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Abstract—With the decline of Moore’s Law, several
post-CMOS technologies are currently under heavy consid-
eration. Promising candidates can be found in the class of
Field-coupled Nanocomputing (FCN) devices as they allow for
highest processing performance with tremendously low energy
dissipation. With upcoming design automation in this domain,
the need for formal verification approaches arises. Unfortunately,
FCN circuits come with certain domain-specific properties that
render conventional methods for the verification non-applicable.
In this paper, we investigate this issue and propose a verification
approach for FCN circuits that addresses this problem. For
the first time, this provides researchers and engineers with an
automatic method that allows them to check whether an obtained
FCN circuit design indeed implements the given/desired function.
A prototype implementation demonstrates the applicability of the
proposed approach.

I. INTRODUCTION

The tremendous advancement of the capabilities of digital
systems over the last decades is strongly related to the minia-
turization of the transistor sizes, which enabled cramming
more components onto integrated circuits following Moore’s
prediction from 1965 [1]. However, reducing the transistor
size no longer yields the improvements it used to. In contrast
to what one would expect, main limiting factors are not
restrictions due to fabrication constraints or parasitic effects
of current technologies, but the high power density of inte-
grated circuits based on today’s conventional technologies.
This restraint led to a stagnation of the clock speeds in the
beginning of this millennium and an increasing number of
the so-called dark silicon, i. e. regions of a chip that must
be powered off to avoid overheating [2]. This problem is
worsening with the emergence of new types of applications
that have to compute with massive amount of data, such as
deep learning or high-resolution image processing. On the end
of the scale, novel embedded systems intended for ubiqui-
tous computing, e. g. Internet-of-Things related applications
or portable biomedical devices, are strongly restricted by their
energy supply, i. e. batteries or energy harvesting solutions.

Consequently, there is an increasing interest in alternative
technologies that enable fast computations with considerably
lower energy dissipation compared to the state of the art.
Among the several candidates, Field-coupled Nanocomput-
ing (FCN) [3] is a class of emerging technologies that is
constantly gaining more attention. In contrast to conventional
technologies, FCN conducts computations without any electric
current flow – allowing operations with a remarkable low
energy dissipation that is a number of magnitudes below
current CMOS technologies [4], [5], [6]. This promising
outlook motivated explorations on its feasibility which led to
several suitable contributions to the physical implementation
of FCN technology, many of them very recently (i. e. in the
last 3–4 years) [7], [8].

Based on these promising physical implementations, sev-
eral researchers started to consider how to efficiently design
corresponding FCN circuits. While initial solutions have been
obtained manually [9], also automatic solutions, e. g. for
physical design, are available in the meantime [10], [11].
Even though the underlying problem is NP-complete [12],
recently, techniques have been proposed, which can handle

large designs [13], [14], [15]. Together with established logic
synthesis expertise from the conventional domain, this is
emerging towards a design automation flow which yields a
(conventional) logic network first, followed by a mapping
towards an FCN circuit by a physical design step.

With this development, also the need for formal verification
approaches arises. In fact, with increasing sizes of the FCN
circuits that can be designed, it cannot be checked manu-
ally anymore whether e. g. the resulting realization indeed
implements the initially given/desired function. But unfor-
tunately, FCN circuits come with certain domain-specific
properties, in particular synchronization issues of the signals,
that render conventional methods for the verification of cir-
cuits non-applicable. In this paper, we discuss this problem
and show how the actual design of an FCN circuit implies
domain-specific physical restrictions e. g. signal synchroniza-
tion constraints. We show how violating them can turn the
circuit into conducting an unintended logic function or can
impose an undefined behavior.

Based on these discussions, we eventually propose a formal
verification technique that enhances conventional methods for
circuit verification to make them applicable for FCN circuits as
well. By this, we provide the basis to use decades of research
on the verification of conventional circuitry for the verification
of FCN circuits. As a representative verification problem, we
thereby consider equivalence checking, i. e. the task of proving
whether two different circuit representations implement the
same function or not.

The rest of the paper is structured as follows. To keep this
work self-contained, Section II introduces basic FCN elements
and explains how to use them in order to design circuits.
In Section III, we discuss, how signal synchronization makes
FCN circuits so different from conventional CMOS ones and
point out the implications to formal verification. In Section IV,
we present a novel approach to tackle verification in FCN
technologies and demonstrate its applicability in Section V.
Section VI concludes the paper.

II. BACKGROUND

This section provides the background on Field-Coupled
Nanotechnologies (FCN) as well as the currently considered
design approaches. By this, it provides the basis for the re-
mainder of this work. FCN manifests in several fashions such
as atomic Quantum-dot Cellular Automata (aQCA, [7], [16]),
molecular Quantum-dot Cellular Automata (mQCA, [8]),
or Nanomagnet Logic (NML, [17]). We review aspects of
QCA-like and NML technologies in the following section
and then focus on QCA as a running example for all further
illustrations in this paper.

A. Field-coupled Nanotechnologies
Generally, FCN circuits are implemented using elements

that interact via local fields that are usually called cells. In
QCA, a cell is composed of four quantum dots which are able
to confine an electric charge and are arranged at the corners
of a square [18]. Adding two free and mobile electrons into
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Fig. 1: FCN states and basic gates
each cell, that are able to tunnel between adjacent dots, yields
a stable state due to Coulomb interaction (note that tunneling
to the outside of the cell is prevented by a potential barrier).
Then, because of the mutual repulsion, the two electrons tend
to locate themselves at opposite corners of the cell – eventually
leading to two possible cell polarizations, namely P = −1 and
P = +1 which can be defined as binary 0 and binary 1 (see
Fig. 1a). In contrast, NML cells are based on single domain
nanomagnets that can assume only two stable magnetization
states, namely M = −1 and M = +1 which also can be
used to represent the binary values 0 and 1 (see Fig. 1d).
When composing several FCN cells next to each other, field
interactions cause the polarization or magnetization of one cell
to influence the polarization or magnetization of the others.
This allows to implement Boolean functions such as AND,
OR, NOT, Majority, etc.

Example 1. Fig. 1a and 1d show the two cell polarizations
and the two stable magnetization states which are used to
represent the binary values 0 and 1 in QCA and NML, respec-
tively. Furthermore, Fig. 1b shows for QCA how those cells
can be combined to implement a Majority function. Here, the
output y evaluates to the binary state 1, if the majority of the
input values x1, x2, x3 is assigned 1; otherwise, y evaluates
to 0. Locking one of the three inputs to the 0-state turns this
cell into an AND gate, while locking one of the inputs to the 1-
state results into an OR gate as shown in Fig. 1c. In a similar
fashion, those functions can be implemented in NML; as shown
in Fig. 1e for the Majority function and in Fig. 1f for the OR
gate. In the latter, a so-called slanted-edge magnet [19] is
applied that give preference to a magnetization.

B. Designing FCN Circuits
Following the concepts reviewed above, basically any func-

tionality can be designed using FCN circuits. To this end, a
so-called tile-based design scheme became popular [20], [21].
Here, FCN cells are grouped into tiles which can be used
to implement certain elementary logic operations such as the
Majority or the OR function covered before. A tile can be
referred to by its coordinates in the grid as (x, y) assuming
that the top-left tile is at position (0, 0).

While a tile-based design scheme obviously restricts the
flexibility in the design of FCN circuits (eventually, only logic
blocks which fit into the respective tiles can be employed), it
significantly simplifies the design process. In fact, tile-based
design also allows for the utilization of conventional design
methods. More precisely, in order to implement a desired func-
tionality, a logic network, e. g., an And-inverter Graph (AIG)
or a Majority-inverter Graph (MIG) (generated by established
conventional tools and methods such as in [22], [23]) can be
created first and, afterwards, each gate of this logic network
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(c) Resulting FCN implementation

Fig. 2: Tile-based design steps
“only” has to be mapped and connected to a corresponding
elementary FCN tile. An example illustrates the idea.1

Example 2. Assume, a functionality should be implemented
which is described by the logic network shown in Fig. 2a, e. g.
generated using a conventional synthesis algorithm. Fig. 2b
shows possible groupings of FCN cells into a grid of tiles.
Each square shape represents a tile, in which FCN cells
implementing a gate may be placed (possible cell positions are
hinted in each tile). Using this grid, the given logic network
can be mapped to a corresponding layout as shown in Fig. 2c.

However, due to the metastability of the cells, and in order
to control the data flow within a design, FCN cells and,
hence, also FCN tiles cannot be connected arbitrarily. In fact,
all cells, and thus also the tiles, must be associated to an
external clock that controls the initialization, holding, and
resetting of the states of the cells. In case of QCA, an external
electric clock controls the tunneling within the cells, while in
NML a magnetic clock regulates the switching ability of the
nanomagnets. Depending on the technology, each cell changes
during a complete clock cycle between four (QCA) or three
(NML) different phases, i. e. a switch, a hold, a reset and a
neutral phase (the latter only in case of QCA). In case of four
phases, usually four external clocks numbered from 1 to 4 are
applied, whereby each clock controls a selected adjacent set
of cells (i. e. a tile). Furthermore, information flows from cells
controlled by clock 1 to cells controlled by clock 2 etc. and
eventually back to cells controlled by clock 1 again. Another
example illustrates the issue.

Example 3. Consider again the layout discussed in Exam-
ple 2. Here, Fig. 2b does not only show the grouping of FCN
cells into tiles, but also the association of each tile to one of the
four clock signals (denoted by the numbers in the bottom-right
corners and a corresponding gray scale). The arrows indicate
the possible data flow directions. For example, a logic gate
mapped to tile (1, 0) (controlled by clock 2) must only receive
its inputs from tiles (2, 0) and (1, 1) which are controlled by
clock 1. Similarly, it can propagate its outputs to gates in
the top-left tile that is controlled by clock 3. The FCN circuit
shown before in Fig. 2c already follows this clocking scheme.

1Note that even if we will consistently use the tile-based gate library
proposed in [24] in this work, all concepts and also our contributions are
independent of the actual physical and structural implementation.
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Fig. 3: Synchronization issues in FCN technologies

Overall, following the tile-based design scheme, FCN cir-
cuits may be implemented as a simple 1:1 mapping of
the given logic network to a corresponding FCN layout.
However, additionally considering the required clocking leads
to a non-trivial design task which recently has also been
proven to beNP-complete [12]. Accordingly, researchers have
considered intensely how to best tackle this problem – both, in
an exact fashion but also heuristically. This resulted in several
methods which have been proposed for this purpose in the last
couple of years [10], [11], [13], [14].2

III. VERIFICATION OF FCN CIRCUITS

As in conventional CMOS design, whether an FCN circuit
indeed implements the desired functionality is of utmost
importance. Here, in particular, equivalence checking plays
an important part. Considering the tile-based design scheme
as reviewed in the previous section, this particularly becomes
relevant in the “transition” from the conventional design flow
(delivering the logic network) to the FCN design (yielding the
FCN circuit). At a first glance, a corresponding equivalence
checking is straight-forward: two functional descriptions (the
conventional logic network and the FCN circuit) are provided
and need to be checked for equivalence. To this end, numerous
(conventional) solutions are available (e. g. [25], [26], [27],
[23], [28]).

However, similar to the design of FCN circuits, the re-
quired clocking additionally hardens the problem and, in
fact, yields a situation where conventional methods cannot
be applied directly to the FCN domain. More precisely,
while conventional (combinatorial) circuits propagate data
“instantaneously” through the circuit (at least when considered
functionally for equivalence checking on a logic level), FCN
circuits can propagate data only in direction of an adequate
sequence of clock signals (as illustrated before in Example 3).
This leads to two domain-specific properties of FCN circuits
that need to be considered during any verification task:
• Local synchronization, i. e., the fact that data is prop-

agated in a way where tiles controlled by a clock i are
followed by tiles controlled by a clock (i + 1) mod C
(with C being the number of different clocks required
by the technology; i. e., C = 4 for QCA and C = 3
for NML). This is a characteristic all FCN circuits must
satisfy, i. e., verification methods have to check for this
independently of whether two circuits are functionally
equivalent [3].

• Global synchronization, i. e., the fact that the number of
passed tiles for any two signals traveling from primary
inputs to the same gate have to be equal. Otherwise,
data will arrive in a desynchronized fashion – leading
to different or even undefined behavior that obviously
affects the function of a circuit and, hence, whether it is
functionally equivalent to another one.

2Note that a recent work proposed in [15] also tries to circumvent this
problem by exploiting additional hardware to handle the clocking constraints
in a post-processing step.
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Fig. 4: FCN implementation violating global synchronization

Example 4. Consider Fig. 3a which depicts a QCA circuit
realized with 3×2 tiles. At first glance, one could assume that
the circuit implements the AND function y = x1∧x2, because
the gate assigned to the tile at position (2, 0) is an AND gate
while all the other tiles have wire segments assigned. But since
the tile at position (0, 1) is controlled by clock 2 and the
neighboring tile at position (0, 2) by clock 4, no data flow from
the former to the latter is possible – the local synchronization
is not satisfied.

Consider now Fig. 3b where another QCA circuit with 3×2
tiles is depicted. Also, this one seems to compute the function
y = x1 ∧ x2; and indeed local synchronization is satisfied
this time. However, information from the primary input x1 at
position (0, 0) needs to pass 4 tiles to arrive at the joint tile
(2, 0); while the signal from x2 at tile position (1, 0) only
needs to pass 1 tile. This way, x1’s signal information arrives
with a delay – violating the global synchronization.

However, not only the path length differences of signals
play a role but also the clock that controls the primary inputs.
By definition, the processing within a FCN circuit “starts”
when all tiles controlled by clock 1 are in the switch phase
(cf. Section II-B), so that all signals are able to accept an
incoming value e. g. from external inputs. Consequently, any
primary input controlled by another clock can only accept and
eventually propagate information after that many clock phases
have passed.

Example 5. Consider the QCA circuit shown in Fig. 4. At a
first glance, this circuit looks like a simple permutation of the
one shown in Fig. 2c and therefore functionally equivalent.
However, this circuit violates global synchronization because
the primary inputs x1 and x2 propagate their information first
and are therefore ahead of primary input x3 which only can
feed in its input after 2 clock phases. However, by this time,
signals from x1 and x2 have already reached y leading to
undefined behavior at the primary output.

We call layouts which violate global synchronization unbal-
anced. Accordingly, layouts for which global synchronization
holds, we call balanced. Naturally, in larger layouts with nu-
merous signals that fan-out and re-converge, checking whether
a layout is balanced, can become increasingly difficult.

Unfortunately, no method for equivalence checking exists
yet which considers these characteristics and issues. In this
work, we propose a solution which addresses this problem
and, by this, for the first time provides a base solution for
tackling verification of FCN circuits.

IV. PROPOSED VERIFICATION APPROACH

In this section, we present a verification approach that is
able to handle the domain-specific properties of FCN circuits
which we have described in the previous section. Using this
approach, the equivalence between two function and/or circuit
representations is verified (following the terminology estab-
lished for conventional equivalence checking, those are called
specification and implementation in the following). Possible
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checks could, e. g., involve checking a logic network against a
resulting FCN circuit (e. g. the circuit from Fig. 2a against the
circuit from Fig. 2c) or checking two different FCN circuits
against each other (e. g., in order to check an improved layout
against an original one or the results of two different layout
approaches against one another). Even comparisons across
technologies become feasible, e. g. checking a QCA circuit
against an NML one.

The main idea rests thereby on verification methods which
got established in the domain of conventional circuits, namely
the utilization of a so-called miter structure [26], [25]. In order
to utilize this concept for FCN circuits, the miter formulation
is complemented by further constraints which enforce the
domain-specific properties discussed above. To this end, a
dedicated analysis is conducted to gather the synchronization
information needed for this task. The information is then used
to accordingly complement the miter formulation. This section
describes the process by first briefly reviewing the miter
structure used for the verification of conventional circuits.
Afterwards, the conducted analysis is described and it is
shown how the information gathered here is used to create an
FCN-specific formal model that eventually allows for proper
equivalence checking.

A. Miter Structure
Conventional logic circuit equivalence checking is an estab-

lished procedure (see e. g. [28]). Corresponding equivalence
checkers either prove that a specification and an implemen-
tation are logically equivalent or provide an input assignment
under which they behave differently (which, eventually, serves
as a counter-example). Typically, a miter structure as sketched
in Fig. 5 is incorporated for this purpose.

More precisely, a miter of a specification C1 and an imple-
mentation C2 with the same number of primary inputs n and
outputs m is defined as a logic network M which contains
both C1 and C2. Additionally, all corresponding pairs of
primary inputs pi1i , pi2i are connected by fan-outs which
become the new primary input pii; and all corresponding pairs
of primary outputs po1j , po2j are connected by 2-input XOR
gates whose outputs are all connected by a j-input OR gate
which becomes the only primary output po, where 1 ≤ i ≤ n
and 1 ≤ j ≤ m.

Using this structure, basically a decision problem is for-
mulated: Does an assignment to all (new) primary inputs pii
exist which eventually leads to the primary output po being
assigned 1? If this is the case, such an assignment constitutes
a counter-example as both circuits C1, C2 are triggered with
the equivalent input assignment but yield different output
assignments (setting po = 1). Otherwise, if it can be proven
that no such assignment exists, it has been shown that both
circuits are equivalent. In order to solve this decision problem,
reasoning engines such as SAT solvers [29], [30] are usually
employed. To this end, the miter structure is translated into a
corresponding format i. e. a Conjunctive Normal Form (CNF)
(e. g. using Tseitin transformation [31]). Eventually, this re-
sults in an instance which is denoted ΦM in the following.

However, checking the resulting miter instance ΦM (and, by
this, checking the logical equivalence of the given description)
is a necessary but unfortunately not a sufficient condition to

prove actual equivalence of FCN circuits. In fact, this formu-
lation does not consider the synchronization issues discussed
before in Section III. Therefore, we need to complement this
instance to additionally enforce that also all synchronization
constraints are satisfied. This is elaborated next.

B. Enforcing Proper Synchronization
The miter structure reviewed above only works if signals

are instantaneously propagated through the respective logic
networks. While this is implicitly given in conventional (com-
binational) networks, FCN circuits propagate their signals dif-
ferently as reviewed in the previous sections. Hence, in order
to make statements about correct propagation, the delay value
for each signal in the circuit must be known. This delay of a
signal is defined differently in FCN circuits as compared to
conventional logic networks. As the terms are often confused
in literature, we give a quick definition in accordance with
our use case. A signal is a connected path on the layout
starting at either a gate or a primary input inclusively, and
ends at either a gate or primary output exclusively. We denote
a path as a sequence of tiles ((x1, y1), (x2, y2), . . . ). Based on
this, the delay of a signal is then defined as its length. If the
signal contains a primary input, its clock number is added in
accordance with Example 5. We denote the delay of a signal s
by d(s).

Example 6. Consider the FCN circuit shown in Fig. 3b again.
There are two signals in the layout: one starting in tile (0, 0)
with x1 as its input and one starting in tile (1, 0) with x2
as its input. Therefore, we will refer to the signals as x1 and
x2 accordingly. Their path lengths are already marked in the
figure as 4 and 1 respectively. To get the delay, we add their
primary input tile’s clock number, as it states the delay with
which information is fed into the circuit, i. e., 4 for x1 and 3
for x2. As a result, d(x1) = 8 and d(x2) = 4.3

As this example illustrates, the delay of a signal can be
viewed as the total amount of clock phases it takes a value to
propagate along it. As discussed before in Examples 4 and 5,
delay differences at gate inputs may lead to synchronization
issues because values which were applied to the primary inputs
at the same time step do not arrive at that gate simultaneously
and therefore falsify the computation. In order to check
whether this is the case, we propose a second instance ΦS ,
which checks whether a proper synchronization is enforced
and, together with ΦM , allows to complete the equivalence
checking process.

More precisely, ΦS enforces that the sums of all delays
along each path leading to any primary output must be
identical. To this end, one free variable is added into every
sum representing the delay of the primary input of that path
(as all paths eventually lead to one) which can be assigned
arbitrary to balance the signals if possible. This is described
by the constraint∧

1≤j≤m,
p∈P (poj)

d(poj) =

(∑
s∈p

d(s)

)
+ d(pi(p)),

where
• m denotes the number of primary outputs,
• P (poj) denotes the set of paths leading to output poj ,
• s ∈ p denotes a signal along path p,
• pi(p) denotes the primary input of path p, and
• d(poj) and d(pi(p)) are new free positive integer vari-

ables (i. e. variables to be assigned by a solver) which
represent the delay for each primary input and output of
the FCN circuit (not the miter).

3Note that local synchronization is inherently checked, too, as we consider
only paths emerging from locally synchronized data flows.



Informally, this constraint not only enforces computation of the
resulting primary output delays but it also gives an assignment
to the new primary input delays which a solver is free to assign
to try to balance out the circuit if possible.

On top of that, and in order to keep the initial delay at
the primary inputs as small as possible, we further apply a
minimization objective over the sum of all d(pi) variables. The
resulting encoding can be evaluated with reasoning engines
such as ILP or SMT solvers which can determine values for
the d(pi) variables that satisfy the constraints.

Example 7. Consider Fig. 4 one last time. There are four
signal paths leading to the primary output y in the circuit,
namely

p1 = (x1, (0, 0), (1, 0), (2, 0), y),

p2 = (x2, (2, 2), (2, 1), (2, 0), y),

p3 = (x3, (0, 2), (0, 1), (0, 0), (1, 0), (2, 0), y),

p4 = (x3, (0, 2), (1, 2), (2, 2), (2, 1), (2, 0), y).

For each path, a delay constraint is enforced on y leading
to the following formulation (considering signals in reverse
order for each path as implied by the constraint formulation
above):

d(y) =

=1︷ ︸︸ ︷
d(((2, 0))) +

=2+1︷ ︸︸ ︷
d(((0, 0), (1, 0)))︸ ︷︷ ︸

pd((x1,y))=4

+d(x1)

=

=1︷ ︸︸ ︷
d(((2, 0))) +

=2+1︷ ︸︸ ︷
d(((2, 2), (2, 1)))︸ ︷︷ ︸

pd((x2,y))=4

+d(x2)

=

=4︷ ︸︸ ︷
pd((x1, y)) +

=2+3︷ ︸︸ ︷
d(((0, 2), (0, 1)))︸ ︷︷ ︸

pd((x3,x1,y))=9

+d(x3)

=

=4︷ ︸︸ ︷
pd((x2, y)) +

=2+3︷ ︸︸ ︷
d(((0, 2), (1, 2)))︸ ︷︷ ︸

pd((x3,x2,y))=9

+d(x3)

Here, each path signal is annotated with its delay value.
Additionally, the pd identifiers represent temporary variables
which are assigned the path delay of the enclosed signals
to reuse them in the following lines in a shorthand notation.
Furthermore, it is enforced that 0 ≤ d(xi), d(y) for all free
variables and that d(x1) + d(x2) + d(x3) + d(x4) is to be
minimized.

Finally, in order to use this constraint, the respective delay
values for each signal in the FCN circuit need to be available.
This, can easily be determined by a depth-first search or
breadth-first search traversal.

Note that such traversals additionally identify all local
synchronization issues that may exist in the circuit. Those
manifest during traversal as wire segments without prede-
cessors or gates with missing input signals (depending on
the direction of traversal). If such issues can be identified,
the considered FCN circuit produces undefined behavior and,
therefore, by definition cannot be equivalent to any specifica-
tion. Accordingly, if the traversal determines such issues, the
equivalence checking process can be terminated and the user
can be pin-pointed to the determined local synchronization
problem. Otherwise, the needed delay values can be obtained
and used for ΦS as described above.

The number of paths that are present in the design have a
direct impact on the computational effort it takes to reason
about ΦS . As previous work has shown, the number of paths
can quickly grow in FCN designs [32].

In the next section, we finalize the resulting equivalence
checking process and describe how to interpret the results ob-
tained from the reasoning engines when solving ΦM and ΦS .

C. Resulting Equivalence Checking Process
Overall, the instances ΦM and ΦS as introduced above

eventually allow to solve the considered equivalence checking
problem. To this end, the ΦM covers the logical equivalence
while ΦS ensures that a proper synchronization of the FCN
circuit exists.

Passing ΦM to a SAT solver may either lead to UNSAT,
i. e. a proof that no assignment to the variables exists which
satisfy the miter structure. In this case, the specification and
implementation are logically equivalent since no assignment to
the primary inputs pi1, . . . , pin exists which lead to different
values at the primary outputs po1, . . . , pom. In contrast, if the
SAT solver determines SAT, such an assignment exists and
has been found. In this case, the FCN circuit has been shown
to be non-equivalent to the given specification before even
considering synchronization issues. The obtained assignment
constitutes a counter-example showing which pattern to the
primary inputs indeed leads to different values at the primary
outputs.

In case of UNSAT, i. e. when logical equivalence has been
shown, it remains left to check for proper synchronization
using ΦS . Passing ΦS to an ILP or SMT solver may lead
to either of the following results: (1) UNSAT, i. e. the circuit
violates synchronization constraints so tremendously that the
intended logic function will never actually be computed (an
UNSAT core can point towards the location of failure), (2)
SAT with all variables d(pi(p)) = 0 meaning the circuit
is properly synchronized for every signal or synchronization
effects eventually are balanced out in a way that no extra
efforts need to be spent to accomplish equivalence, and (3)
SAT with some variables d(pi(p)) 6= 0 meaning input patterns
at those inputs need to be applied for a sequence of that
many clock cycles to achieve a synchronization within the
circuit so that all signals can stabilize [33]. We call case (2)
strong equivalence and case (3) weak equivalence. In both
latter cases, the FCN circuit can be considered equivalent
to a specification. Besides that, as a side effect, the solver
also outputs a value for the d(poj) variables in both the
equivalence cases determining the minimum amount of clock
phases it takes for all signals to completely propagate through
the layout.

Example 8. The formulation given in Example 7 when pro-
cessed by a solver engine, yields SAT with the assignment

d(x1) 7→ 4, d(x2) 7→ 4, d(x3) 7→ 0, d(y) 7→ 7,

which constitutes weak equivalence to the circuit shown in
Fig. 2c (as we know that they are logically equivalent) under
the restriction, that a user has to apply all input patterns to
x1 and x2 over a sequence of 4 clock phases until the output
stabilizes. Furthermore, we get the information that the overall
delay value of the circuit then becomes 7 as that is the delay
value found for the primary output y.

V. PROTOTYPE IMPLEMENTATION

In order to demonstrate the applicability of the proposed so-
lution, we implemented the approach described in the previous
section in C++ on top of the publicly available FCN design
framework fiction [34] as command equiv. This framework
provides data structures for (tile-based) FCN layouts and
has several built-in design algorithms (such as [10], [14],
[15]). This additionally allowed us to automatically synthesize
various FCN circuits from conventional logic networks taken
from [35], [36], [37] – yielding numerous cases of equivalent
circuit descriptions to be used to demonstrate the applicability



TABLE I: Obtained results
Instance Equivalent Cases Non-equiv. Cases

Name #Gates I / O Dimension Equiv. d(pi) t in s Equiv. t in s
2:1 MUX 5 3 / 1 3 × 4 Strong Eq. 0 < 1 Not Eq. < 1
XOR 6 2 / 1 3 × 6 Strong Eq. 0 < 1 Not Eq. < 1
XNOR 8 2 / 1 3 × 6 Strong Eq. 0 < 1 Not Eq. < 1
Half adder 10 2 / 2 4 × 5 Strong Eq. 0 < 1 Not Eq. < 1
ParGen 14 3 / 1 5 × 7 Strong Eq. 0 < 1 Not Eq. < 1
4:1 MUX 16 6 / 1 7 × 8 Strong Eq. 0 < 1 Not Eq. < 1
ParCheck 21 4 / 1 7 × 8 Strong Eq. 0 < 1 Not Eq. < 1

c17 11 5 / 2 8 × 4 Weak Eq. 2 < 1 Not Eq. < 1
c499 1207 41 / 32 828 × 412 Weak Eq. 177 14 Not Eq. < 1
c1355 1559 41 / 32 1140 × 452 Weak Eq. 225 22 Not Eq. < 1
c1908 1219 33 / 25 852 × 400 Weak Eq. 133 14 Not Eq. < 1
c3540 2997 50 / 22 2200 × 842 Weak Eq. 577 86 Not Eq. < 1

ctrl 601 7 / 25 417 × 191 Weak Eq. 96 3 Not Eq. < 1
int2float 801 11 / 7 574 × 238 Weak Eq. 182 6 Not Eq. < 1
cavlc 2294 10 / 11 1666 × 638 Weak Eq. 301 50 Not Eq. < 1
adder 3434 256 / 129 2541 × 1149 Weak Eq. 823 104 Not Eq. < 1
i2c 4064 133 / 127 2875 × 1318 Weak Eq. 815 148 Not Eq. < 1
bar 10001 135 / 128 7058 × 3078 Weak Eq. 2343 967 Not Eq. < 1

#Gates Number of gates plus fan-outs I / O Number of primary inputs / outputs
Dimension Occupied area in tiles d(pi) Number of clock cycles to stabilize all signals

of the proposed approach. In order to also consider non-
equivalent cases, errors have randomly been injected into the
layouts by changing gate functions from AND to OR, wire to
NOT, and, respectively, vice versa.

Having this set of benchmarks, the proposed approach has
been applied to check them for equivalence. To this end,
we executed the resulting implementation on a Fedora 28
machine with an Intel Xeon E3-1270 v3 CPU with 3.50 GHz
(up to 3.90 GHz boost) and 32 GB of main memory. Table I
summarizes some obtained results.4 The columns Instance
give an overview about the used circuit specifications, i. e.
their names, number of gates, number of primary inputs
and outputs, as well as their dimension as an FCN circuit
implemented by fiction. In the columns Equivalent Cases,
we show the verification results obtained for checking the
original (conventional) logic network against the synthesized
FCN circuits. In the columns Non-equiv. Cases, we show the
obtained results when an FCN circuit is considered into which
we injected errors.

The results clearly demonstrate the applicability of the
proposed approach. In all cases, the expected output is ob-
tained. Even the distinction into strong equivalence (denoted
by Strong Eq.) and weak equivalence (denoted by Weak Eq.)
as well as the minimum amount of clock cycles it takes
for all signals to stabilize (i. e. the highest d(pi) value) are
correctly determined.5 In case of the FCN circuits into which
we injected errors, all errors have correctly been identified
by the proposed approach as well (denoted by Not Eq.). By
this, we showed that we were able to verify FCN circuits
automatically for the first time.

VI. CONCLUSIONS

This work provides researchers and engineers in the do-
main of Field-coupled Nanocomputing (FCN) with a first
solution for the verification of FCN circuits. This becomes
important due to the substantial improvements in FCN de-
sign which increasingly yield FCN circuits that cannot be
checked manually anymore. Since conventional verification
approaches are not directly applicable for FCN circuits, we
proposed an alternative approach that addresses the problems.
A prototype implementation demonstrated the applicability
of the proposed solution which has been made reproducible
by integrating it in the fiction framework [34] available at
https://github.com/marcelwa/fiction.
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