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Abstract—Due to environmental conditions as well as internal
processes, the lack of long-term stability of electrochemical gas
sensors poses a severe problem with respect to their applications,
e.g. in tracking air quality on a large scale. Thus far, the
development of suitable algorithms to face these problems relies
on long-term datasets obtained from sufficiently good reference
devices. Since such measurements on actual sensor systems are
not always available, especially in the development phase of them,
simulated approaches would be a great benefit for algorithm
development and the further analysis of the sensors. Those
simulators, however, require proper models to capture the general
principles of the functionalized materials in such sensor arrays.
In this work, we propose a stochastic model that can be used
for this purpose, i.e. that allows for simulating the behavior of
graphene-based electrochemical gas sensors in particular. The
proposed approach allows to properly map different material-
related microscopic effects on the sensor surface to a signal
output. Evaluations show that the proposed model is able to
capture the drift dynamics of such sensors in particular when
comparing the results to real measurement data.

Index Terms—stochastic modeling; electrochemical sensors;
gas sensors; e-nose; adsorption processes; sensor simulation

I. INTRODUCTION

Electrochemical gas sensors exploit the adsorption behavior
of gases on metal-oxide or other surfaces for determining the
type or concentration of certain target gases in the air. This is
accomplished by measuring the change of the surface conduc-
tivity or resistance of the surface caused by the corresponding
chemical reactions. Moreover, differently functionalized mate-
rials can be arranged in arrays in order to differentiate between
different gases by assessing their adsorption behavior which
is considered an e-nose in literature [1].
One drawback of the method above, however, is its instabil-
ity in longer time-scales, which constitutes a so-called drift
behavior and leads to a baseline change of the measurements
over time (see Fig. 1). This behavior is caused by various
intrinsic and extrinsic factors affecting the sensor behavior [2]
depending on the sensing material in use, e.g. graphene.
In order to study these effects in different scenarios of
long-term exposure to a set of gases, a suitable model is needed
to cut down for time- and cost-extensive experiments.
So far, there have been different approaches to model electro-
chemical sensors, for instance, by using simulation tools based
on PSpice to get the conductance of a MOX-sensor [3], [4].
Moreover, the behavior of the adsorption-desorption noise in
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Fig. 1. Illustration of baseline drift. The blue curve shows the undrifted signal,
the red curve shows the drifting signal with its changing baseline.

such gas sensors has been studied extensively by Gomri et al.
[5], [6]. A more recent approach was developed by Monroy
et al. [7] with a focus on the recovery of MOX sensors.
These methods mainly rely on analytical descriptions of the
adsorption and desorption behavior, such as the Langmuir
theory of chemisorption, and focus on modeling the behavior
of the sensor at single concentration pulses primarily for
gas classification. In [8], [9], Skafidas et al. introduced a
Monte-Carlo technique in order to model different effects on
thick Tin-Oxide sensors. Their method shows to be insightful
for analyzing certain chemical effects on the surface, but lacks
expandability to long-term simulations of different concentra-
tion and sensor settings in order to address drift modeling.
Inspired by this approach, however, we want to present and
analyze a system-level model for simulating the long-term
sensing and drift behavior of a thin graphene-based gas sensor.

II. STOCHASTIC SENSOR MODEL

The proposed model operates on two different levels: At the
microscopic level, we create a flexible structure to implement
microscale effects that affect our sensor behavior – building the
basis of a bottom-up approach. At the macroscopic model, we
map the microscopic sensor behavior to a relative resistivity.

A. Microscopic Model

The microscopic model treats the chemical reactions on
the sensor surface as a time- and spatially discrete Markov
process with the adsorption and desorption process modeled
by binomial statistics.

Xt = Xt−1 + At − Dt (1)

Xt ∈ {0, 1}N×N×M describes a N-squared plane with M
channels modeling the binding sites on the sensor surface at
time t. The different channels represent the different molecules
that can bind onto the surface and get adsorbed according to
At ∈ {0, 1}N×N×M and desorbed by Dt ∈ {0, 1}N×N×M .



For each time step, these matrices get sampled binomially by
the pixel-wise hit probabilities

pa[gas] = ka · c[gas], (2)

pd = kd · e−
E

k·T , (3)

for adsorption and desorption, respectively. Here, c[gas] de-
scribes the concentration of the particular gas and ka as well
as kd are constants describing the interaction rates. E is a term
for the adsorption energy of a gas molecule on the adsorption
site and T denotes the temperature on the sensor surface.
The output of the microscopic model is the adsorption fraction
fa, which describes the ratio of the adsorbed sensor sites
(irregardless of the molecule type) compared to the total
number of binding sites and is defined by

fa =
1

N2

N∑
i=1

N∑
j=1

M∑
m=1

Xijm. (4)

An advantage of this way of defining an adsorption model
is the rather easy implementation of additional effects that
can be seen in experiments using such types of sensors,
in this case graphene-based sensors. In the outline of this
implementation, three major effects causing baseline drift have
been implemented and studied:
Slow Recovery (SR) describes the effect of different time-
scales of adsorption and desorption on the sensor surface
resulting in an accumulation of yet-to-desorb molecules on
the sensor leading to an overall downwards drift. This effect
is even increased by high-energy state sites occuring espe-
cially on the boundaries of the graphene flakes and epoxide
molecules on the surface due to chemisorption processes [10].
Slow Recovery is implemented by using two different energy
bands for low- and high-energy sites on the simulation grid
and with rates ka,s and kd,s for Equations 2 and 3, where s
denotes the energy state.
A second reason for a downwards drift is the adsorption
of molecules on deeper layers of the sensor material, here
denoted as Secondary Layers Adsorption (SLA), which
occurs due to overlapping graphene flakes on the sensor
electrode. The implication of this phenomenon on the sensor
resistivity is modeled by an additional adsorption layer with
slower adsorption and desorption probabilities leading to a
second adsorption fraction fs defined in analogy to Equation
4.
Ozone Oxidation describes the process of chemisorption
of an O3 molecule adsorbed on the graphene surface by
physisorption on a low-energy binding site. In consequence,
epoxide groups can be formed on the sensor surface [11] onto
which new molecules can adsorb. Furthermore, the oxidation
leads to a resistance shift of the material resulting in an
upwards drift of the sensor response and can even alter the
reaction rates [12]. This effect is simulated by an additional
stochastic process describing the chemisorption process and
its reverse process by the following equations:

pox = kox · e−
Eox
k·T , pde−ox = kde−ox · e−

Ede−ox
k·T . (5)
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Fig. 2. Markov Chain Graphs describing the adsorption and desorption
dynamics of (a) the sensor surface, (b) the chemisorption process (O3

oxidation) and (c) the secondary layers for SLA drift modeling.
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Fig. 3. Simulation Visualization of the Microscopic Model. The left image
shows the adsorption distribution of different gas components on the sensor
surface simulated on the sample grid. The blue and red dots represent NO2

and O3 molecules, respectively. The two plots to the right show the adsorption
fraction of the different adsorbants and their input concentrations.

The different stochastic processes are summarized in Fig. 2.

B. Macroscopic Model

The macroscopic model takes the outputs of the microscopic
model and maps them to a relative resistance describing
the signal output of electrochemical sensors. It can also be
extended with macroscopic environmental conditions such as
temperature and relative humidity. The basic formula is de-
rived from the resitivity relation to the charge carrier densities
ne, nh and their mobilities µe, µh for electrons and holes in
the material, respectively.

ρ−1 = e · (neµe + nhµh). (6)

Oxidizing gases increase the number of holes in the material
in the adsorption process. Therefore, it can be seen as an
additional term to the hole density. By simplifying the equation
and setting the resistivity inverse at clean air exposure to 1,
the relative resistivity is defined by

ρrel =
1

1 + αa · fa + αs · fs
− 1 + αox · fox, (7)

where αa, αs and αox describe scaling factors, wheras fa, fs
and fox describe the adsorption fractions and the oxidation
fraction determined in the microscopic model.
In combination, the two models describe a method to simulate

the sensor signal created by the adsorption processes of several
gases under various environmental conditions. The advantage
of this split into two models is that the first model ensures
the flexibility towards effects on the chemical level whereas
the second model can transfer this information to interpretable
output signals in a rigorous way. Moreover, since the dynamics
on the sensor panel are simulated at each time step, the sensor
behavior can be visualized thoroughly as shown in Fig. 3.
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Fig. 4. Five O3 pulse sensor response with different drift sources: solely SR
(blue), SR + O3 Oxidation (red) and SR + SLA (green). The first row shows
the relative resistivity, the second one the concentration profile and the third
row shows the baseline drift.

III. RESULTS AND DISCUSSION

In this section we summarize the results obtained with the
proposed model. The first part of the discussion focuses on the
analysis of the impact of different drift effects implemented
in the model and their alignment with the expected physical
behavior. In the second part we want to show how well the
model can reproduce an experimentally measured response for
a given concentration profile.

A. Experiments on Different Drift Effects

In order to study the impact of various additional effects
on the sensor surface, a test concentration profile containing
5 gas pulses at 50ppb lasting 1500 seconds each followed
by another 1500 seconds of clean air (no gas concentration)
has been implemented. The simulation setup included regular
temperature pulses which were applied for several seconds
at 300◦C in between the sense phases. Fig. 4 shows the
modeled sensor response as well as the baseline and sensitivity
drift for 3 different drift sources: (i) solely slow recovery (ii)
slow recovery paired with Ozone oxidation (iii) slow recovery
paired with secondary layer adsorption.
It can be seen that the response follows the typical dynamics
of electrochemical sensors when exposed to a concentration
pulse which involves a high decrease of resistivity in the
beginning and a slower decrease at a different slope until
saturation in the second part of adsorption. The desorption
phase shows a typical concave shape. In comparison, the drift
with additional SLA in case (iii) exceeds the slow recovery
drift seen in scenario (i). Moreover, scenario (ii) shows only
a slight downwards drift. This is due to Ozone oxidation
drift moving the baseline upwards which almost cancels out
the downwards drift caused by slow recovery. Overall, the
simulated response follows the drift behavior described by the
physical effects.

B. Comparison to Real Sensor Data

The model was also applied on a concentration profile
measured with an array of 3 state-of-the-art graphene
sensors with different functionalizations in order to study the
similarity in terms of sensor dynamics. The measurements
were taken with regular short heat pulses at an increased
temperature TH followed long sense phases at ambient
temperature and changing NO2 and O3 concentrations.
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Fig. 5. Experimental data compared to simulation data. The first row shows
the O3 (grey) and NO2 (black) concentration profile of the experiment. The
experimental response for three different material functionalizations is shown
in the second row, whereas the third row shows simulated responses with
different energy parameters.

The model parameters were chosen partially by suggestions
in literature [11] and partially fitted heuristically to the
response of another measurement profile in order to test,
if the model can generalize the sensor behavior. As a drift
source, only slow recovery was used for the simulation,
since the heat pulse temperature was well beneath the critical
threshold for oxidation and the time span was comparably
short for secondary adsorption to have a strong effect on
the baseline drift. It can be seen in Fig. 5 that the sensor
in general replicates the dynamics of the real measurements
properly. The sensitivity to NO2 is slightly underestimated
in the simulation which might be improved by determining
the binding energy experimentally. The baseline drift due
to slow sensor recovery also occurs throughout the simulation.

IV. CONCLUSION

The presented stochastic model can be used to properly
simulate the dynamical behavior of a graphene-based gas
sensor signal. Especially for mixtures containing O3, the
responses obtained by the model are in-line with general
responses measured by real sensors. Due to the flexibility
of the bottom-up approach, additional microscopic effects
affecting the baseline drift can be implemented easily, their
responses are seen to be in-line with their physical effects and
their impact can be studied and visualized in a straight-forward
manner. Furthermore, this easy adaptability of the microscopic
model is a big advantage compared to analytical methods
found in literature. By conducting additional experiments on
the material properties of sensors to be modeled, the accuracy
could be increased by choosing the model parameters analyt-
ically and the results could be refined in future investigations.
Further drift effects that shall be researched in depth in future
work are the degradation of the electric contacts [2] and
defects on the graphene surface [13].
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