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Abstract—Quantum computation promises to solve many hard
or infeasible problems substantially faster than classical solutions.
The involvement of big players like Google, IBM, Intel, Rigetti,
or Microsoft furthermore led to a momentum which increases the
demand for automated design methods for quantum computa-
tions. In this context, decision diagrams for quantum computation
provide a major pillar as they allow to efficiently represent
quantum states and quantum operations which, otherwise, have
to be described in terms of exponentially large state vectors
and unitary matrices. However, current decision diagrams for
the quantum domain suffer from a trade-off between accuracy
and compactness, since (1) small errors that are inevitably
introduced by the limited precision of floating-point arithmetic
can harm the compactness (i.e., the size of the decision diagram)
significantly and (2) overcompensating these errors (to increase
compactness) may lead to an information loss and introduces
numerical instabilities.

In this work, we describe and evaluate the effects of this
trade-off which clearly motivates the need for a solution that is
perfectly accurate and compact at the same time. More precisely,
we show that the trade-off indeed weakens current design au-
tomation approaches for quantum computation (possibly leading
to corrupted results or infeasible run-times). To overcome this,
we propose an alternative approach that utilizes an algebraic
representation of the occurring complex and irrational numbers
and outline how this can be incorporated in a decision diagram
which is suited for quantum computation. Evaluations show
that—at the cost of an overhead which is moderate in many
cases—the proposed algebraic solution indeed overcomes the
trade-off between accuracy and compactness that is present in
current numerical solutions.

Index Terms—Quantum Computing, Decision Diagrams, Alge-
braic Number Representation, Clifford+T

I. INTRODUCTION

Quantum computation [1] received significant attention
over the recent years since it constitutes a complementary
computation paradigm that promises substantial speed-ups
for many hard or infeasible problems (in comparison to
the best-known classical algorithms running on conventional
computers). While the computational entities of a conventional
computer can be in either of the two basis states 0 and 1 only,
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the qubits of a quantum computer can assume an (almost)
arbitrary superposition of both basis states. This superposition
serves as basis for the so-called quantum parallelism, which,
in combination with other quantum mechanical effects like
entanglement and phase shifts, allows for substantial speed-
ups in many applications.

But even though the basic idea of quantum computation as
well as corresponding algorithms with remarkable speed-ups
are around for several decades [2], [3], physical realizations
are still in their infancy. However, big players like Google,
IBM, Intel, Rigetti, or Microsoft heavily invest into research
on quantum computers—carrying out a race for the first useful
quantum computer [4]. This led to a new momentum in this
domain with frequent “breakthroughs”, e.g. in increasing the
number of available qubits and their rapidly improving fidelity.
Hence, in order to be prepared for future quantum devices, also
research on automated design methods for quantum computa-
tions is underway (see e.g. [5], [6] for methods targeting the
technology mapping of quantum circuits to actual quantum
computers and [7] for a study on the detection and diagnosis
of faulty quantum gates). These methods of course rely on
representations for the corresponding states and operations.
Since quantum computations are usually described in terms
of exponentially large state vectors and unitary matrices, this
often leads to rather intractable solutions when using straight-
forward representations like, e.g., 1- and 2-dimensional ar-
rays [8]–[10].

Motivated by that, alternative representations are currently
investigated. Inspired by the conventional domain—where de-
sign tasks often utilize compact representations such as Binary
Decision Diagrams (BDDs [11])—decision diagrams are con-
sidered a promising approach for the efficient representation
of quantum computations as well [12]–[15]. In fact, in many
practically relevant cases the considered functionality exhibits
redundancies which allow for more compact, non-exponential
representations when employing decision diagrams. Since
there also exist algorithms to efficiently manipulate these
representations (with polynomial complexity with respect to
the size of the decision diagrams), this allows to conduct
certain design tasks in an efficient fashion. In this regard,
especially the Quantum Multiple-valued Decision Diagram
(QMDD [15]) is a promising representative and is actively
being investigated—leading to a variety of efficient approaches
e.g. for synthesis [16]–[19], verification [20]–[23], and simu-
lation [24], [25].
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However, current decision diagrams for the quantum domain
suffer from a trade-off between accuracy and compactness:1

• On the one hand, small errors are inevitably introduced
by the limited precision of floating-point arithmetic on
conventional computers. In fact, the complex numbers in
the state vectors and transformation matrices often have
irrational imaginary or real parts that can only be approx-
imated. If these possible errors are not taken into account,
redundancies might not be recognized—which can harm
the compactness (i.e. the size of the decision diagram)
significantly. That is, a small amount of inaccuracies has
to be tolerated in order to find redundancies and, thus,
achieve compactness.

• If, on the other hand, too much inaccuracy is tolerated,
this leads to a loss of information and introduces numer-
ical instabilities that—in the worst case—will falsify the
results. While for some applications a moderate error may
be acceptable (e.g., since the underlying quantum algo-
rithm is robust enough), others require a rather accurate
representation.

Consequently, an application-specific trade-off between ac-
curacy and compactness needs to be conducted thus far in
order to obtain efficient and sufficiently accurate methods on
a case-by-case basis (such as for those discussed in [17], [19],
[20], [23], [24]). Even more, a time-consuming fine-tuning
of the corresponding parameters can be necessary in order to
adapt design methods to a certain functionality or algorithm.
However, as confirmed by the first thorough analysis of this
issue that will be conducted in this work, it is not guaranteed
that the desired accuracy or compactness can be achieved at
all which—in the worst case—might cause corrupted results or
infeasible run-times, respectively. These observations clearly
support the need for an alternative solution that allows to over-
come the trade-off present in current solutions and inherently
achieves accuracy and compactness at the same time.

In this work2, we are addressing this need with the following
contributions:
• We propose such an alternative approach in which the

considered quantum functionality is represented alge-
braically rather than numerically. By this, the proposed
decision diagram can fully exploit existing redundancies
for a compact representation and, at the same time, guar-
antees a perfectly accurate result—thereby completely
avoiding the trade-off between accuracy and compact-
ness.

• This solution allows to evaluate and quantify the existing
trade-off between accuracy and compactness in decision
diagrams for quantum computation. More precisely, we
show how the current trade-off between accuracy and
compaction indeed weakens current design automation
approaches for quantum computation (leading to com-
pletely wrong results or infeasible run-times).

• The overhead of the proposed solution compared to
current solutions is moderate in many cases although it

1Note that we are considering QMDDs in the following. However, the
problem discussed here as well as the proposed solutions are also applicable
to other types of decision diagrams for quantum computation like [12], [14].

2A preliminary version of this work is available at [26].

guarantees perfect accuracy (which cannot be reached
by numerical approaches due to machine accuracy) and
compactness at the same time.

The remainder of the paper is structured as follows: the
following Section reviews the basics of quantum computation
as well as corresponding decision diagrams. To this end, a
particular focus is put on Quantum Multiple-valued Decision
Diagrams. Afterwards, the trade-off between accuracy and
compactness that emerges when using decision diagrams in the
quantum domain is discussed in Section III. Section IV then
describes in detail how this issue can be addressed by using an
algebraic number representation and how this representation
can be exploited in decision diagrams in order to achieve
both, perfect accuracy and compactness. In Section V, we
evaluate and quantify the trade-off between accuracy and
compactness that is present in current solutions, as well as
the overhead required to overcome this issue by using the
proposed algebraic representation. Section VI concludes the
paper.

II. BACKGROUND

This section briefly reviews the basics of quantum compu-
tation. Furthermore, we introduce the basic ideas of Quan-
tum Multiple-valued Decision Diagrams (QMDDs), a data-
structure used to efficiently represent quantum functionality
and which the proposed approach is built on. For a more
detailed introduction, we refer to [1] and [15], respectively.

A. Quantum Computation

The computational entities of a quantum system are called
qubits. A qubit has two basis states (usually denoted as |0〉
and |1〉) which can be seen as the analogue of the two possible
states of a conventional bit. However, according to the Dirac-
von Neumann formalization of quantum mechanics, the state
of a qubit can be any linear combination α0|0〉 + α1|1〉
for complex-valued α0, α1 with |α0|2 + |α1|2 = 1, i.e. any
superposition of the basis states. Accordingly, an n-qubit
quantum system can be in one of 2n basis states (|0 . . . 00〉,
|0 . . . 01〉, . . . , |1 . . . 11〉) or a superposition of these states. The
state of such a quantum system is represented by a state vector
of dimension 2n where the i-th component αi is called the
amplitude of basis state |i〉. In general, it is not possible to
completely determine the state of a physical quantum system,
i.e. all amplitudes of the state vector. Instead, measuring the
quantum system will let it collapse to some basis state (with
non-zero amplitude) where the probability of measuring a
particular basis state |i〉 is given by |αi|2.

Example 1. The basis states of a qubit are given as |0〉 =
(
1
0

)
and |1〉 =

(
0
1

)
, while |+〉 = 1√

2
(|0〉 + |1〉) = 1√

2

(
1
1

)
and

|−〉 = 1√
2

(
1
−1
)

denote states of balanced superposition, i.e.
where both basis states are equally likely to being measured.

In order to use quantum systems for computation, the
state of a quantum system can be modified by applying
quantum operations. These are described by a 2n×2n unitary
transformation matrix, i.e. an invertible complex-valued matrix
whose inverse is given by the adjoint matrix.



3

Example 2. In order to set a qubit into balanced superposition
(e.g., |+〉 or |−〉), the Hadamard operation H is employed

whose transformation matrix is given as H = 1√
2

(
1 1
1 −1

)
.

In fact, the transformed quantum state can be computed via
matrix-vector multiplication as follows:

H · |0〉 = H ·
(
1

0

)
=

1√
2
(|0〉+ |1〉) = |+〉.

Further, frequently used quantum operations include the NOT
operation X (flipping the basis states |0〉 and |1〉) as well as
the phase shift operations T (π/4 gate), S = T 2 (Phase gate)
and Z = S2. The corresponding unitary matrices are defined
as

X =

(
0 1
1 0

)
, T =

(
1 0
0 ω

)
, S =

(
1 0
0 i

)
, Z =

(
1 0
0 −1

)
,

where ω = 1+i√
2

= eiπ/4. Besides these operations that are
applied to a single target qubit, there are also controlled op-
erations on multiple qubits. The state of the additional control
qubits determines which operation is performed on the target
qubit. An example is the controlled NOT (CNOT) operation
on two qubits whose transformation matrix is defined by

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

This operation performs a NOT operation on the target qubit
if, and only if, the control is in the |1〉-state. All remaining
qubits are not affected by the operation.

Complex, high-level quantum computations or algorithms
need to be decomposed into a sequence of elementary quantum
operations like the ones in Example 2 (so-called quantum
gates) in order to execute them on a quantum computing
device. The unitary matrix of a gate matrix is constructed
as the Kronecker product of the base transformation matrix
(e.g. H ,T , or CNOT ) together with identity matrices for all
qubits that are neither target nor control for the gate. The
unitary matrix of the entire high-level operation can then be
computed as the matrix product of the individual gate matrices
(in reversed order).

B. Decision Diagrams for Quantum Computation

Straight-forward representations of state vectors and unitary
matrices like 1- or 2-dimensional arrays (e.g. those proposed
in [8]–[10]) quickly become infeasible in the design of quan-
tum logic. In fact, they often lead to exorbitant run-times or
memory explosion already when being applied to quantum
systems consisting of roughly 15-20 qubits. This is due to the
exponential growth of the vectors/matrices with respect to the
number of qubits.

Similar problems occur with truth-table representations of
Boolean functions in conventional logic design and have been
successfully addressed by using dedicated data-structures like
Binary Decision Diagrams (BDDs, [11]), Kronecker Func-
tional Decision Diagrams (KFDDs, [27]), or Binary Mo-
ment Diagrams (BMDs, [28]). These exploit redundancies by


1√
2

0 1√
2

0

0 1√
2

0 1√
2

1√
2

0 −1√
2

0

0 1√
2

0 −1√
2


(a) Unitary matrix
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2

(c) QMDD

Fig. 1: Representations for U = H ⊗ I2.

employing functional decompositions like, e.g., Shannon or
Davio decompositions, in order to allow for a more compact
representation and efficient manipulation of the considered
functionality.

As a consequence, several proposals for the use of dedicated
data-structures in the quantum domain exist, e.g. Quantum
Decision Diagrams (QDDs, [13]), Quantum Information De-
cision Diagrams (QuIDDs, [12]), X-decomposition Quantum
Decision Diagrams (XQDDs, [14]) and Quantum Multiple-
Valued Decision Diagrams (QMDDs, [15]).

The general idea of these approaches is to represent a
(unitary) matrix or (state) vector in terms of a directed acyclic
graph such that sub-matrices which occur multiple times
are represented by a shared graph structure. In this regard,
QMDDs have the unique property that they additionally make
use of weighted edges. This allows them to use shared
structures also for sub-matrices that differ by a scalar factor—a
case that occurs frequently for the unitary matrices considered
in quantum computation.

Example 3. Figure 1a shows the transformation matrix of the
quantum operation U = H ⊗ I2, i.e. a Hadamard operation
is performed on one qubit of a 2-qubit quantum system. A
decision diagram representation of this matrix is shown in
Fig. 1b. Here, the single root node (labeled q0) represents
the whole matrix and has four outgoing edges to nodes
representing the top-left, top-right, bottom-left, and bottom-
right sub-matrix (from left to right). Likewise the 2 × 2 sub-
matrices (represented by nodes labeled q1) are decomposed
until the terminal nodes are reached—each of which represents
a distinct complex number.

Apparently, the top-left, top-right and bottom-left sub-
matrices of the original matrix are identical and can be
represented by a shared graph structure (the left-most node
labeled q1 in Fig. 1b). However, the bottom-right sub-matrix
is represented by a separate graph structure, although it has
the same structure and differs only by a scalar factor of −1. If
this similarity is taken into account (as it is done in QMDDs),
an even more compact representation can be achieved. In fact,
by extracting such scalar factors and annotating them to the
corresponding edges, a single node at the q1 level is sufficient
as shown in the QMDD representation depicted in Fig. 1c.
Here, the common factor 1√

2
is extracted and annotated to

the root edge (an additional edge that points to the root node,
but has no source). For simplicity, edge weights equal to 1 are
suppressed and edges with weight 0 are indicated by stubs.
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To obtain the value of a particular matrix entry, one has to
follow the corresponding path from the root to the terminal
node and multiply all edge weights on this path. For example,
the matrix entry −1√

2
from the bottom-left sub-matrix of Fig. 1a

(highlighted bold) can be determined as the product of the
weights on the highlighted path of the QMDD in Fig. 1c.

In order to determine which sub-matrices only differ by
scalar factors and can, thus, make use of the enhanced
compactness, the nodes of a QMDD are normalized. This
means that a normalization factor is factored out from all
outgoing edge weights and propagated to all incoming edges.
By this, it is ensured that the overall products on all paths
stay the same. There is some degree of freedom how the
normalization factor is determined: for simplicity, one often
takes the left-most non-zero weight of the outgoing edges,
such that a node is normalized if, and only if, the left-
most non-zero weight is 1. As an alternative, also the (left-
most) edge weights with the largest absolute values can
be used as normalization factors [29]. This ensures that all
occurring edge weights will have an absolute value less than
or equal to 1 which can increase the numerical stability of the
representation—at the cost of a small computation overhead.
In both cases, QMDD even become canonical, i.e. unique,
representations of (unitary) matrices [15] which is an essential
requirement for several design tasks. Indeed, QMDDs have
shown to provide a compact representation of many practically
relevant quantum functions and, thus, allow for an efficient
processing of the respective matrices and vectors which led to
powerful solutions for design tasks like synthesis [16]–[19],
verification [20]–[23], and simulation [24], [25].

III. ACCURACY VS. COMPACTNESS IN QMDDS

The compression of QMDDs and other decision diagrams
for quantum or conventional logic is a lossless one. This means
that compactness is achieved by exploiting redundancies such
that the entire information of the matrix, vector, or Boolean
function, respectively, is preserved, i.e. it can—in principle—
be reconstructed completely from the corresponding (QMDD)
representation.

In the classical domain, gaining a compact representa-
tion without information loss is not complicated, neither
from a mathematical nor an implementation point of view,
since the set of possible values is finite (e.g. 0 and 1 for
Boolean functions) or discrete (e.g. only integer numbers
occur). As a consequence, decision diagrams that represent
conventional computations like e.g. Binary Decision Dia-
grams (BDDs, [11], [30]–[32]), Kronecker Functional Deci-
sion Diagrams (KFDDs, [27]), or Binary Moment Diagrams
(BMDs, [28]) do not face problems with the accuracy of the
representation, since all values can be and are represented
as (tuples) of integers—a strong canonical/unique form of
representation.

This is different for the quantum domain, where we have to
deal with arbitrary complex numbers. From a mathematical
perspective, this does not causes problems since complex
numbers also provide a strong canonical form. However, it

introduces severe challenges from an implementation perspec-
tive where machine accuracy is limited and, hence, complex
numbers (especially those with irrational coefficients) are
approximated—yielding to numerical errors in computations
and making accuracy an important issue for decision diagrams
representing quantum computations.

To this end, first note that, in the area of quantum compu-
tation, most design automation tasks require hundreds or even
thousands of matrix-matrix multiplications (e.g. to compute
the unitary matrix for an entire quantum circuit from the gate
matrices) or matrix-vector multiplications (e.g. to simulate the
evolution of a quantum state during a quantum algorithm).
These tasks do not constitute an issue per se, since the
multiplication with a unitary matrix is a well-conditioned
problem from a numerical perspective. In fact, the error in the
result, i.e. the deviation from the exact result, can be expected
to be in the order of the input error.3 Furthermore, applying
several multiplications successively will only lead to an error
that grows linearly with the number of matrix multiplications.
Consequently, using a numerical, i.e. approximated, represen-
tation of the complex numbers with a high resolution can yield
numerically stable computations.

However, this approximation can have a significant impact
on the decision diagram representation. To this end, recall that
the key idea of decision diagrams is to exploit redundancies
in order to gain a compact representation. This compact
representation is indeed a key factor for their efficiency, since
the complexity of the manipulation algorithms (e.g. matrix
multiplication) grows with the size of the decision diagram.

However, this assumes that redundancies can be detected.
While this is rather simple in the conventional domain, the
occurring irrational numbers of the real and imaginary part
of the complex numbers in quantum computing constitute a
tough challenge. An example demonstrates the problem.

Example 4. Recall Example 3 where the matrix shown in
Fig. 1a can compactly be represented by the QMDD shown
in Fig. 1c. This compact representation is possible since
several redundancies can be exploited. However, represent-
ing the irrational entries with floating point numbers on a
machine with limited accuracy, may break these redundancies
e.g. when using rounding towards ∞ or when the matrix is
constructed as the product of several other matrices. Then,
two occurrences of ± 1√

2
might be represented by slightly

different floating point numbers (differing in a few of the least
significant bits of the mantissa) and no redundancy can be
detected anymore.

In general, this will likely lead to a matrix or a vector
where no redundancies are detected at all—leading to an
exponentially large representation. A solution to this issue that
some of the redundancies that actually exist in the matrix are
not detected due to tiny errors caused by the machine accuracy,
is to identify numbers that do not differ by more than a so-
called tolerance value (denoted as ε in the following). This
approach has also been taken for QMDDs.

3Note that this is a statement about the matrix multiplication problem itself
and not about a certain implementation.
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Fig. 2: Size of the QMDD when simulating GSE

Example 4 (continued). Assume that two entries that shall
represent 1√

2
differ only in the last three bits of the mantissa

(assuming an IEEE 754 single precision floating point number
with 23 mantissa bits). Then, setting e.g. ε = 10−5 allows to
detect that the two entries are equal.

However, choosing a proper value for ε is crucial. If ε
is chosen too small, it might not be able to compensate
the limited machine accuracy and, thus, to determine more
redundancies. If ε is chosen too large, this might lead to nu-
merical instabilities of the multiplication algorithm. Moreover,
additional redundancies might be detected that are not actually
present—leading to an undesired approximation and, thus,
information loss. In the worst case, this may falsify the result
such that an invalid quantum state (e.g. a vector composed
of zeros only) or a non-unitary matrix results. Nevertheless,
in many cases there exist proper configurations for ε, but this
heavily depends on the considered application and determining
an adequate tolerance value may require time-consuming fine-
tuning of parameters on a case-by-case basis.

Example 5. Fig. 2 shows the size of the QMDD through
simulating the Ground State Estimation (GSE, [33]) quantum
algorithm. This algorithm originates from quantum physics
and computes the ground state energy of a quantum molecular
system. As can be seen, the number of QMDD nodes is
highly affected by ε. Choosing ε = 0, i.e. (almost) no two
different numbers are considered to be equal, yields the highest
precision that is possible using floating point numbers, but
results in a rather large representation. Instead, choosing
ε = 10−3 yields a vector composed of zeros only—a perfectly
compact but obviously wrong representation. Of course, both
choices (highlighted in bold in Fig. 2) represent extreme cases.
As a trade-off, choosing ε = 10−15 leads to almost the same
numerical result as ε = 0, but yields a better compactness
and, thus, a smaller run-time.

Overall, determining a “perfect” ε, i.e. finding the best
trade-off between accuracy and compactness (which heavily
influences the run-time), is a non-trivial task. So far, it has to
be evaluated on a case by case level for each application.

In this work, we propose to overcome this trade-off by using
an algebraic representation of the complex numbers that occur

in the vectors/matrices—eventually resulting in a decision
diagram that detects all existing redundancies and computes
the result in an exact fashion (i.e. without a numerical error).

IV. PROPOSED SOLUTION

In this section, we propose a solution for the algebraic rep-
resentation of complex numbers in QMDDs which overcomes
the approximation drawbacks caused by the numerical number
representation and allows for both, a perfect accuracy together
with a perfect exploitation of redundancies. To this end, we
first discuss the properties of the ring D[ω] that will be utilized
for the exact, algebraic representation of complex numbers.
After that, we present a solution for exploiting the benefits of
this representation in QMDDs.

A. Utilizing the Ring D[ω]
In order to obtain an algebraic representation of the complex

numbers, the most obvious choice would be to extend the well-
known Gaussian numbers Z[i] to the ring Z[i,

√
2]. By doing

so, all complex numbers of the form a+ b
√
2 + i(c+ d

√
2)

can be represented exactly. This ring is already a dense subset
of the complex numbers such that any complex number can be
approximated by an element from Z[i,

√
2] up to an arbitrary

precision (this density is a known property of Z[
√
2] in the

real numbers and can easily be lifted to the complex numbers).
However, the irrational number 1√

2
that plays a vital role in

quantum computation, is not contained in this ring.4 Thus,
it seems more promising to study the ring Z[i, 1√

2
] which

trivially contains Z[i,
√
2] (since

√
2 = 2 · 1√

2
), but allows

to represent 1√
2

and all its potencies exactly.
In the following, we will make use of a different in-

terpretation of this ring that is more convenient from an
algebraic perspective. More precisely, we will use the inter-
pretation as an extension of the so-called dyadic fractions
D = { a

2k
| a, k ∈ Z, k ≥ 0}, namely D[ω] for the complex

number ω = 1+i√
2
= eiπ/4 (as in Example 2).5

Using the latter representation, all complex numbers that
can be represented exactly can be written as

α =
1
√
2
k
(aω3 + bω2 + cω + d)

for coefficients a, b, c, d, k ∈ Z, i.e. using five integers (cf. [8]).

Example 6. The irrational number
√
2 can be represented

as 1√
2
−1 (0ω

3 + 0ω2 + 0ω + 1), i.e., with k = −1. Besides
that, also representations with k = 0 or k = 1 are possible,
i.e., 1√

2
0 (−ω3 + 0ω2 + ω + 0) = ω − ω3 = 1+i√

2
− −1+i√

2
=

2√
2
= 1√

2
1 (0ω3 + 0ω2 + 0ω + 2) =

√
2.

Note that the ring D[ω] is also strongly related to the well
established Clifford+T gate library [34]. This library is very

4If it was, then also 1
2

would be a member and could be written as
1
2
= a′ + b′

√
2 for some a′, b′ ∈ Z. However, since it must hold that b′ 6= 0,

this immediately yields the contradiction
√
2 = 1−2a′

2b′ ∈ Q.
5The fact that the rings Z[i, 1√

2
] and D[ω] are isomorphic becomes obvious

if one considers the ring D[
√
2, i] (which can easily be seen to be isomorphic

to both rings) as an intermediate step. In fact,
√
2 = ω − ω3 and i = ω2.
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popular in quantum computation due to its universality (any
quantum operation, i.e. any unitary transformation matrix, can
be realized up to an arbitrarily small error) as well as fault-
tolerance (robust, fault-tolerant implementations of these gates
are known for most technologies that are considered promising
for large-scale quantum computers). The most elementary
gates in this library are the Clifford group gates (H , CNOT,
S) and the T gate as discussed in Example 2. The relation
between the ring D[ω] and the Clifford+T gate library is
that the quantum operations which can be realized exactly
by Clifford+T gates (i.e. without any rounding error) are
precisely given by those matrices whose entries are from the
ring D[ω] = D[

√
2, i] (as shown in [8]). As a consequence,

all such quantum operations can be represented with perfect
accuracy using our approach. Furthermore, any quantum state
and operation can be approximated to an arbitrary precision,
since D[ω] is a dense subset of the complex numbers. Hence,
D[ω] provides the ideal basis for a decision diagram that
employs an accurate, algebraic representation of complex
numbers.

B. Incorporating D[ω] into QMDDs

In order to use the algebraic representation of complex num-
bers presented above within QMDDs, there are two aspects
that have to be taken into account:

1) In order to determine common factors and structural
similarities (that are required to find redundancies), a
unique representation of D[ω] numbers is required. How-
ever, there are in general infinitely many possibilities to
represent a D[ω] number (c.f. Example 6).

2) The extracted normalization factors have to be applied to
the edge weights (c.f. Section II-B). More precisely, the
weights have to be divided by these factors. However,
as division means multiplication by the (multiplicative)
inverse, this division can only be conducted properly for
D[ω] numbers that indeed have a multiplicative inverse
in D[ω], but not for D[ω] numbers in general (e.g. all
odd integers greater than or equal to 3 do not have an
inverse in D[ω] and the result of a division by such a
number can not be represented as a D[ω] number).

We propose to address these issues as follows:

1) Recall that each number from D[ω] can be written as

α =
1
√
2
k
(aω3 + bω2 + cω + d)

for coefficients a, b, c, d, k ∈ Z. If the exponent k is
fixed, the representation is clearly unique since two
different representations would yield a non-trivial rep-
resentation of 0 in Z[ω].6 Thus, a unique representation
can be achieved when using the smallest denominator
exponent kmin such that there is no representation with
an exponent k < kmin.

6This would contradict the fact that the potencies ω0 = 1, ω, ω2, ω3 are
linearly independent over Z (even over Q), since ω is a primitive 8-th root of
unity and the cyclotomic field Q[ω] is a 3-dimensional vector space over Q.

Algorithm 1: Compute Minimal D[ω] Representation

Data: α = 1√
2
k (aω

3 + bω2 + cω + d) ∈ D[ω] \ 0
Result: Representation of α with smallest denominator

exponent kmin

1 a′ ← a, b′ ← b, c′ ← c, d′ ← d, k′ ← k
2 while a′ = c′ mod 2 and b′ = d′ mod 2 do
3 a′ ← b′ − d′
4 b′ ← c′ + a′

5 c′ ← b′ + d′

6 d′ ← c′ − a′
7 k′ ← k′ − 1

// Criterion for minimality is
satisfied

8 kmin ← k′

9 return α = 1√
2
kmin

(a′ω3 + b′ω2 + c′ω + d′) ∈ D[ω]

The existence of such an exponent has already been
discussed in [8], but no constructive criterion for min-
imality has been derived. To this end, we note that√
2 = −ω3 + ω, such that

α =
1
√
2
k
(aω3 + bω2 + cω + d) ·

√
2√
2

=
(b− d)ω3 + (c+ a)ω2 + (b+ d)ω + (c− a)

√
2
k+1

=
1

√
2
k−1

(
a′ω3 + b′ω2 + c′ω + d′

)
where a′, b′, c′, d′ ∈ Z if, and only if, a = c mod 2
and b = d mod 2. Thus, we know that the exponent
is minimal if, and only if, a 6= c mod 2 or b 6= d
mod 2.7

Example 7. As already discussed in Example 6, the
number

√
2 can be represented with k = 0 as

1√
2
0 (−ω3+0ω2+ω+0), i.e. with b = d = 0 and a = −c.

Thus, the criterion for the smallest denominator expo-
nent is not satisfied here. However, since 0 6= 1 mod 2
the criterion is satisfied for 1√

2
−1 (0ω

3+0ω2+0ω+1),
such that kmin = −1 in this case.
In summary, the above consideration yields a con-
structive algorithm to obtain unique representations of
D[ω] numbers that is summarized in Algorithm 1.

2) Regarding the division by normalization factors, there
are two viable alternatives. The first option is to employ
the algebraic closure of D[ω], namely Q[ω]. In this
(cyclotomic) number field [35], a similar argumentation
as above can be performed. In fact, each Q[ω] number
has a unique representation as α

e where α ∈ D[ω] and
e is an odd integer (e ∈ 2Z+ 1) that is co-prime to the
integer coefficients of α, i.e. gcd(a, b, c, d, e) = 1.
Having this, all computations can be made in the field
Q[ω] where all non-zero numbers have a multiplicative

7Apparently, there is no smallest denominator exponent for 0, such that we
define the unique representation of 0 as a = b = c = d = k = 0.
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Algorithm 2: Normalization with Q[ω] Inverses
Data: QMDD node v with weights w00, w01, w10, w11

of outgoing edges (not all zero)
Result: Normalized node v′ and normalization factor η

// Determine the leftmost non-zero
edge weight

1 i← 0
2 while wi = 0 do
3 i← i+ 1

// Divide all weights by this weight
4 η ← wi
5 for j ← i to 3 do
6 wj ← wj · η · 1

N(η)

7 return Node with updated weights, η

inverse. This inverse can be constructed as follows: the
squared norm N(z) of a number z ∈ Q[ω] is given as

N(z) = z · z = u+ v
√
2 for some u, v ∈ Q.

Using the third binomial formula, the inverse of N(z)
can hence be written as

1

N(z)
=

u− v
√
2

u2 − 2 · v2
.

Finally, the inverse of z is given by rewriting the first
equation as

z−1 = z · 1

N(z)
.

Example 8. Consider the number z = 1+ i
√
2 ∈ D[ω].

The norm N(z) is computed as (1+ i
√
2) · (1− i

√
2) =

1− 2i2 = 3. Thus, 1
N(z) =

3
9 = 1

3 and z−1 = 1−i
√
2

3 .
In summary, one possible way of performing normal-
ization is spending one additional integer and switching
to the algebraic number field Q[ω]. The corresponding
normalization scheme is summarized in Algorithm 2.
The second option is to stay in D[ω] and require
that all normalization factors are common divisors of
the edge weights. Then, the necessary divisions are
clearly possible in D[ω]. As normalization shall achieve
uniqueness, we suggest to take greatest common divisors
(GCD) of the edge weights as normalization factors.
Note that it is not a priori clear that GCDs indeed exist
in D[ω]. However, we were able to show that D[ω] is
a Euclidean Ring which implies that GCDs exist and
can be computed by iteratively applying the Euclidean
algorithm. To this end, to show the existence of GCDs
in D[ω], we consider the sub-ring Z[ω] with the function
E(z) = |(a2+ b2+ c2+d2)2−2 · (ab+ bc+ cd+da)2|.
One can show that this function is a Euclidean function
such that for any non-zero z1, z2 ∈ Z[ω] there exist
q, r ∈ Z[ω] with z1 = q · z2 + r and E(r) ≤ 9

16E(z2),
i.e. Z[ω] is a Euclidean ring and the Euclidean algorithm
(that determines q by first performing the division z1/z2
in Q[ω] and then rounding each component to the closest

integer) will at some point terminate. As each D[ω]
number is associated to a Z[ω] number, i.e. differs only
by multiplication with a potency of the unit 1√

2
, this

result can directly be extended to D[ω].
As GCDs are only unique up to multiplication with units
(i.e. invertible elements of the ring), we then apply a
methodology to determine a GCD as normalization fac-
tor that yields that the leftmost non-zero edge weight z

a) is in Z[ω], i.e. k = 0,
b) has a minimal norm, i.e. N(z) = u + v

√
2

such that one of the derived pairs (|u|,|v|) and
(|2v|, |u|) is minimal among all associated Z[ω]
numbers w.r.t. lexicographical order (after factoring
out potencies of 2), and

c) the quadruple of coefficients (|a|, |b|, |c|, |d|) is
the lexicographical minimum among all quadru-
ples that can be derived by iteratively rotating
(|a|, |b|, |c|, |d|) 7→ (|b|, |c|, |d|, |a|). Furthermore,
d has positive sign.

Example 9. The number α = 2ω3+3ω2+2ω+4 from
Z[ω] satisfies properties a) and c). However, its norm
N(α) = 33 + 12

√
2 with derived pairs (33, 12) and

(24, 33) is not minimal. In fact, the associated number
α′ = α · (ω − 1) = −2ω3 + ω2 − ω − 6 has norm
N(α′) = 42− 9

√
2 with derived pairs 2 · (9, 21) and

(42, 9) from which the first one is minimal. In order to
also satisfy property c), α′ is rotated to ω3−ω2−6ω+2.
In the following, we provide a brief sketch of why it
is always possible to find a (unique) GCD that yields
the desired properties of the edge weights. To this end,
one can show that the group of units D[ω]∗ is generated
by 1√

2
, ω, and (ω ± 1). Since multiplying with 1√

2

changes the norm of a number by 1
2 , we can restrict

to numbers whose norm is in Z[
√
2], but not in 2Z[

√
2].

One can show, that each Z[
√
2] number η = u+v

√
2 has

an associated number η′ = u′ + v′
√
2 that is reached

by multiplication with a Z[ω] unit, i.e. an appropriate
potency of the (1 ±

√
2) [36], where |u′| < |v′| or

v = 0 and this number is unique up to multiplication
by −1. Having this in mind, we multiply the edge
weight by (ω ± 1) thereby multiplying its norm by
N(ω ± 1) = (2 ±

√
2) = ±

√
2(1 ±

√
2). By doing

so, we can reach an edge weight whose norm is the
associated number η′ = u′ + v′

√
2 from above (up to

a potency of ±
√
2, but this is not relevant, since we

consider the pairs (|u|,|v|) and (|2v|, |u|) and factor out
potencies of 2). In order to achieve the minimum of such
pairs among all associated Z[ω] numbers, we likewise
compute (

√
2N(z))′ (again up to a potency of ±

√
2)

and accept that edge weight which exhibits the minimum
among the derived pairs.
Finally, regarding the lexicographical order required on
the coefficients of z, it is easy to see that the rotation
corresponds to a multiplication by ω (which does not
change the norm) and that a positive d can always
achieved by multiplication with −1 = ω4. The existence
of unique a lexicographical minimum is obvious in most
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Algorithm 3: Normalization with GCDs from D[ω]
Data: QMDD node v with weights w00, w01, w10, w11

of outgoing edges (not all zero)
Result: Normalized node v′ and normalization factor η

// Determine a GCD of all weights
1 g ← gcd(w00, w01, w10, w11)
// Determine the leftmost non-zero

edge weight
2 i← 0
3 while wi = 0 do
4 i← i+ 1

// Adjust GCD in order to achieve
desired edge weight properties

5 z ← wi/g
6 z′ ← reduceNorm(z)
7 z′ ← lexicographicalMinimum(z′)
8 k′ ← exponent k of z′

9 z′ ← z′ ·
√
2
k′

10 g′ = g · (z/zi)
// Divide all weights by this GCD

11 η ← g′

12 for j ← i to 3 do
13 wj ← wj/η

14 return Node with updated weights, η

cases, aside from the cases that 1) |a| = |b| = |c| = |d|
as well as 2) |a| = |c| and |b| = |d|. However, in both
cases the exponent k is not minimal according to the
criterion derived above and a potency of 1√

2
can be

factored out until kmin is reached.
Thus, a unique normalization with normalization factors
in D[ω] is possible as summarized in Algorithm 3.

Overall, the proposed solution allows for the algebraic and,
thus, perfectly accurate representation of complex numbers
within the QMDD data-structure. However, this comes at the
price of more expensive arithmetic operations and the resulting
computational overhead will be evaluated in Section V-B.

V. EVALUATIONS

In this section, we present the results of our experimental
evaluations. More precisely, we conducted a detailed evalua-
tion on the current trade-off between accuracy and compact-
ness in decision diagrams for quantum computations following
the state-of-the-art numerical QMDD representation (which
utilizes floating point numbers in the IEEE 754 double pre-
cision format to represent irrational coefficients and supports
the configuration of a tolerance value ε).

Note that this evaluation only becomes possible by having
a perfectly accurate solution, namely the proposed algebraic
QMDD representation, to compare with. In a second step, we
evaluated how the proposed solution overcomes this trade-off.
Note that we used the GNU Multiple Precision Arithmetic
Library (GMP, [37]) for representing the integers occurring in
the algebraic number representations.

Since no established benchmark suite for quantum computa-
tion is available yet, we considered a self-compiled benchmark
suite consisting of well-known quantum algorithms covering
different classes and application domains of quantum algo-
rithms. More precisely, Grover’s algorithm [2] and the Binary
Welded Tree algorithm (BWT, [38]) address problems from
the computer science domain (database search and graph ex-
ploration) and all quantum gates and complex numbers occur-
ring during the computation are exactly representable by the
proposed algebraic approach, i.e. without any approximation
error. In contrast, the GSE algorithm introduced in Example 5
addresses a problem from quantum physics (estimation of the
ground state energy of a quantum molecular system). It repre-
sents a class of quantum algorithms whose original description
is not directly compatible with the proposed solution, since
the required quantum operations (e.g. rotations by arbitrary
angles) result in complex numbers that are not contained in
D[ω] or Q[ω], respectively, and need to be approximated.

For this purpose, we extracted suitable approximations in
terms of quantum circuits consisting solely of (exactly repre-
sentable) Clifford+T gates using the Quipper tool [39].

All benchmarks have then be simulated by representing
the corresponding quantum states and quantum operations
using the QMDD package taken from [40] on a classical
3.8 GHz machine with 32 GB of memory. Note that an
additional simulation on a physical quantum computer was not
possible since the considered benchmarks by far outreach what
is computable on currently available state-of-the-art quantum
computers (so called NISQ devices) concerning the number
of qubits considered, the number of quantum operations per-
formed, and the accuracy of the obtained results.

In the following, a summary of the respectively obtained
results is provided and discussed.

A. Trade-off Between Accuracy and Compactness

In a first series of evaluations, we investigated the accuracy
and the compactness (as well as the impact on the simulation
run-time) of the recently applied, i.e. numerical, QMDD
representation for different values of ε. In the following, we
discuss the obtained results for Grover’s algorithm as well as
for the BWT and GSE algorithm whose results are provided
in Fig. 3, Fig. 4, and Fig. 5, respectively, and which provide
good representatives of our evaluations. For each quantum
algorithm, we provide graphs showing the size (i.e. the number
of nodes) of the QMDD that represents the evolved quantum
state, the accuracy throughout the simulation8, as well as the
run-time of the simulation (in CPU seconds).

First of all, the results clearly confirm the general numerical
stability of the QMDD-based matrix multiplication (cf. Sec-
tion III). In fact, for a sufficiently small tolerance value ε, the
error indeed scales linearly with the number of applied gates.

8In order to quantify the accuracy, we determine the relative deviation of
the vector resulting from the numerical computation vnum from the algebraic
(and, thus, exact) result valg . More precisely, we compute the Euclidean norm
of vnum − valg to quantify the loss of precision relative to the exact result.
To have a fair evaluation, we adjust the norm of the numerically computed
vector vnum to 1, since an error in the length of the vector can be fixed
easily (except for a 0-vector).
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(a) Compactness (b) Accuracy (c) Simulation time

Fig. 3: Results for simulating Grover’s algorithm

(a) Compactness (b) Accuracy (c) Simulation time

Fig. 4: Results for simulating the BWT algorithm

(a) Compactness (b) Accuracy (c) Simulation time

Fig. 5: Results for simulating the GSE algorithm
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In addition, the provided plots also show that the compactness
of the QMDD directly correlates with the simulation time.
More precisely, the slope of the simulation times depicted in
Fig. 3c, Fig. 4c, and Fig. 5c is proportional to the respective
number of QMDD nodes.

However, the results also clearly confirm the discussed
trade-off between accuracy and compactness. Consider for
example the plots obtained for simulating Grover’s algorithm
using 15 qubits (i.e. Fig. 3):
• Using a numeric QMDD representation with a high

accuracy (ε = 0 or ε = 10−20) hardly allows to detect
any redundancy and, thus, requires exponentially many
nodes and a significant run-time.

• In contrast, choosing a moderate accuracy (ε = 10−15

or ε = 10−10) allows to detect more of the actually
present redundancies and, hence, yields a quite compact
representation. On the downside, this truncation leads to
numerical issues. For instance, while choosing ε = 10−15

yields a rather small numerical error, the peaks in the
graph indicate an undesired numerical instability in the
multiplication algorithm that may lead to severe rounding
errors in certain simulations.

• By choosing a low accuracy (ε = 10−5 or 10−3) the
accuracy of the QMDDs drop significantly—resulting in
completely useless simulation results. Surprisingly, the
number of QMDD nodes even increases exponentially
for ε = 10−5 after applying approximately 3000 gates.
However, this is an exceptional case since in the vast
majority of the cases, increasing ε indeed increases the
compactness of the numeric QMDD (as also confirmed by
the results for the other quantum algorithms, c.f. Fig. 4a
and Fig. 5a). As an extreme case, even a dropping down
to zero can be observed (e.g. when choosing ε = 10−3)
which obviously is a completely wrong result.

Overall, the provided plots clearly show the correlation be-
tween accuracy and compactness. In fact, the compactness of
the QMDD heavily depends on the chosen accuracy (in terms
of ε). While increasing ε yields a more compact representation
and, thus, reduces run-time, it increases the probability for
obtaining severe numerical errors—resulting in completely
useless results (e.g. a zero-vector) in the worst case. As shown
above, a good choice of ε depends on the considered problem
instance and it can be quite difficult to choose it such that
exactly those redundancies are found that are actually present.

In addition, the plots also show that, even when using a
tolerance value of ε = 0, i.e. when employing the highest
possible precision, there is a lower bound to the numerical
error that is never underrun. Even when scaling up the pre-
cision/bitwidth of the floating-point numbers—an investment
that will likely lead to substantial run-time degradations—
the same effect can be expected. In other words, the limited
precision of the floating-point arithmetic will never allow for
perfect accuracy (on the long run).

B. Evaluation of the Algebraic Representation

The algebraic QMDD solution proposed in this work over-
comes the limitations that have been observed in the previous

evaluation. In fact, there is no more need for determining
an adequate accuracy for the problem at hand on a case-
by-case basis. The algebraic QMDD will always achieve
the maximum compactness that is possible without losing
information (i.e. only exploiting redundancies that are actually
present). Moreover, it will achieve perfect accuracy also on
the long run which can be very important for design tasks
like verification. For instance, checking equivalence of two
matrices or vectors then boils down to comparing the root
nodes of the corresponding QMDDs (which can be done in
O(1)) instead of looking for (tiny) deviations in the whole
representations.

However, the algebraic representation of complex numbers
requires to perform arithmetic operations in the ring Q[ω].
These can induce a computation overhead as the integer coef-
ficients may (in theory) become arbitrary large, while floating
point arithmetic can often benefit from existing hardware
accelerators e.g. in terms of a dedicated floating point unit.
In the following, we evaluate this computation overhead in
detail.

To this end, again Grover’s as well as the BWT and
GSE quantum algorithm as discussed above provide a good
representative of our evaluations (also including an example
with a worst case overhead). Accordingly, we also generated
corresponding algebraic QMDDs and report the respectively
obtained QMDD sizes and run-times by means of the the bold
black graphs in Figs. 3-5. 9

As can be seen, for Grover’s as well as for the BWT
algorithm, the algebraic QMDDs remain quite compact. They,
thus, perform much better than the numerical QMDDs with
high accuracy (ε = 0 and ε = 10−20) that can not take
advantage of the present redundancies. In comparison to the
numerical QMDDs that exploit these redundancies, the alge-
braic QMDDs have a reasonable constant run-time overhead
(around a factor of 2).

In contrast, the GSE algorithm is a representative for those
cases, where the behavior is quite different. As can be seen,
there are hardly any redundancies that can be exploited such
that the size of the algebraic QMDD stays in the range of
the sizes of the high accuracy numerical QMDDs. However,
unlike in the previous cases, the run-times of the algebraic
QMDD do not stay in the range of those numerical QMDDs
showing the same sizes. In fact, they do not stay even close to
the run-times of any numerical QMDD, but the computation
overhead grows significantly. A more detailed analysis shows
that this can be explained by the fact that the bit-widths of
the integers used for algebraically representing the occurring
complex numbers grow significantly. A possible explanation
for this behavior is that the Clifford+T approximation of the
GSE algorithm leads to complex numbers that are very costly
to be represented and processed in an exact, algebraic way,
while the numeric QMDDs are rather insensitive to particular
complex numbers.

9 Note that no graph is provided for accuracy as the proposed algebraic
representation always is exact, i.e. does not include errors.

Moreover, only the run-times for the first normalization scheme (using
normalization factors in Q[ω]) are shown, since these always outperformed
the normalization scheme that uses GCDs as normalization factors.
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In the normalization scheme using Q[ω] numbers, the
growth of the bit-widths is most significant for the denom-
inators, while the normalization indeed achieves that at least
half of the occurring edge weights are trivial (equal to 1). This
greatly simplifies the arithmetic operations and is beneficial for
the overall runtime. In contrast, the normalization based on
GCDs in most cases only obtains trivial GCDs to be factored
out. This results in a less beneficial factorization with very few
trivial edge weights and many weights with large coefficients
that lead to a higher performance degradation.

Overall, in several cases the structural benefits of algebraic
QMDDs in comparison to numerical QMDDs really become
effective as the computation overhead remains small, while in
other cases we obverse a significant overhead which might be
the showstopper for algebraic QMDDs in such cases.

VI. CONCLUSIONS

In this work, we thoroughly discussed and evaluated the
trade-off between accuracy and compactness of decision di-
agrams for quantum computation. Since this requires fine-
tuning of parameters on a case-to-case basis and might still
yield useless results, we propose to overcome this issue
by an algebraic decision diagram. The proposed algebraic
representation guarantees perfect accuracy while remaining
compact (all redundancies that are actually present are de-
tected). Experimental evaluations confirm the trade-off in the
numerical representations and shows that the overhead of the
algebraic solution is moderate in many cases and actually has
no effect on the scalability in general which is comparable to
previously proposed DDs for quantum computing. However,
differences in scalability may occur when precision is traded-
off against compactness (as also evaluated in Section V.A), i.e.,
if a less accurate result is acceptable, better scalability can be
achieved with numerical approaches. If instead best accuracy
is demanded, scalability might be affected. This, however, is
not a result of the overhead caused by the proposed algebraic
representation (which, again, is moderate), but a consequence
of the demand for exact results. Future work covers research
on new normalization schemes for the algebraic representation
in order to further reduce the overhead—particularly for cases
where this contributes to a large overhead.
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