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Abstract—High-level descriptions of quantum algorithms do
not take the restrictions of physical hardware into account.
Therefore actually executing an algorithm in the form of a
quantum circuit on a quantum computer requires compiling it for
the desired target architecture first. The compilation of quantum
circuits depends on efficient methods to be feasible for all but
the trivial instances. To this end, different compiling methods
have been introduced in the past, but room for improvement still
exists. Moreover, just an efficient compilation process itself is not
sufficient—the resulting circuits must be correct as well. In this
summary paper, we review how existing compilation approaches
can be optimized by utilizing heuristic search algorithms or exact
reasoning engines. Furthermore, we review how the correctness
of the obtained results can be verified afterwards by clever data
structures such as decision diagrams. This illustrates core steps
of a compilation flow which can generate minimal or close-to-
minimal results for many instances and, additionally, guarantees
correctness throughout the process.

I. INTRODUCTION

Quantum computing offers a new model of computation
that promises to significantly outperform classical computing
at specific tasks. These tasks include integer factorization
(Shor’s algorithm [1]), database search (Grover’s search [2]),
quantum chemistry [3], Boson sampling [4], and many more.
An increasing number of big players such as Google, IBM,
and Microsoft as well as start-ups like Rigetti and IonQ are
currently investing in the field in order to bring quantum
computing closer to reality.

Despite the plethora of promising applications, the capabil-
ity of physical quantum computers is not quite there yet—
the phase we are currently in is often referred to as Noisy
Intermediate-Scale Quantum Computing (NISQ [5]). At the
moment, only up to around 50 qubits are available, which
additionally suffer from comparatively high error rates and
short decoherence times. Due to the small number of qubits,
quantum error correction methods are not yet feasible.

The shortcomings of the hardware can be mitigated to some
extent by carefully selecting algorithms and utilizing an ap-
propriate design flow. Since quantum algorithms are typically
formulated on an abstraction level agnostic of the restrictions
imposed by physical hardware, one or more compilation steps
are required in order to execute them on the actual hardware.
This includes decomposing the algorithmic description into
gates from the supported quantum operation library (such as
Clifford+T) and adhering to possible connectivity constraints
imposed by the architecture.

To this end, dedicated compilation flows are required. They
have to satisfy two major properties: On the one hand, they
have to be efficient, i.e., they should be able to decompose
a given algorithm and to address the connectivity constraints
using as few elementary operations as possible. On the other
hand, they have to be correct, i.e., it should be possible to
check whether the resulting quantum circuit indeed realizes
the initially given quantum functionality.

In this work, we review existing compilation methods
and how they can be optimized using heuristic as well as
exact methods. We particularly focus thereby on the so-called
mapping problem which addresses the connectivity constraints
mentioned above. Afterwards, we review methods that can
be used to verify whether the obtained results are correct,
i.e., whether they indeed realize the desired functionality. To
this end, we focus on methods based on decision diagrams,
which are particularly suited for this task. All methods will be
illustrated by means of examples. Furthermore, references for
further reading and a more in-depth treatment will be provided.

The remainder of this paper is structured as follows: Sec-
tion II provides a brief overview of quantum computing
and architectural constraints of physical devices. Section III
discusses the problem of mapping and reviews efficient solu-
tions for that. Afterwards, Section IV covers verification for
quantum computing, especially the problem of equivalence
checking, which can be used to check whether the results de-
termined from the compilation are correct. Finally, Section V
concludes the paper.

II. BACKGROUND

This section provides the background in quantum compu-
tations and architectural constraints of quantum computers
which are necessary to keep this work self-contained.

A. Quantum Computation

Computations in the quantum realm utilize
quantum bits (qubits) [6], which can assume more states than
just 0 and 1 known from conventional logic. In fact, while
the basis states (denoted by |0〉 and |1〉 in Dirac-notation)
are the same, a qubit |ψ〉 can be in any linear combination
|ψ〉 = α · |0〉+ β · |1〉 described through amplitudes α, β ∈ C
with |α|2+ |β|2 = 1. If both amplitudes α and β are non-zero,
the qubits state is also referred to as being in superposition.
A second exploitable quantum effect is called entanglement,
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Fig. 1: Quantum operations and circuit

where operations on one qubit influence the state of another
qubit. On a quantum computer, the values of α and β cannot
be directly observed. Instead, a measurement of a qubit
collapses the state of the qubit back to one of the basis
states |0〉 (with probability |α|2) or |1〉 (with probability |β|2).

In general a quantum system consists of an ensemble of
n qubits—spanning a 2n-dimensional complex state space,
i.e., |ψ〉 =

∑
x∈{0,1}n αx |x〉 with αx ∈ C such that∑

x∈{0,1}n |αx|2 = 1, which is commonly represented as
the 2n-dimensional complex state vector [αx]x∈{0,1}n . The
current state of a quantum system |ψ〉 can be manipulated
using quantum operations, which are defined through unitary
2n × 2n matrices1. With the exception of measurements,
quantum operations are therefore inherently reversible.

Example 1. Two common quantum operations with their
matrix representations are shown in Fig. 1a. The Hadamard
transformation H sets a qubit into superposition, e.g., it
transforms |0〉 to 1√

2
(|0〉+ |1〉). The controlled-NOT CNOT

operates on two qubits and negates the target qubit, iff the
chosen control qubit is in the state |1〉.

A quantum algorithm is commonly described as a sequence
of quantum operations applied to the qubits of a quantum
system. Quantum circuit diagrams allow to visualize any such
sequence. Here, the qubits are represented by horizontal lines,
while quantum operations are placed on the qubits and are
applied from left to right. In this context quantum operations
are also referred to as quantum gates.

Example 2. Fig. 1b illustrates a quantum circuit consisting
of a single Hadamard gate and four CNOTs. In case of the
CNOTs, the black dot denotes the control qubit, while the
⊕-symbol denotes the target qubit. The gates are labeled
g0, . . . , g4 and are applied to the qubits q0, . . . , q3.

B. Quantum Computer Architectures

The high-level descriptions of quantum algorithms com-
monly do not satisfy the restrictions imposed by actual
physical devices. Hence, the quantum circuit representing the
algorithm has to be compiled to a version executable on
the hardware. The remainder of this section focuses on the
IBM QX architectures [7] as a representative example.

1A matrix U is unitary if UU† = U†U = I, i.e., its inverse U−1 is given
by the conjugate transpose U† [6].
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Fig. 2: Coupling map of IBM QX4

All quantum computers available today only offer a re-
stricted set of quantum gates that can be applied to the
devices’ qubits. This does not mean these quantum computers
are not universal—in fact, rather “small” sets of libraries such
as Clifford+T are sufficient to approximate any quantum state
arbitrarily close [6].

Example 3. Quantum computers made by IBM share the
same set of supported quantum operations. They provide
the single-qubit U gate, which allows for arbitrary single-
qubit operations. Additionally, IBM architectures support the
two-qubit CNOT gate. As these operations form a superset of
the Clifford+T gate set, universal quantum computations may
theoretically be performed on IBM’s hardware.

In addition to restricting the natively available gates, quan-
tum computers may also impose certain (hardware-dependent)
connectivity constraints. These typically limit the possible
interactions between qubits in the form of a oupling map.

Example 4. Consider the IBM QX4 architecture with five
qubits, whose coupling map is shown in Fig. 2. There, the
nodes Qi indicate the physical qubits and an arrow from Qc

to Qt indicates that a CNOT with control Qc and target Qt

may be applied. In order to distinguish an algorithm’s logical
and the hardware’s physical qubits, logical qubits are denoted
with lower-case letters qi by convention.

Such connectivity constraints only apply to certain types
of quantum computers, e.g., those based on superconducting
qubits [8]—as opposed to hardware based on trapped ions [9].

III. COMPILATION

Compilation of quantum circuits necessitates a multitude of
different tasks in order to conduct a given quantum compu-
tation on a specific physical device. As already mentioned in
the previous section, algorithmic building blocks have to be
decomposed into elementary gates provided by the underlying
architecture. Then, the resulting circuit’s logical qubits have
to be mapped to the device’s physical qubits in a way that all
coupling constraints imposed by the architecture are satisfied.
Furthermore, several pre- and post-mapping optimizations may
be applied in order to reduce gate count and/or increase com-
putation fidelity. In the following, we consider the mapping
problem as one of the most important parts of the compilation
problem.
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Fig. 3: Solutions G′ for the compilation problem
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A. The Mapping Problem

For the mapping problem, we assume that all building
blocks of the quantum algorithm are already decomposed
into the specific gate set provided by the target architecture
(for this purpose, several methods have been proposed in
the literature, see, e.g. [10]–[13]). Then, in order to satisfy
all connectivity constraints imposed by the device’s coupling
map (see Section II-B), the algorithms logical qubits have to
be accordingly assigned to the architecture’s physical qubits.
Since there are typically no constraints on the application
of single qubit gates, these need not be considered during
the mapping process. In general, such a mapping cannot
be determined in a static fashion, i.e., by fixing an initial
assignment, but the mapping has to change dynamically in
all but the trivial cases. Typically, this is realized by inserting
SWAP operations2, which allow to exchange the logical qubits
the operation acts on (see Fig. 4).

However, tackling this problem in a naive fashion, i.e., by
considering gate after gate and resolving arising issues through
appropriate SWAP insertions, does not yield a feasible proce-
dure and frequently incurs large overheads.

Example 5. Consider again the circuit from Fig. 1b and
assume that the target architecture is IBM QX4 with the
coupling map given in Fig. 2. Choosing the initial mapping
qi � Qi yields a situation where none of g1, . . . , g4 satisfy the
coupling constraints. Adding SWAP gates in a naive fashion
(i.e., by adding SWAP gates to “move” the qubits so that
they eventually satisfy the constraints) may lead to a result as
shown in Fig. 3a—and, hence, a circuit G′ with substantially
more gates.

B. Proposed Solutions

Determining a solution which satisfies the constraints and,
at the same time, keeps the cost at a minimum has been proven
an NP-complete problem [14], [15]. Accordingly, efficient
approaches are key to tackle this problem. In the following
paragraphs, we will briefly review two different solutions to

2In case a CNOT with control Qi and target Qj is to be applied, but there
is only an edge from Qj to Qi in the coupling map, instead of applying a
SWAP operation the CNOT can be surrounded with four Hadamard operations,
effectively switching control and target

the mapping problem, namely a heuristic one based on the
A∗ search algorithm (introduced in [16]) and a minimal one
utilizing reasoning engines (introduced in [17])3.

The A∗ algorithm [23] is a state-space search algorithm.
To this end, (sub-)solutions of the considered problem are
represented by state nodes. Nodes that represent a complete
solution are called goal nodes (multiple goal nodes may exist).
The main idea is to determine the cheapest path (i.e., the
path with the lowest cost) from the root node (representing
an empty solution) to a goal node (representing a complete
solution). Since the search space is typically exponential,
sophisticated mechanisms are employed in order to consider
as few paths as possible. This A∗-algorithm was one of the
first heuristic methods that has been utilized to address the
mapping problem [16].

Example 6. Fig. 3b illustrates the mapped circuit G′ resulting
from the A∗-approach. As can be seen, this circuit requires
fewer SWAP and H operations and, even it is not optimal in
the number of gates, this result is commonly attained after a
short runtime.

A minimal mapped circuit can be obtained by finding the
cheapest of all possible mappings – again, an NP-complete
problem [14], [15]. To this end, the mapping task can be
formulated as a problem of Boolean satisfiability (SAT) for
which efficient reasoning engines tackling this complexity
exists (e.g., [24], [25]). The relationship between logical and
physical qubits is encoded in Boolean variables which are
then constrained in order to only allow valid assignments con-
forming with the targeted architecture and ruling out invalid
solutions (details on that are provided in [17]). Passing these
variables and constraints to a reasoning engine in combination
with a cost metric (e.g., number of additionally inserted
gates) allows to determine an optimal solution to the mapping
problem.

Example 7. Fig. 3c provides the mapped circuit G′ deter-
mined by the reasoning engine as a result of the SAT encoding.
Notably it does not require a single SWAP operation, the
only change necessary was the addition of four Hadamard
operations to account for the direction in the coupling map.

Both approaches are extremely flexible when it comes to
adjusting to different architectures or cost metrics, as was
already shown in [26], [27] for the heuristic A∗ algorithm,
allowing for a broad applicability of these mapping techniques.

3Several solutions exist that address the similar problem of nearest neighbor
optimization [18]–[22].



IV. VERIFICATION

The design task verification comprises multiple levels from
the specification of an algorithm down to the actual execution
on physical hardware. In this section, we consider equivalence
checking as a representative part of verification. The problem
of equivalence checking addresses the question whether two
given circuits G and G′ do realize the same function—an
important question during/after the compilation process. While
the problem has been intensively studied in the past [28], [29],
huge improvements may be achieved by utilizing efficient data
structures and exploiting some properties unique to quantum
computing.

A. Decision Diagrams

Decision diagrams have been successfully utilized to drasti-
cally reduce the required memory to represent state vectors in
quantum computing [30]–[33]. Strong simulation approaches
based on decision diagrams have recently moved into the
spotlight since they can significantly outperform array-based
simulators in cases where redundancies can be exploited—in
extreme cases leading to an improvement in runtime by from
30 days to 2 minutes [34], [35].

The main idea of decision diagrams is to identify redun-
dancies in the state vector and provide compaction by sharing
structures. The vector is split in half into two sub-vectors. This
process is repeated until the sub-vectors contain only single
elements, i.e., one split for every qubit. If identical sub-vectors
occur in the process, this redundancy is exploited by re-using
(sharing) the same structure in the resulting decision diagram.

More precisely, consider a quantum system with qubits
qn−1, qn−2, . . . , q0, whereby qn−1 represents the most signif-
icant qubit. Then, the first 2n−1 entries of the corresponding
state vector represent the amplitudes for the basis states with
qn−1 set to |0〉; the other entries represent the amplitudes for
states with qn−1 set to |1〉. This decomposition is represented
in a decision diagram structure by a node labeled qn−1 and two
successors leading to nodes representing the two sub-vectors.
By convention, the left (right) edge indicates the 0-successor
(1-successor). The sub-vectors are recursively decomposed
further until vectors of size 1 (i.e., complex numbers) result.
During this decomposition, equivalent sub-vectors can be
represented by the same nodes—reducing the complexity of
the representation. Then, instead of having a terminal node
for every distinct value in the state vector, common factors of
the amplitudes are stored in the edge weights. The value can
be reconstructed by multiplying the edge weights along the
desired path in the decision diagram.

B. DD-based Equivalence Checking

Decision diagrams are ideal for equivalence checking, since
the resulting representations are canonic (as proven in [36]),
i.e., simply creating decision diagrams for two circuits G and
G′ and comparing them afterwards solves the problem (as
done in [37], [38]). Besides that, further improvements can be
achieved.
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q0 q0 q0 q0
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Fig. 5: DD for circuits G and G′ from Fig. 1b and Fig. 3

For example, in case two circuits G and G′ are indeed
equivalent, it certainly holds that G·G′−1 = I, i.e., multiplying
G with the inverse of G′ results in the identity I4.

The full potential of this idea is utilized by exploiting
the associativity of the matrix multiplications involved in
computing G · G′−1, i.e., starting from a decision diagram
representing the identity I, gates from G and G′−1 are applied
successively either from the left (G) or from the right (G′−1):

G ·G′−1 = (g0 . . . gm−1) · (g′−1m′−1 . . . g
′−1
0 )

≡ (Um−1 · · ·U0) · (U ′−10 · · ·U ′−1m′−1)

≡ (Um−1 · · ·U0)→ I← (U ′−10 · · ·U ′−1m′−1)

= G→ I← G′−1.

However, determining when to apply gates from G and when
to apply gates from G′−1 is not always obvious. But whenever
a “good” strategy for a selection of gates can be employed,
equivalence checking of two equivalent quantum circuits can
be conducted very efficiently and compactly using decision
diagrams.

Example 8. Consider the two circuits G and G′ from Fig. 1b
and Fig. 3c. Conducting the multiplications in an alternating
fashion frequently results in a situation where the application
of a gate from G is immediately reverted by the application of
gates from G′−1, thus effectively keeping the involved decision
diagram close to the identity. By this, instead of 13 nodes (as
shown in Fig. 5), no more than 7 nodes are required during
the equivalence check.

V. CONCLUSIONS

In this work, we discussed methods towards an efficient and
correct compilation flow for quantum circuits. To this end, we
showed how to conduct efficient mapping utilizing reasoning
engines such as satisfiability solvers to attain minimal solution
as well as an A∗-based heuristic for close-to-minimal solu-
tions. However, efficiency by itself is not sufficient, correctness
is required, too. In this regard, we showed how the use of
clever data structures such as decision diagrams can reduce
the runtime significantly in many cases.
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