last,

the linear space and time complexity of the depth first traversal

in the number of nodes [3], allows the proposed method to scale

easily to components with more feature vectors/hierarchical levels.

4.2 Applying the Machine Learning Algorithm
Having the representation as described above eventually allows to

utilize recent ML approaches for the task of cost estimation con-

sidered here. To this end, we generated a representative amount

of hardware configurations (i.e. the dataset). These contain mixed

type of variables, where we normalize numerical values. These

configurations are our method’s Primary Inputs. Furthermore, in

order to train our network to estimate the hardware objectives

under different synthesis strategies (the logic optimization syn-

thesis applied by the synthesis tool, i.e., Area Optimization, Area
Optimization, or Power Optimization), we add an Auxiliary Input
(denoted as Conditioning, similarly to [18]) which indicates the de-

sired synthesis strategy. Since we are focusing on area and power

consumption, the outputs of the ML estimation are Lookup Tables
(LUTs) (y1), Slice Registers (SRs) (y2), and Power Consumption (y3).
The labels for the learning process can be easily retrieved from the

reports generated during the synthesis. Additionally, if the designer

is interested in other metrics/objectives, the method can be easily

adjusted, modifying the outputs metrics of the ML estimation. Then,

the resulting data set is passed to a multi-output regression Con-
volutional Neural Network (CNN) that uses convolutions and fully

connected layers. As shown in [8], convolutions are able to use the

spatial information contained in the data (in our case, in the feature

vectors). Processing the information by a shared set or parameters

(i.e. filters) considerably reduce the number of parameters that the

neural network has to learn (as pointed out it [8]). In this way, the

parameters used for processing each path can be shared by each
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Figure 4: Neural network structure
feature vector. As a consequence, adding new feature vectors to a

component (e.g. ACD, CPU, etc.) does not result in an increase of

network parameters.

Fig. 4 sketches the correspondingly used architecture of the CNN.

The algorithm is composed of two stages: In the first stage, the input

configurations (i.e., the Primary Inputs) of the SoC components

are processed in parallel by 1-dimensional (1D) convolutions with

ReLU activation functions in three separated branches that do not

interfere with each other. The width of the convolution filter is

extended to the whole feature vector, so that each hierarchical level

of the vector is processed by different parameters. The outputs of

the first stage and the Auxiliary Input (i.e. Conditioning) discussed

above are brought to a common format with a flatten layer and

concatenated. Thewhole stack is then forwarded to the second stage

and processed by fully connected layers to compute predictions for

our set of outputs {y𝑖 }3𝑖=1. As we can see, the three components are

processed separately in the first stage because their feature vectors

have different sizes and we want to use the spatial information

contained in the feature vectors of each single component (e.g. ACD,

CPU, etc.) before bringing them to a common format and process

them together. Since the input of the second stage is composed of

outputs from different branches of the first stage that can have a

very different scale, we used Batch Normalization (BN) layers to

maintain a non-skewed distribution and smoothen the training

process [8]. Overall, this yields to a rather fast and efficient cost

estimation for a configurable SoC as also confirmed by evaluations

summarized in the next section.

5 EXPERIMENTAL EVALUATION
The proposed approach for cost estimation as described above has

been implemented within our industrial context.
3
Afterwards, we

evaluated the accuracy of the resulting method and compared it to

the currently available approach for cost estimation (i.e., generat-

ing the code, synthesizing it, and simulating the resulting design

as reviewed in Section 2.2). In this section, we summarize the re-

sults obtained from this comparison. To this end, we first describe

the used environment, discuss the resulting accuracy and, finally,

present application results.

5.1 Used Environment
As software development environment, Tensorflow-GPU v1.0.1 and

Python v3.6 has been used. Hyperopt has been utilized for retrieving

the optimal architecture of the network. For optimizing the training

process with an Nvidia GPU, the CUDA Toolkit 9.0 and cuDNN v7.0

has been employed. As hardware, we used the Nvidia Tesla P100

for training the ML algorithm (running on an system with an Intel

Core i7-8700K CPU and a DIMM 16GB DDR4-3000 module of RAM).

The actual costs of a configuration (w.r.t. the number of LUTs, the

3
Due to the double-blind review process, we omit details about this industrial context.

We will, however, add this information in a possibly final version of this paper.

number of SRs, and the Power Consumption) have been obtained

from reports generated by the Vivado v2015.1 design tool running

on three Intel Xeon CPU E5-2690 v2 machines, and applied to an

Arty-7 FPGA board from Xilinx.
4

Using this setup, we generated a total of 7512 different config-

urations of an SoC composed of a CPU together with ACD and

I2C communication devices, taken from a predefined design space.

For doing so, variations in the number and attribute values of the

above mentioned SoC are considered. Additionally to configurable

devices, the SoC is provided with a non-configurable interrupt han-

dler, a Serial Peripheral Interface (SPI) and a data bus. Through a

data generator, we realized instances of the components in the SoC

taken from a space defined by the designer’s experience. We then

generated code for each configuration and implemented it using

logic synthesis algorithms available on Xilinx Vivado. In particular,

we applied the Area High Optimization, Area Medium Optimization,
and Power Optimization on respectively one third of the dataset,

each.

5.2 Resulting Accuracy
Using the environment described above, the accuracy of the pro-

posed cost estimation method has been considered in a first evalua-

tion. To this end, we obtained the labels, i.e., ground truth values,

for the given objectives from the above-mentioned reports gener-

ated by the Vivado tool. As objectives, we considered the number

of LUTs (labeled y1), the number of SRs (labeled y2), and the power
consumption (labeled y3). For the evaluation, the data has been split
into a training (70%), a validation (15%), and a test set (15%). The

amount of 7512 configurations was selected, because adding further

SoC configurations did not improve the accuracy of the estimation

algorithm, even considering a larger ML model. Furthermore, we

did not consider any different data split once we saw that our model

was not overfitting the training samples. The selected model was

trained for 3ℎ15𝑚 on the configurations dataset.

Table 1 provides the characteristics of the dataset in terms of

mean values ({𝜇y𝑖 }3𝑖=1), range for each objective, and accuracy re-

sults. The latter clearly shows the high accuracy obtained through

the ML estimation. In fact, an 𝑅2 score of 0.91 on the numbers of

Lookup Tables, of 0.93 on the number of Slice Registers, and of 0.92

on the power consumption (measured in Watts) are reported. These

values show how the spatial information captured by the feature

vectors can be efficiently processed by the CNN, leading to very

good results for the estimation.

5.3 Application
Finally, a brief summary on the application perspective is provided.

After the evaluation on the accuracy yielded very good results (as

discussed above), the resulting cost estimation tool has been applied

in the production process. Here, the costs of different configurations

for an SoC design including a CPU, an ACD, and I2C as well as a

non-configurable interrupt handler, an SPI, and a data bus have been

estimated using the proposed method. For reasons of comparison,

we repeated the cost estimation process using the previously applied

Vivado flow (reviewed in Section 2.2).

Table 2 shows the obtained results. Here, the cost estimations of

three different SoC configurations are listed. After generating RTL

code for the different configurations, we ran a synthesis on it, using

for each configuration a different synthesis strategy. In particular,

Config 1 has been realized by use of the Area High Optimization,
while Config 2 by use of theAreaMediumOptimization and Config 3
by use of the Power Optimization algorithm for logic synthesis. The

columns denoted (Est.) Costs provide values for the costs (w.r.t. y1,

4
The documentation on Vivado and generated reports can be found on the

𝑉𝑖𝑣𝑎𝑑𝑜 𝐷𝑒𝑠𝑖𝑔𝑛 𝑆𝑢𝑖𝑡𝑒 𝑈𝑠𝑒𝑟 𝐺𝑢𝑖𝑑𝑒 − 𝑣2015.1.



Table 1: Dataset and obtained accuracy

Dataset Mean 𝜇y1 = 15359

𝜇y2 = 23627
𝜇y3 = 0.28 W

Dataset Range y1 ∈ [4991, 39608]
y2 ∈ [2736, 86805] y3 ∈ [0.17, 0.55] W

Area Power Consumption

𝑅2 Score
𝑅2y1 = 0.91

𝑅2y2 = 0.93

𝑅2y3 = 0.92

The 𝑅2 Score provides the explained variance w.r.t.

the number of LUTs (𝑅2y1 ), SRs (𝑅
2

y2 ), Power Con-

sumption (𝑅2y3 ).

Table 2: Results obtained from an application perspective

SoCs
Vivado Approach Proposed Approach

Costs Time Est. Costs Time

Config 1

𝑦1 9271 LUTs

3h 20m

9572 LUTs

4.1s𝑦2 13042 SRs 15786 SRs

𝑦3 0.290 W 0.277 W

Config 2

𝑦1 27467 LUTs

5h 13m

26740 LUTs

6.2s𝑦2 50336 SRs 49175 SRs

𝑦3 0.404 W 0.420 W

Config 3

𝑦1 20071 LUTs

4h 46m

23793 LUTs

5.3s𝑦2 38834 SRs 39480 SRs

𝑦3 0.322 W 0.301 W

y2, and y3, i.e., LUTs, SRs, and power consumption measured in

Watts) obtained from the Vivado flow and the proposed method.

The columns denoted Time provide the time needed to obtain these

results.

Of course, Vivado provides ground truth values as the respective

configurations are indeed completely realized in these cases. But, as

can be clearly seen in Table 2, this comes at huge costs w.r.t. runtime.

Each determination requires more than three hours—certainly too

long for an initial design space exploration. In contrast, the proposed

cost estimation flow can determine proper values in just a few

seconds. At the same time, the resulting cost values remain very

close to the actual ground truth values. Hence, this provides an

efficient yet rather accurate alternative for cost estimation.

6 CONCLUSION
In this work, we proposed a cost estimationmethod for configurable,

model-driven SoC design based onMachine Learning. The approach

presented is fast, accurate, and well adapts to SoC configurations

considered in the design flow and to different synthesis strategies.

This is accomplished by a data representation which describes

SoC configurations in a way that keeps all spatial information and,

at the same time, is suited for ML algorithms. Evaluations con-

firm the accuracy of the proposed method and application studies

demonstrated its benefits: While the state of the art for determining

the cost required several hours per configuration, the proposed

method provides an accurate cost estimation within seconds. Fu-

ture work will cover further objectives such as timing and CPU

cycles—additionally incorporating the execution of the firmware

programs.
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