
Integer Overflow Detection
in Hardware Designs at the Specification Level

Fritjof Bornebusch1, Christoph Lüth1,3, Robert Wille1,2, Rolf Drechsler1,3
1Cyber-Physical Systems, DFKI GmbH, Bremen, Germany

2Integrated Circuit and System Design, Johannes Kepler University Linz, Austria
3Mathematics and Computer Science, University of Bremen, Germany

{fritjof.bornebusch,christoph.lueth}@dfki.de, robert.wille@jku.at, drechsler@uni-bremen.de

Keywords:
Hardware Designs, Integer Overflows, Proof Assistants, Functional HDLs, Hardware Synthesis

Abstract:
In this work, we present a hardware design approach that allows the detection of integer overflows
by describing finite integer types at the specification level. In contrast to the established design
flow that uses infinite integer types at the specification level. This causes a semantic gap between
these infinite types and the finite integer types used at the model level. The proposed design
approach uses dependent types in combination with proof assistants. The combination allows the
arguing about the behavior of finite integer types that is used to detect integer overflows at the
specification level. To achieve this, we utilized the CompCert integer library that describes finite
data types as dependent types.

1 Introduction

Nowadays, circuits are in almost every part
of our live and their complexity continues to in-
crease. With the increasing complexity the num-
ber of potential errors increase as well. For this
reason, the development process of hardware de-
signs should consider the complexity from the be-
ginning.

Hardware designs are described at different
levels to address the complexity of such designs.
First, the design is formally specified, e.g. in
SysML/OCL (Drechsler et al. 2012; OMG 2014;
OMG 2019; Weilkiens 2007), which enables the
specification of properties that argue about the
desired design (Brucker and Wolff 2006; Hilken
et al. 2014). Afterwards the specification is trans-
lated into a SystemC model which is the de facto
standard for high-level synthesis (HLS) (Arnout
2000; Takach 2016). This translation is manual
as OCL constraints cannot be translated into ex-
ecutable SystemC code automatically. For the
final synthesizing step, the model is manually
translated into in a low-level implementation, e.g.
VHDL, as SystemC does not support the synthe-
sis of arbitrary hardware models, because of its

restricted synthesizeable subset (Accellera 2016;
Stoppe et al. 2013).

We consider this approach as the established
hardware design approach in the rest of the paper.
Looking at the established design approach in
terms of its integer type implementation a seman-
tic gap is revealed between the infinite types of
the SysML/OCL specification and the finite types
of the SystemC model. As a result, properties of
the SysML/OCL specification might not hold in
the SystemC model. One result of this seman-
tic gap is an integer overflow that occurs when
an integer operation is executed in the SystemC
model (Cousot et al. 2005; Cuoq et al. 2012; Di-
etz et al. 2015). An overflow leads to unintended
behavior. The missing tool support for detecting
integer overflows automatically results in the de-
tection of integer overflows in the SystemC model
explicitly by the engineer.

To address the basic problem of the seman-
tic gap of the established design approach, we
propose an alternative hardware design approach
that enables the description of finite integer types
at the specification level. This enables the de-
scription of types that are semantic equivalent
to those of the model level. As a result, prop-

erties that argue about such types also hold on
the model level. To achieve this, we utilized the
CompCert integer library (Leroy et al. 2016) to
describe hardware designs by the proof assistant
Coq (Bertot and Castéran 2004; Chlipala 2013).
This specification can subsequently be extracted
into an executable functional model automati-
cally (Bornebusch et al. 2020).

We present our work as follows: First, we ex-
plain the established hardware design approach
in detail by referring to a running example and
discuss the problem between infinite and finite in-
teger types of this approach while Section 3 dis-
cusses the related work. Section 4 proposes our
approach and explains how integer overflows are
detected in this flow and how the extraction from
a specification to a model is implemented. Sec-
tion 5 summarizes and concludes this work.

2 Motivation

In this section, we briefly review the spec-
ification and the modeling of hardware de-
signs in the established approach which uses
SysML/OCL (OMG 2014; OMG 2019) at the
specification level and SystemC (Arnout 2000;
Takach 2016) at the model level. Based on that,
the main problem of this approach is shown that
describes why integer overflows occur during the
translation from the specification to the model
which motivates this work. A running example
is introduced in this section to illustrate the es-
tablished hardware design approach as well as the
proposed approach.

2.1 The Established Approach

Considering the established hardware design
approach, the design is first described as a
SysML/OCL specification. This specification de-
scribes the structure of a hardware design in
SysML while the behavior is described by OCL
constraints. In this work, we consider a traf-
fic light controller (inspired by (Przigoda et al.
2016)) as a running example:

Example 1. Figure 1 shows the SysML class dia-
gram of the traffic light controller. The controller
consists of three different traffic lights: for the
trams, cars and pedestrians, as seen in Figure 1.

This traffic light controller iterates over pre-
defined states which determines whether the indi-
vidual traffic lights are switched on or off. The
transition from one state to the next depends on

trafficLightController
+
+
+
-

delay: Integer
counter: Integer
clockFrequency: Integer
tick(): void

carsTrafficLight
+ value: enum<trafficLight>

pedestriansTrafficLight
+ value: enum<trafficLight>

tramsTrafficLight
+ value: enum<trafficLight>

1 1

1

1

11

Figure 1: SysML class diagram.

1 context t r a f f i c L i g h tC on t r o l l e r : : t i c k ()
2 pre : s e l f . counter ∗ s e l f . de lay <
3 s e l f . counter ∗ s e l f . c lockFrequency
4 post : s e l f . counter = s e l f . counter@pre +1
5
6 context t r a f f i c L i g h tC on t r o l l e r : : t i c k ()
7 pre : s e l f . counter ∗ s e l f . de lay >=
8 s e l f . counter ∗ s e l f . c lockFrequency
9 post : s e l f . counter = 1

10
11 inv : s e l f . counter > 0
12 inv : s e l f . de lay > 0
13 inv : s e l f . de lay < s e l f . c lockFrequency

Listing 1: OCL constraints of the tick function.

a given delay. If the delay is expired, the transi-
tion to the next state is triggered, e.g. from green
to yellow for the cars. To allow the consideration
of traffic situations, such as rush-hour, the delay
can be changed at run-time. After describing the
structure of the controller in SysML, the desired
behavior is described by OCL constraints, as the
ones seen in Listing 1. The tick function repre-
sents the clock and evaluates whether the traffic
light state is triggered or not, depending on the
delay1 . The variable clockFrequency is constant
and describes the frequency of the hardware the
controller runs on.

The conditions in Line 1 of Listing 1 ensures
that the counter variable of the controller is in-
creased by one until the precondition no longer
holds, i.e. the upper bound is reached. In this
case the counter is reset to 1 as seen in Line 9 of
Listing 1.

After the behavior is specified in SysML/OCL,
a SystemC model is implemented as shown in
the next example. The transformation from a
SysML/OCL specification to a SystemC model
is manual. The SysML structure can indeed be
translated to SystemC classes automatically, but
there is no automatic process that translates OCL
constraints into executable SystemC code.

Example 2. Listing 2 shows the implementation
of the tick function, described above, which im-
plements the OCL constraints, seen in Listing 1.

1Note that this work considers integer overflows
in hardware designs. Therefore, the individual state
transitions are not considered, as they do not cause
an integer overflow.

1sc u in t <32> counter , delay , c lockFrequency ;
2
3void t i c k () {
4i f (counter∗delay < counter∗ c lockFrequency)
5counter++;
6else
7counter = 1 ;
8}

Listing 2: SystemC model of the tick function.

Like in the specification of the tick function,
the counter is increased until it reaches its upper
bound, according to the specification, and is reset
to 1 again. If this upper bound is not yet reached
the counter is increased by one.

2.2 Considered Problem

From the constraints in Listing 1, we can derive
properties which hold for the specified system, as
shown in the next example.

Example 3. The safety property (stated as an in-
variant) in Listing 3 can be derived from the spec-
ified behavior of the tick function. This means
that if we implement this function such that the
constraints from Listing 1 hold, then the imple-
mentation will satisfy the safety property.

1c on t e x t t r a f f i c L i g h t C o n t r o l l e r
2i n v : s e l f . counter ∗ s e l f . d e l a y <=
3s e l f . counter ∗ s e l f . c l ockFrequency

Listing 3: Safety property derived from the
SysML/OCL specification.

However, in the SystemC implementation the
safety property does not hold! To examine why,
we consider the proof in more detail. To show
the safety property, we need to show that, for
each constraint of the operation tick in Listing 1,
if the precondition, invariants and safety property
hold in the pre-state and the postconditions holds
in the post-state, then the safety property holds
in the post state.

In the following, we use the notation x′ to de-
note the value of the variable x in the post-state,
and we elide the self prefix. We then have the
following assumption:

counter ∗ delay < counter ∗ clockFrequency
∧ counter ∗ delay ≤ counter ∗ clockFrequency
∧ counter′ = counter + 1

(1)

We now need to show the safety property in
the post state2:

2Note that there is a tacit assumption that the
values of variables do not change unless mentioned
otherwise; here, we assume that clockFrequency′ =
clockFrequency and that delay′ = delay.

counter′ ∗ delay′ ≤ counter′ ∗ clockFrequency′

⇐⇒ (counter + 1) ∗ delay ≤
(counter + 1) ∗ clockFrequency

⇐⇒ counter ∗ delay + delay ≤
counter ∗ clockFrequency + clockFrequency

(2)

For N and Z (the SysML Integer type rep-
resents Z) this follows from the assumption and
invariants (line 13 in Listing 1) because of mono-
tonicity of addition, a ≤ c ∧ b ≤ d =⇒ a + b ≤
c + d, but it does not hold for integers of lim-
ited size precisely because monotonicity does not
hold there (e.g. in the quotient ring N/32). In
other words, multiplication in Z is not semantic
equivalent to the one in N/32.

Example 4. Consider again the OCL constraints
from the SysML/OCL specification seen in List-
ing 1 and the resulting implementation of the
SystemC model, seen in Listing 2. The implemen-
tation assumes that the multiplication operation
applied in the model is defined the same as the
multiplication applied in the specification. This
assumption is reasonable, as they define appar-
ently the same behavior. However, as described
above this is not the case, as the specification
defines infinite integer types while the model de-
fines finite ones. This means the SystemC model
violates the safety property in Listing 3, which
holds for the specification. This bears a direct im-
pact on the change of the transition time between
the traffic lights implemented by the controller in
the SystemC model. For instance, if the value is
changed at run-time in a rush-hour situation, the
resulting behavior of the tick function and by that
of the entire state machine might be unintended
which is a serious problem.

The C++ standard describes two different be-
haviors of integer arithmetic (ISO/IEC 2017).
Unsigned integer arithmetic might cause unin-
tended behavior as seen in Listing 2, but does
technically not overflow. The result is always per-
formed modulo 2n so it is never too big to be in-
terpreted, i.e this type implements a wraparound
behavior. Signed integer arithmetic, on the other
hand, does not perform modulo 2n so the result
can be too big to be interpreted. Such an overflow
causes undefined behavior as it is not specified by
the standard how to proceed in this case, e.g. it
may also wrap around, because of the 2’s com-
plement or trap on some platforms. Therefore,
the signed integer arithmetic operations in C++
are partial and not total as in SysML. The term
integer overflow often refers to both behaviors as
they share the same basic problem (Cousot et al.
2005; Dietz et al. 2015). For this reason, we use

this term in the rest of the paper to address the
problem discussed above.

The problem of the semantic gap between
SysML’s infinite types and SystemC’s finite types
motivates our work. In order to address this prob-
lem a semantic equivalent (finite) integer type is
needed at the specification level as hardware de-
signs rely on these types. Such a type allows
the specification of a function that clearly distin-
guishes an integer overflow from the actual result
of the integer operation by considering the lower
and upper bounds of the finite integer type. In
the next section, we evaluate the related work
which, indeed, does not address the problem of
the established hardware design approach prop-
erly. This leads to the design approach proposed
in this work.

3 Related Work

In this section, we discuss the related work
which shows that SysML/OCL at the specifica-
tion level and SystemC at the model level are not
suitable to detect integer overflows. To detect in-
teger overflows in a SysML/OCL specification the
implementation of semantic equivalent (finite) in-
teger types to those of the SystemC model are
required. However, this is not supported by the
SysML standard (OMG 2019). Of course, con-
stants could be introduced to artificially restrict
the range of an infinite integer type by describing
the lower and upper bounds. These bounds, how-
ever, are independent of the actual type, i.e. the
one used in the SystemC model. The introduc-
tion of these bounds do not address the problem,
discussed above, as if in the development phase
of the model the actual type changes, e.g. from
unsigned32 to unsigned31, such bounds invalidate
the model which again trigger an integer overflow.

To detect integer overflows directly in the
SystemC model, the overflow detection of pro-
grams in C++ has to be considered. The detec-
tion of such overflows in this language is quite
challenging. The basic problem is that the low-
level nature of C++ does not allow the detec-
tion of overflows reliably as bit manipulations are
common in this language (Dietz et al. 2015). Fur-
thermore, C++ has undefined behavior semantics
for signed integer types which allow optimizations
by the compiler (Dietz et al. 2015). C++ com-
piler are able to detect integer overflows if it is
constant-expression evaluation, but there is no
support for the automatic detection in general.

As a result, the automatic and reliable de-
tection of arbitrary integer overflows is not sup-
ported, as it is not possible to distinguish a be-
havior intended by the engineer from unintended.
As there is no support from the compiler, some
static source-code analysis tools, such as

Astrée (Cousot et al. 2005), aims to prove
the absence of run-time errors in C programs,
like integer overflows, through abstract interpreta-
tion (Cousot 2012; Fähndrich and Logozzo 2010).
Abstract interpretation is used to derive a com-
putable abstract semantic interpretation from a
behavior described in a programming language.
This interpretation does not contain the actual
values, but focuses on certain parts of the pro-
gram execution. These parts determine the scope
of the static analysis and what kind of errors are
detected. Abstract interpretation reaches its lim-
its when it comes to the analysis of loops, as they
have an infinite number of paths in the abstract
interpretation tree. As SystemC designs allow
loops, the static analysis of integer overflows by
abstract interpretation is not suitable to detect
them in a hardware design, in general.

Frama-C is another source-code analyzing
tool which relies on C Intermediate Language
(CIL) (Necula et al. 2002) and supports annota-
tions written in ANSI/ISO C Specification Lan-
guage (ACSL) (Cuoq et al. 2012). It allows
the application of different static analysis tech-
niques which includes the deductive verification
of annotated C programs by external automatic
provers, e.g. Z3 (Cuoq et al. 2012). Considering
the detection of integer overflows, Frama-C pro-
vides the Runtime Error Annotation Generation
(RTE) plugin which includes the generation of
annotations by syntactic constant folding in the
form of assertions for integer overflows. The main
purpose of RTE is seed these annotations into
other plugins, e.g. for the generation of weakest-
preconditions, with proof obligations. However,
Astrée and Frama-C cover integer overflows in
C programs while SystemC models are not sup-
ported. For this reason, they are not suitable to
address the problem of the established hardware
design flow properly.

As described above, the detection of integer
overflows using SysML/OCL at the specification
and SystemC at the model level is not suitable.
At the specification level the integer type is in-
finite and at the model level the engineer needs
to detect overflows pro-active and explicitly since
there is little to no tool support. For this reason,
the safety property described in Listing 1 can-
not be implemented properly without the explicit

and pro-active consideration of integer overflows
occurred in the model, by the engineer.

The considered problem, described in Sec-
tion 2.2, in connection with the related work dis-
cussed in this section lead to the following ques-
tion: Can an alternative hardware design ap-
proach be developed that allows the verifiable de-
tection of integer overflows at the specification
level?

4 Proposed Solution

This section reviews alternative methods
which describe finite integer types at the spec-
ification level since this is the main problem of
the established hardware design approach as de-
scribed in Section 2.2. After reviewing these
methods, we propose a hardware design approach
that enables the formal specification as well as the
verifiable detection of integer overflows in hard-
ware designs.

4.1 Proof Assistants

An alternative approach to specify and subse-
quently verify an arbitrary behavior at the spec-
ification level are proof assistants, so-called in-
teractive theorem provers (Bertot and Castéran
2004). Proof assistants formally specify the func-
tional behavior of programs in a higher-order
logic (specification language). This behavior is
defined by total functions which allows the veri-
fication of properties. A property φ is proven if
and only if φ is derivable in the logic of the proof
assistant. As higher-order logic is too expressive
for automated theorem proving, the proof assis-
tant is guided interactively through the proof pro-
cess by the engineer. Apart from the specifica-
tion and verification of functional behavior, some
proof assistants, like Coq, allows the extraction
of this behavior into executable code. This way
of program development is called certified pro-
gramming (Chlipala 2013). It is achieved by em-
bedding a functional language into the specifica-
tion language of the proof assistant. This func-
tional language enables the extraction of a speci-
fication into a functional programming language,
e.g. Haskell or Ocaml, by syntactical substitu-
tion.

4.2 Dependent Types

To describe the limited size bit vectors of hard-
ware designs for the in- and outputs of a circuit

functionally, dependent types are used. Describ-
ing hardware designs using dependent types is not
new and started back in the 90s (Brady et al.
2007; Hanna and Daeche 1992). A dependent type
allows a type definition that relies on an addi-
tional value. For instance, the type An defines
a vector of length n with components of type A.
We say that A depends on n what makes An a de-
pendent type and enables the definition of finite
integer types, e.g. Unsigned32. As proof assis-
tants, like Coq, allow the description of dependent
types by the user, this gives us the opportunity
to describe finite integer types at the specification
level. We utilized CompCert’s integer library to
describe finite signed and unsigned integer types
in Coq (Leroy et al. 2016). This library describes
these types as dependent types which allows the
definition of arbitrary limited size types.

4.3 The Proposed Approach

To address the problem of the semantic gap be-
tween the specification and the model level, as
described in Section 2.2, we propose a hardware
design approach that utilizes the proof assistant
Coq in connection with the usage of dependent
types to detect integer overflows at the specifica-
tion level.

In contrast to a specification described in
SysML/OCL, the approach proposed in this work
describes a hardware design specification in Coq’s
functional specification language.

4.3.1 Detecting Integer Overflows

The unsigned integer multiplication overflow in
the SystemC model, seen in Listing 2 occurs when
implementing the multiplication, because of the
semantic gap between the infinite types of SysML
and finite types of SystemC.

The basic problem behind the semantic gap
is that the arithmetic operations (like multiplica-
tion) behave differently when we move to a finite
type. That is, if the result of a ∗ b is larger than
the maximum size, the value of a ∗ b in N and
N/32, or Z and Z/32, no longer agree. We pro-
pose to make this distinction explicit by making
the multiplication operation partial at the type
level. This is modeled by a datatype option with
two constructors, None and Some(a), where None
stands for undefined.

Listing 4 shows the definition of the explic-
itly partial multiplication function. It will re-
turn None whenever an overflow occurs, and
Some(a*b) if not. Based on the bounds of the

1type a opt ion = None | Some of a
2sa f e mu l t : n ∈ N
3⇒ Unsignedn

4→ Unsignedn

5→ option(Unsignedn)
6sa f e mu l t x y =
7i f y 6= 0 ∧ x > max unsigned (x) / y)
8then None
9else Some(x∗y)

Listing 4: Function definition for unsigned
multiplication overflow detection.

1De f i n i t i o n sa f e mu l t (a b : Unsigned32 . i n t)
2: opt ion Unsigned32 . i n t :=
3i f b =? 0%unsigned32
4then Some (a∗b)
5else i f a <=? (Unsigned32 . max unsigned / b)
6then Some (a∗b)
7else None .
8
9De f i n i t i o n t i c k
10(counter c lockFrequency delay : Unsigned32 . i n t)
11: opt ion Unsigned32 . i n t :=
12match (sa f e mu l t counter delay ,
13sa f e mu l t counter c lockFrequency) with
14| (Some a , Some b) =>
15i f a <? b else Some (counter +1%unsigned32)
16then Some (1%unsigned32)
17| => None
18end .

Listing 5: Function definitions in Coq.

finite integer type, a condition checks whether an
overflow occurs. This is the case if (x ∗ y) >
unsigned max(x), but we cannot check this di-
rectly (because of the overflow); hence, we check
whether x is greater than the result of the max-
imum value of the data type (unsigned max(x))
divided by y. The maximum value depends on
the dedicated unsigned integer type, i.e. 2n − 1,
where n ∈ N, is the number of bits used to repre-
sent the values of the type. To avoid a division-
by-zero error, it is ensured that y is not equal
to 0 (in that case, no overflow can occur). The
safe mult function essentially wraps the multipli-
cation function for Unsigned32 and provides an
overflow-save replacement.

Example 5. As described in Section 4.3, we uti-
lized the CompCert integer library as it provides
the description of unsigned and signed integer
types of arbitrary sizes. In order to detect an inte-
ger overflow, a clear distinction is needed between
the occurrence of the overflow and the result of
the applied operation. Coq describes a specifica-
tion by total functions which we used to define
such a distinction. The safe mult function, seen
in Listing 5, implements the behavior of the func-
tion described in Listing 4.

In order to clearly distinguish an overflow
from the result of the multiplication, the safe mult
function returns a value of Coq’s built-in con-

tainer type option. This container type has the
same semantic behavior as the option type, de-
fined in Listing 4. In contrast to the SysML/OCL
specification, introduced in Section 2, our ap-
proach allows the definition of an overflow save
integer multiplication function at the specification
level. As a result, the multiplication operation
in the tick function is replaced by the safe mult
function.

4.3.2 Proving Overflow Detection

To ensure that the above specification detects the
unsigned multiplication overflow reliable, proper-
ties that describe how this overflow is detected
are required. Considering the semantic gap be-
tween Z and N/32, discussed in Section 2.2, two
properties have to be satisfied to either detect an
overflow or to return the result of the multiplica-
tion. These properties are defined as theorem in
Coq, as shown in Listing 6.

1 Theorem de t e c t ov e r f l ow :
2 f o r a l l a b : Z ,
3 a <= Unsigned32 . max unsigned /\
4 b <= Unsigned32 . max unsigned /\
5 a ∗ b > Unsigned32 . max unsigned <−>
6 sa f e mu l t (Unsigned32 . repr a)
7 (Unsigned32 . repr b) = None .
8
9 Theorem no over f l ow :

10 f o r a l l a b : Z ,
11 a <= Unsigned32 . max unsigned /\
12 b <= Unsigned32 . max unsigned /\
13 a ∗ b <= Unsigned32 . max unsigned <−>
14 sa f e mu l t (Unsigned32 . repr a)
15 (Unsigned32 . repr b) =
16 Some ((Unsigned32 . repr a) ∗
17 (Unsigned32 . repr b)) .

Listing 6: Theorems in Coq to verify the
behavior of the safe mult function.

The detect overflow theorem says: for all a
and b of the type Z which are less than or equal to
the maximal unsigned32 value and the multipli-
cation of both values is greater than this maximal
value if and only if (<->) our defined safe mult
function returns None for the same values that
are converted to equivalent elements of the quo-
tient ring Unsigned32. This property ensures that
only in the case of an overflow None is returned.
The second property that has to be satisfied is
that the result of the multiplication operation has
to be returned if no overflow occurs. The theorem
no overflow specifies this property and says: for
all a and b of the type Z which are less than or
equal to the maximal unsigned32 value and the
multiplication of both values is less than or equal
to this maximal value if and only if (<->) our
defined safe mult function returns Some(). This
property ensures that only in the case where no
overflow occurs the result of the multiplication is
returned.

1Theorem sa f e t y p r op e r t y no ove r f l ow :
2f o r a l l counter de lay clockFrequency a b
3: Unsigned32 . int ,
4de lay < c lockFrequency /\
5Some (a) = sa f e mu l t counter de lay /\
6Some (b) = sa f e mu l t counter c lockFrequency
7<−> a <= b /\
8t i c k counter de lay clockFrequency <> None .
9
10Theorem sa f e t y p r op e r t y ov e r f l ow :
11f o r a l l counter de lay clockFrequency
12: Unsigned32 . int ,
13delay < c lockFrequency /\
14None = sa f e mu l t counter de lay /\
15None = sa f e mu l t counter c lockFrequency <−>
16t i c k counter de lay clockFrequency = None .

Listing 7: Theorem in Coq that represents the
OCL safety property adapted to finite integer

types.

To verify the derived safety property (stated
as an OCL invariant), described in Section 2, this
invariant has to be transformed first, as the pro-
posed specification uses finite types and the inte-
ger overflow has to be considered. The resulting
theorems are shown in Listing 7.

For illustration purposes, we only explain the
theorem safety property no overflow in detail, as
the safety property overflow theorem works ana-
log. The theorem says: for all counter, delay
and clockFrequency, where the delay is smaller
than the clockFrequency and the multiplication
does not overflow (Some(a) and Some(b) are re-
turned) if and only if a is less than or equal to b
and the specified tick function returns a construc-
tor that is not None, i.e. either Some(counter
+1%unsigned32) or Some(1%unsigned32), since
the option type has two constructors, as described
above. As we have seen above, the problem dis-
cussed in Section 2.2 was addressed my providing
a total function that wraps the multiplication op-
eration. This function clearly distinguishes be-
tween the result of the multiplication and the
overflow by a condition, because of Coq’s built-in
option type.

4.3.3 CλaSH Model Extraction

Having the hardware design specified and veri-
fied in Coq, we applied the design flow proposed
in this work (Bornebusch et al. 2020), in order to
extract an executable model. This flow extracts
a CλaSH (Baaij et al. 2010) model from a specifi-
cation automatically, by syntactical substitution.
The extracted model for the safe mult function is
seen in Listing 8.

Analog to the way hardware designs are de-
scribed in Coq, CλaSH describes circuits as re-
cursive functions and data types. The unique

1 sa f e mu l t : : (Unsigned 32) −> (Unsigned 32)
2 −> CLaSH.Prelude .Maybe(Unsigned 32)
3 sa f e mu l t a b =
4 case (CLaSH.Prelude.==) b 0 of {
5 CLaSH.Prelude .True −>
6 CLaSH.Prelude . Just ((CLaSH.Prelude .∗) a b) ;
7 CLaSH.Prelude . False −>
8 case (CLaSH.Prelude.<=) a
9 ((CLaSH.Prelude . div) ((2ˆ32) −1) b) of {

10 CLaSH.Prelude .True −> CLaSH.Prelude . Just
11 ((CLaSH.Prelude .∗) a b) ;
12 CLaSH.Prelude . False −>
13 CLaSH.Prelude .Nothing}}

Listing 8: Extracted CλaSH model.

representation of CλaSH models and the struc-
tured communication between their components,
ensured by the static and strong type system, en-
ables an automatic analysis and the final synthe-
sis into low-level implementations, e.g. VHDL.

4.3.4 Integer Overflow Detection Pattern

In order to generalize the mechanism applied
above to detect the integer multiplication over-
flow, we propose a pattern that allows the detec-
tion of any integer operation overflows. Listing 9
shows the proposed pattern. The angle brackets
notate placeholders for the actual implementation
of the condition that detects the integer overflow
(<overflowDetected>) and the desired operation
that is applied (<operation>).

1 f : a → a → opt ion (a)
2 f x y = i f <over f lowDetected>
3 then None
4 else Some(x <operat ion> y)

Listing 9: Proposed overflow detection
pattern.

This pattern uses the algebraic data type op-
tion, as described in Section 4.3.1. Any function
that calls f has to make a case distinction: if the
result is Some(a), it can proceed with a as be-
fore, but if the result is None, it has to propagate
the indefiniteness (or handle the overflow appro-
priately). This in turn makes the function calling
f partial, and forces the propagation of the oc-
curred overflow through the specification at the
type level which enables the verification of prop-
erties, as described in Section 4.3.2.

5 Conclusion

In this work we propose a hardware design ap-
proach that allows the detection of integer over-
flows at the specification level. The established

design approach uses SysML/OCL at the spec-
ification level which implements infinite integer
types. These types do not share the semantic
behavior of the types that are implemented in a
SystemC model as those are finite which results
in a semantic gap between these two levels. This
semantic gap motivates our approach, and we
address this problem by specifying hardware de-
signs using the proof assistant Coq and utilizing
the CompCert integer library that describes fi-
nite integer types through dependent types. Such
a specification enables the verifiable detection of
integer overflows which is presented in this work.
Furthermore, we proposed a generalizable pattern
to detect overflows which extends our approach to
detect overflows in any integer operation.

Acknowledgments

This work was supported by the German Fed-
eral Ministry of Education and Research (BMBF)
within the project SELFIE under grant no.
01IW16001 as well as the LIT Secure and Cor-
rect System Lab funded by the State of Upper
Austria.

References

Accellera. (2016). Accellera Systems Initiative Inc
SystemC Synthesizable Subset. (Version 1.5.7).

Arnout, G. (2000). Systemc standard. In Asia and
south pacific design automation conference
(asp-dac) (pp. 573–578).

Baaij, C., Kooijman, M., Kuper, J., Boeijink, A., &
Gerards, M. (2010). Cλash: Structural descrip-
tions of synchronous hardware using haskell.
Euromicro conference on digital system design
(dsd), 714–721.

Bertot, Y., & Castéran, P. (2004). Interactive
theorem proving and program development -
coq’art: The calculus of inductive constructions.
Springer.

Bornebusch, F., Lüth, C., Wille, R., & Drechsler, R.
(2020). Towards automatic hardware synthesis
from formal specification to implementation. In
Asia and south pacific design automation con-
ference (asp-dac).

Brady, E., McKinna, J., & Hammond, K. (2007).
Constructing correct circuits: Verification of
functional aspects of hardware specifications
with dependent types. In Trends in functional
programming (tfp) (pp. 159–176).

Brucker, A. D., & Wolff, B. (2006). The HOL-OCL
book (tech. rep. No. 525). ETH Zurich.

Chlipala, A. (2013). Certified programming with de-
pendent types - A pragmatic introduction to the
coq proof assistant. MIT Press.

Cousot, P. (2012). Formal verification by abstract in-
terpretation. In NASA formal methods - inter-
national symposium, NFM (pp. 3–7).

Cousot, P., Cousot, R., Feret, J., Mauborgne, L.,
Miné, A., Monniaux, D., & Rival, X. (2005).
The astreé analyzer. In European symposium
on programming (pp. 21–30).

Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V.,
Signoles, J., & Yakobowski, B. (2012). Frama-C
- A software analysis perspective. In Interna-
tional conference on software engineering and
formal methods (pp. 233–247).

Dietz, W., Li, P., Regehr, J., & Adve, V. S. (2015).
Understanding integer overflow in C/C++.
ACM Trans. Softw. Eng. Methodol., 25 (1).

Drechsler, R., Soeken, M., & Wille, R. (2012). Formal
specification level: Towards verification-driven
design based on natural language processing.
In Forum on specification and design languages
(fdl) (pp. 53–58).

Fähndrich, M., & Logozzo, F. (2010). Static contract
checking with abstract interpretation. In In-
ternational conference on formal verification of
object-oriented software (pp. 10–30).

Hanna, F. K., & Daeche, N. (1992). Dependent types
and formal synthesis.

Hilken, F., Niemann, P., Gogolla, M., & Wille, R.
(2014). Filmstripping and unrolling: A compar-
ison of verification approaches for UML and
OCL behavioral models. In International con-
ference on tests & proofs (tap) (pp. 99–116).

ISO/IEC. (2017). ISO International Standard
ISO/IEC 14882:2017(E) Programming Lan-
guage C++. (Edition 5).

Leroy, X., Blazy, S., Kästner, D., Schommer, B., Pis-
ter, M., & Ferdinand, C. (2016). Compcert – a
formally verified optimizing compiler. In Em-
bedded real time software and systems (erts).

Necula, G. C., McPeak, S., Rahul, S. P., & Weimer,
W. (2002). CIL: intermediate language and
tools for analysis and transformation of C pro-
grams. In European joint conferences on theo-
rey and & practice of software (pp. 213–228).

OMG. (2014). Object Management Group Object
Constraint Language (OCL). (Version 2.4).

OMG. (2019). Open Management Group System
Modeling Language (SysML). (Version 1.6).

Przigoda, N., Wille, R., & Drechsler, R. (2016). An-
alyzing inconsistencies in UML/OCL models.
Journal of Circuits, Systems, and Computers,
25 (3).

Stoppe, J., Wille, R., & Drechsler, R. (2013). Data
extraction from SystemC designs using debug
symbols and the SystemC API. In Ieee com-
puter society annual symposium on vlsi (isvlsi)
(pp. 26–31).

Takach, A. (2016). High-level synthesis: Status,
trends, and future directions. IEEE Design &
Test, 33 (3), 116–124.

Weilkiens, T. (2007). Systems engineering with sysml
/ UML - modeling, analysis, design. Morgan
Kaufmann.

