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Abstract—Circuits based on complementary metal-oxide-
semiconductors (CMOS) enabled the digital revolution and still
provide the basis for almost all computational devices to this date.
Nevertheless, the class of Field-coupled Nanocomputing (FCN)
technologies is a promising candidate to outperform CMOS
circuitry in various metrics. Not only does FCN process binary
information inherently, but it also allows for absolute low-
power in-memory computing with an energy dissipation that is
magnitudes below that of CMOS. However, physical design for
FCN technologies is still in its infancy. In this Student Research
Forum Proposal, exact and heuristic techniques tackling design
automation for FCN are presented.

I. MOTIVATION & BACKGROUND

Worldwide energy consumption allotted to information and
telecommunication systems is growing. Some scenarios pre-
dict that the sector could reach as much as 51 % of global
electricity usage by 2030 and thereby contribute up to 23 %
of the globally released greenhouse gases [13].

Consequently, there is an increasing interest in alternative
technologies that enable fast computations with considerably
lower energy dissipation compared to state-of-the-art CMOS
transistors. Field-coupled Nanocomputing (FCN) [14] is a
class of emerging technologies and is constantly gaining
more attention. In contrast to conventional technologies, FCN
conducts computations without any electric current flow –
allowing operations with a remarkable low energy dissipation
that is several magnitudes below current CMOS technolo-
gies [15], [16]. This promising outlook motivated explorations
into its feasibility which led to several suitable contributions
to the physical implementation of FCN technologies, many of
them very recently (i. e. in the last 3–4 years) [17], [18], [19].

Generally, instead of transistors, FCN circuits use elements
that are usually called cells that interact via mutual repulsion of
local fields. In Quantum-dot Cellular Automata (QCA) [20],
one possible implementation of the FCN concept, a cell is
composed of four or six quantum dots which are each able
to confine an electric charge [21], [22]. Adding two free
and mobile electrons into each cell, that can tunnel between
adjacent dots, yields two possible stable states due to mutual
repulsion via Coulomb interaction. The resulting binary states
are depicted in Fig. 1a where the circles indicate quantum dots
and the black bullets indicate electrons. Fig. 1b shows how to
arrange multiple cells in a row to build a wire segment. It
transmits binary information from left to right or vice versa
as the same field interactions happen across the cell boundaries
and thereby affect the polarization of adjacent cells. This

(a) Binary 0 and binary 1 state

(b) Wire segment (c) Majority gate

Fig. 1: Elementary QCA cell devices

formation is extended in Fig. 1c to construct a Majority gate
where three input cells (e. g. top, left, and bottom) compete
for the polarization of the center cell that eventually transmits
its value to the output cell (e. g. the right one). By setting one
input to a constant value, AND and OR gates can easily be
constructed from Majority gates, too.

Several gate libraries have been proposed for various FCN
technologies. Due to the brevity of this paper, the QCA ONE
library [23] for the QCA technology will be used as a running
example for visualizations. In this library, elementary gates are
arranged in a tile of size 5×5 QCA cells. Implementations of
an AND gate, an inverter, a wire segment and a fan-out are
shown in Fig. 2. We kindly refer the inclined reader to the
original paper for further information.

Unfortunately, the physical design task in FCN does not
simply boil down to a classical placement of operations
and routing of wires because much tighter domain-specific
constraints apply. One of them is clocking that, in FCN, is
a critical component of combinational and sequential circuits
alike because it directs the data flow and, at the same time,
controls information synchronization, too, ultimately leading
to restrictions like the enforcement of signal path balancing
throughout the entire design. Among other obstacles, these
clocking constraints are a limiting factor of design automation
for FCN circuitry – as they prevent the applicability of
conventional VLSI approaches –, despite significant efforts in
the development of corresponding methods, e. g. [24], [25].

In this student research forum proposal, novel and appli-
cable methods for the physical design of FCN circuits are
presented.
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Fig. 2: Tiles in QCA ONE implementation

II. CONTRIBUTION

This section briefly presents the findings and results of
the published papers associated with the thesis. Due to space
limitations, the reader is referred to the respective papers for
further information.

A. Theoretical Consideration

So far, algorithms to tackle the physical design problem for
FCN have been developed without a clear understanding of the
problem’s complexity. Furthermore, no findings about related
problems that could have been beneficial could be utilized in
that process.

While conventional logic design methods are applicable
to the FCN domain, the physical design constraints change
tremendously compared to conventional VLSI as mentioned
above. Nevertheless, the inputs and goals are almost identical.
A physical design process always gets a logic description
as some kind of network (AIG, MIG, XAG, etc.) as input
and should eventually output a placed and routed circuit
description that complies to all physical design constraints and
can be physically simulated and sent to production.

In [1], the first theoretically sound definition of the physical
design problem for FCN is given. It enabled to reason about
the problem’s complexity in various configurations and to link
it to other well-studied problems in graph theory. Therefore,
the FCN design task was formulated both as a decision
problem (FCNPR) and an optimization problem (FCNOPR). It
could be proven that both variants are intractable under the
assumption that P 6= NP , i. e. FCNPR is NP-complete and
FCNOPR is NP-hard. This was achieved by a reduction from
the well-known Hamiltonian Path Problem. Further proofs
showed that the intractability does not only hold for the most
general cases of both problems in question but still applies
when restricting the search space by e. g. using predefined
clocking schemes. This way, several problem configurations
inspired by actual design choices could be proven to be
intractable. Thereby, it was shown that state-of-the-art FCN
design methods did not suffer from insufficient methodology
when trying to obtain optimal FCN circuits from specifications
but were restricted by complexity reasons.

However, there are also positive results. The formal defini-
tion provides a basis to apply reasoning engines like SMT
solvers to obtain exact solutions (cf. Section II-B). Addi-
tionally, two related problems could be identified, namely
Subgraph Homeomorphism (SHP) [26], [27] and Orthogonal
Graph Drawing (OGD) (cf. [28] for an overview) which have
been extensively studied in the literature. Especially for OGD,
poly-time approximations exist that can be utilized to develop

(a) 2DDWave clocking, primary I/O
pins placed at the layout borders,
and crossings enabled

(b) USE clocking, crossings
disabled, and signal path bal-
ancing disabled

Fig. 3: Two differently layouted variants of c17

scalable algorithms for FCN design and thereby circumvent
intractability by accepting certain trade-offs (cf. Section II-C).

B. Exact Solution

Even though scalability of existing solutions for FCN phys-
ical design was rather limited already, no optimality with
respect to some cost metric could be guaranteed. Therefore,
the absolute quality of these solutions remained unclear.

In [2], the problem formulations introduced in [1] were
picked up and modeled in first-order logic. Using an SMT
solver [29], it became possible to generate optimal FCN
circuits in terms of area while meeting all design constraints
by a sequence of incremental solver calls. Various options
and toggles allow for the use of, e. g., arbitrary predefined
clocking schemes, crossings, primary input/output locations,
unbalanced paths (cf. Section II-C), synchronization elements
(cf. Section II-C), and wire-length restrictions. Additionally,
optimization targets can be set to minimize, e. g., the number
of wire segments or crossings used. Symmetry breaking and
sophisticated encoding mechanisms are applied to reduce
solving time as much as possible. For the first time, true design
exploration of FCN circuits becomes possible and thereby
provides a baseline to evaluate future heuristic solutions.

Fig. 3 shows two FCN circuit layouts implemented in
the QCA ONE library. They have been generated from the
same logic network benchmark c17 taken from [30] using
the discussed SMT-based exact physical design approach. For
the layout in Fig. 3a, the 2DDWave clocking scheme [31]
was enforced, primary inputs (blue) and outputs (orange)
were to be realized by designated pins and placed at the
layout’s borders, wire crossings were enabled, and signal path
balancing was enforced. For the layout in Fig. 3b, however,
the USE clocking scheme [32] was applied, primary inputs
and outputs were not constrained, crossings were disabled,
and signal path balancing was disabled, too.

The resulting layouts differ in various design metrics. The
layout in Fig. 3a uses an area of 5 × 7 tiles, needed 18



TABLE I: Evaluating the exact solution

Benchmark Previous s-o-t-a [33] Proposed solution [2]
Name #Gates I / O Dimension CP t in s Dimension CP t in s

2:1 MUX 5 3 / 1 4 × 5 5 9 3 × 3 5 < 1
XOR 6 2 / 1 4 × 7 7 11 3 × 3 5 < 1
XNOR 8 2 / 1 6 × 6 8 13 3 × 5 9 < 1
Half adder 10 2 / 2 7 × 6 8 55 5 × 5 13 10
c17 11 5 / 2 10 × 6 13 15 3 × 5 9 < 1
ParGen 14 3 / 1 9 × 10 14 27 3 × 8 16 6
4:1 MUX 16 6 / 1 11 × 8 19 9612 5 × 7 15 55
ParCheck 21 4 / 1 10 × 14 14 3014 6 × 7 15 224

#Gates Gate count plus fan-outs CP Critical path in tiles
Dimension Occupied area in tiles t in s Runtime in seconds

wire segments (plus 7 additional tiles for the primary I/O
pins) and 3 wire crossings, has a critical path of 11 tiles and
highest throughput of 1⁄1 which means that new signals can
be applied to the primary inputs in every clock cycle. The
layout in Fig. 3b uses an area of only 4 × 5 tiles, needed 7
wire segments (and no additional ones for primary I/O pins)
and no crossings, but has a critical path of 13 tiles and lower
throughput of 1⁄3 which means that all input signals need to be
applied for 3 consecutive clock cycles until the output signals
stabilize due to the violated path balancing.

Table I provides a brief overview about further obtained
results compared to a former state-of-the-art solution [33]. The
columns Benchmark list the names of the used benchmark
circuits, the number of gates (including fan-out nodes) and the
number of primary inputs and outputs respectively. The further
columns Previous s-o-t-a and Proposed solution both list the
dimension, i. e. the area in tiles, of the resulting FCN circuits,
the critical path, and the needed runtime in seconds to obtain
the results respectively. To ensure comparability between the
two approaches, the same settings have been chosen, i. e., the
USE clocking scheme, enabled wire crossings, no constrained
primary I/O pins, and enforced signal synchronization.

As the design objective in both cases was area, the critical
path value can differ. As it can be clearly seen, the proposed
SMT-based exact solution does not only obtain smaller FCN
circuit descriptions in every case but does so in significantly
less runtime than a previous state-of-the-art [33].

C. Heuristic Solutions

Besides the intractability proofs, in [1], several similar prob-
lems to FCNPR and FCNOPR have been identified of which
Orthogonal Graph Drawing (OGD) has known linear-time
approximations. These findings are utilized in [3] to scalably
generate FCN circuit descriptions from logic networks with a
2000+ times improvement in the processable gate count and
a runtime that is magnitudes faster compared to the state-of-
the-art.

OGD is a problem from the domain of graph drawing,
which often asks for a visually pleasing representation of given
graphs. As this is often needed for UML and other diagrams,
graph drawing looks for a mapping of each node and each edge
in the graph to some positions on a topology (e. g. a plane)
so that a human viewer is assisted best in understanding the
diagram. Typically, the number of crossings and bends of the
lines are to be reduced as far as possible. In OGD specifically,
each node has to get some non-overlapping integer coordinates

assigned and every edge is to be drawn as non-overlapping
segments of vertical and horizontal lines only. Hence, OGD

can only obtain valid drawings of graphs of degree 4 or less,
that is graphs where each node has at most degree 4 (in-degree
+ out-degree), which are called 4-graphs.

OGD has powerful approximations when being restricted
to 3-graphs, which are analogously defined [34]. If it was
possible to input a logic network as the graph to be drawn
to that algorithm, the FCN physical design problem would
be partially solved. However, the algorithm presented in [34]
works on undirected graphs and obviously does not respect
the clocking mechanisms of FCN circuits. In [3], this could
be solved by proposing an extension of the edge coloring
algorithm from [34] to assign information flow directions in an
FCN layout properly. Additionally, the clocking scheme had
to be restricted to limit the number of possible paths [35]. As
a consequence, the resulting algorithm yields an FCN layout
to a given 3-graph logic network (i. e. one that does not utilize
Majority gates) in linear time, where the resulting layout size
is bounded by a polynomial in the size of the network.

Table II provides evaluation results of larger functions
than in the previous section. The benchmark networks were
obtained from [30], [36]. These could not have been handled
by other FCN physical design algorithms. The columns are
organized in the same way as above: for each benchmark, the
respective name, gate count and primary inputs and outputs are
listed in the columns Benchmark. The resulting FCN layouts
are characterized in the columns Proposed solution, namely
the area in tiles, the critical path, and the runtime are given
respectively. As it can be seen, the runtime is in the range of
several seconds even for logic networks with almost 40 000
gates.

The benefit of this methodology comes at the cost of
additional wires. However, contrary to classical CMOS, in
FCN technologies, wire segments induce the same costs as
logic gates in the layout. Therefore, in [4] a case study is
conducted to evaluate their energy-impact using a physical
model [16]. Calculations on the post-synthesis and the post-
layout level have been performed. These confirmed that the
layout step indeed has the most significant impact on the
energy dissipation, too, as it almost always has to add wire el-
ements to comply to the clocking constraints by e. g. balancing
paths.

Therefore, when creating an FCN circuit layout from a logic
network, the number of inserted wire segments may provide
a realistic cost metric for future design algorithms.

Since wire segments are mainly used for overcoming clock-
ing constraints, a different solution may be to tackle the
clocking mechanisms directly. In [5], a novel method for
clock generation in FCN technologies is proposed that allows
one to overcome synchronization issues in previous FCN
circuits. To this end, additional clock generators with elongated
phases are proposed that are able to stall signals and thereby
imitate the delay of multiple wire segments in a single tile.
Thereby, utilizing these stalling clocks that have been named
synchronization elements (SE), wire overhead and area in
FCN circuit layouts can be reduced at the cost of decreased



TABLE II: Evaluating the approximate OGD solution

Benchmark Proposed solution [3]
Name #Gates I / O Dimension CP t in s

c432 551 36 / 7 426 × 161 584 < 1
c499 963 41 / 32 690 × 306 995 < 1
c1355 1515 41 / 32 1243 × 369 1611 < 1
c1908a 2043 33 / 25 1540 × 536 2077 < 1
c2670a 2455 155 / 64 1756 × 760 2511 < 1
c3540a 3588 50 / 22 2523 × 1111 3639 1
c5315a 5478 177 / 123 3857 × 1751 5577 2
c6288 6928 32 / 32 5714 × 1246 6957 2

ctrl 498 7 / 25 356 × 149 495 < 1
router 658 60 / 3 488 × 231 717 < 1
int2float 699 11 / 7 514 × 196 708 < 1
i2c 3508 133 / 127 2515 × 1123 3632 1
bar 8592 135 / 128 6547 × 2180 8724 6
sin 14314 24 / 25 10549 × 3828 14374 14
voter 39476 1001 / 1 30542 × 9935 40476 10

#Gates Gate count plus fan-outs CP Critical path
Dimension Occupied area in tiles t in s Runtime in seconds

throughput. Physical simulations confirmed the applicability
of the proposed novel clocking mechanism.

Finally, in [6], synchronization elements are exploited to
make conventional VLSI methods applicable to FCN while at
the same time significantly shrinking wire lengths. An exper-
imental implementation was developed that used a simulated
annealing [37] placement combined with a rip-up and reroute
A∗ [38] routing. Since this technique naturally caused several
design rule violations regarding the FCN clocking constraints,
synchronization elements are applied to the circuit layouts in a
post-processing step to fix them. The probabilistic nature of the
applied methods like simulated annealing could not guarantee
to find a valid circuit layout in every single run. However, the
application of conventional methods had the additional benefit
of enabling the design of sequential FCN circuits which could
not be realized by previous FCN-specific approaches.

Table III provides evaluation results in the same fashion
as in the previous sections. The columns entitled Benchmark
list the name of the used logic networks, the gate count
including fan-out nodes, the number of primary input and
outputs, and, additionally this time, the number of flip-flops
respectively. The columns entitled Proposed solution shows
the resulting circuit dimensions in tiles, the number of needed
synchronization elements to fix clocking violations induced by
the conventional design algorithms, and the runtime in seconds
it took to obtain a solution. The combinational benchmark
networks were again taken from [30], [36] and the sequential
ones from [39].

Compared to the OGD solution [3], the obtained FCN circuit
layouts are smaller in terms of area. However, it did take
longer to compute them and the technique is based on the
probabilistic simulated annealing which means that it is not
guaranteed to yield a solution in every run. Additionally, the
number of necessary synchronization elements grows fast with
the network size, leading to an overhead in both the throughput
and the external clock generator.

D. Formal Verification

The approaches presented so far generate FCN circuit lay-
outs from specifications in terms of logic networks. However,

TABLE III: Evaluating the approximate SE solution

Benchmark Proposed solution [6]
Name #Gates I / O #FF Dimension #SE t in s

c432 551 36 / 7 — 96 × 91 867 27
c499 963 41 / 32 — 169 × 167 2909 160
c880 816 60 / 26 — 116 × 116 1861 79
c1355 1515 41 / 32 — 190 × 183 3637 277
c1908 1111 33 / 25 — 169 × 164 2949 161

ctrl 498 7 / 25 — 92 × 92 935 26
router 658 60 / 3 — 103 × 104 928 45
int2float 699 11 / 7 — 109 × 107 1624 56

b04 1526 12 / 8 66 200 × 194 5474 294
b07 1024 2 / 8 49 159 × 163 3033 119
b08 430 10 / 4 21 84 × 83 758 17
b10 489 12 / 6 17 93 × 88 985 22
b13 731 11 / 10 53 112 × 108 1495 54

#Gates Gate count plus fan-outs #FF Flip-flop count
#SE Synchronization elements t in s Runtime in seconds

there is naturally no guarantee, that the algorithm design and
implementation are flawless. As a consequence, a designer
might want to verify the correctness of the resulting layout, i. e.
the preservation of the given logic function. Due to the rather
complex clocking mechanisms in the FCN domain, pipeline-
like behavior occurs in the circuits that can cause unexpected
delay differences. These can ultimately lead to faulty outputs
even if a circuit layout appears to be correct on a pure-
logic level. This behavior renders conventional combinational
equivalence checks non-applicable in the FCN domain.

In [7], a formal verification technique based on SAT and
ILP solvers is introduced that deals with FCN clocking and
thereby circumvents the discussed obstacles. To this end, a
two-phase approach is proposed.

In the first phase, a conventional equivalence check on
a miter structure of the specification logic network and the
obtained FCN circuit layout is performed. In this phase,
clocking and delay information is ignored as the pure-logic
level is evaluated. If the primary outputs of the specification
and the layout differ for any primary input, the two cannot
be equivalent for any clocking. As a consequence, no further
checking is required and it can be returned that the FCN
circuit layout does not conduct the same functionality as its
specification.

If on the other hand, the layout was found to be logically
equal to its specification, the delay information is investigated.
Therefore, every path on the layout is traversed and an ILP
instance is created from the gathered structural information
about their length, clocking, and possible synchronization
elements. Eventually, one free variable for each primary input
and output is introduced where it is enforced that the output
values have to be equal to all path delays plus some unassigned
value for the primary inputs.

Consequently, when passed to an ILP solver, one of three
cases happens: (1) the solver returns UNSAT, i. e. the lay-
out tremendously violates clocking and synchronization con-
straints so that the specified function will never actually be
computed (extracting an UNSAT core can assist in debugging
as it can point towards the location of failure), (2) the solver
returns SAT with all primary input variables equal to 0, i. e.



TABLE IV: Evaluating the formal verification solution

Benchmark Equivalent Cases Non-equiv. Cases
Name #Gates I / O Dimension Equiv. d(pi) t in s Equiv. t in s

2:1 MUX 5 3 / 1 3 × 4 Strong Eq. 0 < 1 Not Eq. < 1
XOR 6 2 / 1 3 × 6 Strong Eq. 0 < 1 Not Eq. < 1
XNOR 8 2 / 1 3 × 6 Strong Eq. 0 < 1 Not Eq. < 1
Half adder 10 2 / 2 4 × 5 Strong Eq. 0 < 1 Not Eq. < 1
ParGen 14 3 / 1 5 × 7 Strong Eq. 0 < 1 Not Eq. < 1
4:1 MUX 16 6 / 1 7 × 8 Strong Eq. 0 < 1 Not Eq. < 1
ParCheck 21 4 / 1 7 × 8 Strong Eq. 0 < 1 Not Eq. < 1

c17 11 5 / 2 8 × 4 Weak Eq. 2 < 1 Not Eq. < 1
c499 963 41 / 32 690 × 306 Weak Eq. 177 14 Not Eq. < 1
c1355 1515 41 / 32 1243 × 369 Weak Eq. 225 22 Not Eq. < 1
c1908 1111 33 / 25 852 × 400 Weak Eq. 133 14 Not Eq. < 1
c3540 2997 50 / 22 2200 × 842 Weak Eq. 577 86 Not Eq. < 1

ctrl 498 7 / 25 356 × 149 Weak Eq. 96 3 Not Eq. < 1
int2float 699 11 / 7 514 × 196 Weak Eq. 182 6 Not Eq. < 1
cavlc 2294 10 / 11 1666 × 638 Weak Eq. 301 50 Not Eq. < 1
adder 3434 256 / 129 2541 × 1149 Weak Eq. 823 104 Not Eq. < 1
i2c 3508 133 / 127 2515 × 1123 Weak Eq. 815 148 Not Eq. < 1
bar 8592 135 / 128 6547 × 2180 Weak Eq. 2343 967 Not Eq. < 1

#Gates Gate count plus fan-outs Dimension Occupied area in tiles
d(pi) Number of clock cycles to stabilize all signals t in s Runtime in seconds

the layout is properly synchronized along every path and new
signals can be applied at the primary inputs in every clock
cycle, and (3) the solver returns SAT with some primary
input variables not equal to 0, i. e. any signal must be applied
to these inputs for a sequence of clock cycles equal to the
variable’s value in case to achieve equivalence (the throughput
drops accordingly). Case (2) is called strong equivalence while
case (3) is called weak equivalence.

Table IV provides evaluation results in the same fashion
as in the previous sections. The exact and approximate OGD

approach were utilized to generate (faulty) FCN circuit layouts
which were then tested for equivalence against their logic
network specification. The columns entitled Benchmark again
list the name, the number of gates plus fan-outs, and primary
inputs and outputs of the used logic networks that are the
same as in the previous sections. This time, additionally, the
dimension in tiles of the resulting layout is listed as part of the
benchmark. The further columns distinguish between Equiv-
alent Cases that contain the unchanged layouts as obtained
by [2], [3] and Non-equivalent Cases that have been modified
by inserting random faults, e. g. by changing gate functions.

E. Holistic Design Framework

All proposed approaches from the previous sections have
been made publicly available in the extensible open-source
framework fiction [8] that was developed for this purpose.
The fiction framework thereby provides a complete flow
for the physical design (i. e. synthesis, placement, routing,
clocking/timing, verification, and debugging) of FCN circuits
on different abstraction levels, e. g., the gate-level which is
independent of any technological implementation and can be
compiled down to cell-level by applying a gate library. Several
algorithms from the literature have been re-implemented here
too, e. g. fan-out substitution and network balancing. FCN
circuit layout descriptions generated by fiction can also be
directly exported to physic simulators [40], [41] and other
design tools [42].

Utilizing the EPFL Logic Synthesis Libraries [43], fiction
provides an ABC-like [44] shell interface for user interaction,
parses established file formats like gate-level Verilog and
AIGER, and provides powerful scripting and benchmarking
features. Due to its extensibility for further FCN technologies,

gate libraries, and physical design algorithms, fiction enables
future research in the domain by providing an open platform.
For this vision, fiction was decorated with the Best Research
Demo Award at ISVLSI 2019.

III. ACCOMPLISHMENTS

Within three years of enrollment in a Ph.D. program, several
accomplishments have been made that are summarized in the
following.

• Nine papers in the FCN domain have been published
in conference proceedings and journals, namely DATE
2018 [2], DSD 2018 [4], NANO 2018 [5], ASP-DAC
2019 [3], JETC 2019 [1], ISVLSI 2019 [6], MICPRO
2020 [9], ISVLSI 2020 [10], DAC 2020 [7]. Two addi-
tional ones are currently under blind review.

• Cooperation with international researchers from Johannes
Kepler University Linz, Austria, Universidade Federal de
Minas Gerais, Brazil, Politecnico di Torino, Italy, and
École polytechnique fédérale de Lausanne, Switzerland,
was established.

• Interdisciplinary work combining the expertise from nan-
otechnology and computer science has been conducted.

• All findings from the papers above have been made
accessible and easily reproducible as the open-source
framework fiction [8].1

• The fiction framework was decorated with the Best Re-
search Demo Award at ISVLSI 2019.

• Alongside the work in the FCN domain, papers in the
fields of Quantum Computing and Reversible Logic have
been published at ASP-DAC [11] and DATE [12] respec-
tively. Another one in the field of Machine Learning is
currently under blind review.

IV. CONCLUSION

Saving power in computational devices might be a critical
step towards a greener, more sustainable future. Field-coupled
Nanocomputing (FCN) enables to conduct binary in-memory
computations with tremendously low energy dissipation and is
a promising post-CMOS candidate concept.

In this Student Research Forum Proposal, design automation
techniques from the domain of physical design for FCN circuit
layouts have been proposed that enable to map conventional
logic descriptions like AIGs to FCN layouts while complying
with the complex technological constraints like clocking and
synchronization.

To this end, the underlying theoretical problem was investi-
gated first and proven to be intractable under the assumption
P 6= NP for various configurations that are inspired by
actual design decisions. Second, exact and heuristic solutions
to tackle the FCN physical design problem were proposed.
The exact technique is based on incremental SMT solver
calls and allows for design space exploration. A scalable
approximate solution based on Orthogonal Graph Drawing
was presented next. The scalability, however, comes at the cost

1The code is available at GitHub: https://github.com/marcelwa/fiction



of additional wire segments. By introducing novel clocking
mechanisms that enabled synchronization elements to stall
signals, the wire overhead could be reduced. Synchronization
elements also made conventional VLSI methods applicable
to FCN as demonstrated by a prototype implementation that
uses a simulated annealing placer combined with an A∗

router. To validate correctness of designed circuits, a formal
verification technique based on SAT and ILP solvers was
proposed that does not only perform combinational but also
delay equivalence checks to incorporate the complex clocking
and synchronization behavior. All presented approaches have
been made publicly available in the open-source framework
fiction that was developed to enable future research in the
FCN domain.

These results were achieved in the course of three years
of enrollment in a Ph.D. program, several works have been
presented at venues like DATE, ASP-DAC, and DAC, and the
resulting fiction tool was decorated with the Best Research
Demo Award at ISVLSI 2019.
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