
ExploitingQuantum Teleportation inQuantum Circuit Mapping
Stefan Hillmich

∗
Alwin Zulehner

∗
Robert Wille

∗†

∗
Johannes Kepler University Linz, Austria

†
Software Competence Center Hagenberg GmbH (SCCH), Austria

{stefan.hillmich,robert.wille}@jku.at

https://iic.jku.at/eda/research/quantum/

ABSTRACT
Quantum computers are constantly growing in their number of

qubits, but continue to suffer from restrictions such as the limited

pairs of qubits that may interact with each other. Thus far, this prob-

lem is addressed bymapping andmoving qubits to suitable positions

for the interaction (known as quantum circuit mapping). However,
this movement requires additional gates to be incorporated into the

circuit, whose number should be kept as small as possible since each

gate increases the likelihood of errors and decoherence. State-of-

the-art mappingmethods utilize swapping and bridging to move the

qubits along the static paths of the coupling map—solving this prob-

lem without exploiting all means the quantum domain has to offer.

In this paper, we propose to additionally exploit quantum teleporta-

tion as a possible complementary method. Quantum teleportation

conceptually allows to move the state of a qubit over arbitrary

long distances with constant overhead—providing the potential of

determining cheaper mappings. The potential is demonstrated by a

case study on the IBM Q Tokyo architecture which already shows

promising improvements. With the emergence of larger quantum

computing architectures, quantum teleportation will become more

effective in generating cheaper mappings.
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1 INTRODUCTION
Quantum computing [1] enables significant improvements over

classical computing for certain problems and is providing an expo-

nential speedup in the best case. Well known examples for such

problems are integer factorization using Shor’s algorithm [2], quan-

tum chemistry [3], and boson sampling [4]. The commonly used

description for quantum algorithms are quantum circuits which

represent a series of operations to be performed on the quantum

state. However, physical realizations of current quantum computers

are considered Noisy Intermediate Scale Quantum (NISQ [5]) devices

and they impose restrictions that have to be explicitly addressed in

the quantum circuit descriptions before they can be executed on a

physical quantum computer.

A particularly important restriction is given by the coupling
constraint that only allows interactions between specific pairs of

qubits. In all but the trivial cases, it is not possible to map the logical

qubits of a quantum circuit to the physical qubits of a quantum

computer in a way that the coupling constraints are satisfied for

the whole circuit. This is a problem solved through quantum circuit
mapping1, which moves logical qubits of the circuit diagram to

physical qubit positions of the hardware that allow for the desired

interactions. It has been shown that finding an optimal quantum

circuit mapping is an NP-complete problem [6, 7].

State-of-the-art approaches (such as introduced in [8–23]) em-

ploy swapping as well as bridging schemes to satisfy the coupling

constraint for a given operation if required. While they are working

reasonably well for smaller architectures, they lead to substantial

additional costs when large distances in growing architectures have

to be covered. Moreover, swapping and bridging are rather classical

approaches compared to the untapped potential of the available

quantum-mechanical phenomena.

In this work, we are aiming to broaden the consideration of

solutions for quantum circuit mapping by additionally exploiting

quantum teleportation [1]—a quantum mechanical method which

allows to teleport the state of a qubit over an arbitrary distance

through a quantum transportation channel. Quantum teleporta-

tion has been demonstrated for quantum networks [24–26] but this

concept also allows to move logical qubits around inside a quan-

tum computer [27–29] and, by this, potentially helps to satisfy the

coupling constraints. Moreover, moving logic qubits by teleporta-

tion via established transportation channels can be accomplished

with constant costs, i.e., it does not depend at all on the distance to

be covered. Motivated by this, we propose to additionally exploit

quantum teleportation in quantum circuit mapping and also show

that this natively fits into currently developed NISQ devices.

A case study conducted on the IBM Q Tokyo architecture demon-

strates that this approach results in significant improvements for

current state-of-the-art approaches. Moreover, the proposed idea

will have an amplified impact on larger quantum computing ar-

chitectures (which already have been announced, e.g., by IBM and

Google), since larger distances between qubits have to be consid-

ered on these architectures. By this, the proposed idea is going to

become more effective with growing architectures.

The remainder of the paper is structured as follows: In Section 2,

we motivate the problem including a brief recapitulation of the

relevant basics of quantum computations as well as the architectural

constraints. This section also reviews the state of the art regarding

the mapping of quantum circuits. Afterwards, Section 3 reviews

quantum teleportation and introduces the idea of incorporating

this phenomenon into the mapping process. To this end, Section 4

provides a case study of the impact of quantum teleportation in

1
The quantum circuit mapping is commonly performed as part of a compilation or

synthesis procedure, that handles all restrictions of the targeted quantum computer.
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𝑋 𝑇

Figure 1: Quantum circuit diagram

the mapping process for the 20-qubit IBM Q Tokyo architecture.

Finally, the paper is concluded in Section 5.

2 BACKGROUND & STATE OF THE ART
In this section, we review the problem of quantum circuit mapping

considered in this paper and discuss the state-of-the-art solutions

which have been introduced thus far to tackle this problem.

2.1 Considered Problem
Quantum circuits are means of describing operations on qubits [1].
These operations can act on single or multiple qubits—although

without loss of generality we restrict multi-qubit operations to

the controlled-NOT (CNOT ) operation in this work. We further

distinguish between control qubits and target qubits, where the

operation is performed on the target qubit if and only if the control

qubit assumes the state |1⟩.2
The graphical representation of quantum circuits uses horizontal

lines to denote the qubits, which pass through gates (representing

operations) that manipulate the qubits. This may seem similar to

circuits in the classical realm, however, the circuit just describes the

order (from left to right) in which the gates/operations are applied

to the qubits.

Example 1. Figure 1 depicts the diagram of a quantum circuit.
It is composed of three qubits and six gates. The gates marked with
𝐻 , 𝑋 , and 𝑇 are single-qubit gates. For the multi-qubit CNOT gates,
the control qubit is represented by whereas the target qubit is
represented by . In the presented diagram, 𝐻 and 𝑋 are applied on
the first two qubits, respectively, followed by three CNOT gates and,
finally, a single 𝑇 gate.

Quantum circuit diagrams are commonly agnostic to physical ar-

chitectures, i.e., they focus on the functionality without addressing

physical restrictions of physical quantum computers. In fact, physi-

cal quantum architectures may only be able to apply certain quan-

tum operations or limit the possible interactions between qubits.

The restriction of interaction is referred to as coupling constraint
and is a main focus of this paper.

Due to the coupling constraint, CNOT operations cannot be

applied between arbitrary pairs of physical qubits of the quantum

computer. The possible pairs are defined in the coupling map—
commonly depicted as a graph with nodes for the qubits and edges

denoting possible CNOT positions. Here, physical qubits are usually

denoted by𝑄𝑖 in comparison to the logical qubits which are denoted

by𝑞𝑖 . As single-qubit gates do not interact directly with other qubits,

they are unaffected by the coupling constraint.

Example 2. The quantum circuit depicted in Figure 1 is architecture-
agnostic with logical qubits labeled 𝑞0, 𝑞1, and 𝑞2. Further, Figure 2
shows a coupling map of the IBMQTokyo architecture, IBM’s 20 qubit

2
The precise functionality of the respective operations is irrelevant in this work and,

hence, is omitted. However, for a more detailed treatment, we refer the interested

reader to [1].

𝑄0 𝑄1 𝑄2 𝑄3 𝑄4

𝑄5 𝑄6 𝑄7 𝑄8 𝑄9

𝑄10 𝑄11 𝑄12 𝑄13 𝑄14

𝑄15 𝑄16 𝑄17 𝑄18 𝑄19

Figure 2: Coupling map for the IBM Q Tokyo architecture

NISQ device, where CNOT gates can only be applied between physical
qubits 𝑄𝑖 and 𝑄 𝑗 that are connected by an edge in the coupling map
(e.g., 𝑄0 and 𝑄5).

The restricted interactions lead to the problem of how to sat-

isfy the coupling constraint for arbitrary circuits with an as small

as possible number of additional gates, i.e., how to determine an

efficient quantum circuit mapping.

Example 3. Consider again the circuit in Figure 1 with the coupling
map of the IBM Q Tokyo architecture as shown in Figure 2. Further-
more, assume the mapping puts the logical qubits on the physical ones
with the same index, i.e.,𝑄𝑖 ← 𝑞𝑖 . In this case, the second CNOT gate
in Figure 1 cannot be applied since the coupling constraints are not
satisfied since there is no connection between 𝑄0 and 𝑄2.

2.2 State of the Art & Limitations
The architectural constraints in current NISQ quantum computers

do not allow applying two-qubit gates, e.g., CNOT gates, between

arbitrary qubits, but only for specific pairs of qubits as specified

by the corresponding coupling map of the architecture. Since de-

termining a mapping of logical qubits to physical qubits satisfying

the constraint for all gates of the circuit is only possible in trivial

cases, additional quantum operations need to be inserted into the

circuit to satisfy the coupling constraint. This increases the gate

count and, by this, the cost and unreliability of the circuit (quantum

computers employ error-rates for gate operations in the range of

10
−3

[30]). The goal is to add as few additional quantum operations

as possible—an NP-complete problem for the exact solution [6, 7].

In the past, several methods have been developed that tackle this

problem [8–23]. All these algorithms follow one of two strategies

for satisfying the coupling constraint: using swapping or bridging.
The general idea of swapping is to insert SWAP operations that

exchange the state of two physical qubits. In circuit diagrams the

SWAP is represented by two which are connected vertically.

Algorithms utilizing swapping start with an initial mapping of

the 𝑛 logical qubits 𝑞0, 𝑞1, . . . , 𝑞𝑛−1 to the 𝑚 ≥ 𝑛 physical qubits

𝑄0, 𝑄1, . . . , 𝑄𝑚−1. In case that there is no direct connection in the

coupling map for a given CNOT gate, the target and the control

qubit are moved towards each other by inserting SWAP operations.

By this, the mapping of the logical qubits of the quantum circuit

to the physical ones of the hardware changes dynamically, i.e., the

logical qubits are moved around on the physical ones. As swapping

is not a native operation in commonly considered architectures,

it has to be decomposed. The minimal decomposition is shown in

Figure 3.
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Figure 3: Mapping and decomposition using SWAP gates
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𝑄2 ← 𝑞2

Figure 4: Mapping and decomposition using bridge gates

Example 4. Consider again Figure 1 and assume the coupling map
given in Figure 2 with logical qubits 𝑞𝑖 initially mapped to physical
qubits 𝑄𝑖 . The problem described in Section 2.1 and illustrated in
Example 3 can be addressed by adding a single SWAP gate placed
on 𝑞0 and 𝑞1 after the first CNOT . The remaining operations (one
CNOT and one𝑇 ) can still be applied with the changed permutation of
logical qubits, i.e., no further SWAP operations are required. Naturally,
the changed order has to be considered if the circuit is extended or
measured, however, reversing the effects of the SWAP operations is
generally not necessary.

In the past, several algorithms have been proposed that follow

this general flow, either solving the mapping problem in an exact

fashion [8–10, 16] (which is only feasible for small instances due to

the enormous complexity), or by using heuristics [10–15, 19–21, 23].

In contrast to the swapping approach, utilizing bridging does

not dynamically change the mapping of the logical qubits to the

physical ones. In fact, the initial mapping remains throughout the

whole circuit. CNOT gates that violate the coupling constraint are

realized by a decomposition into several CNOT gates that bridge

the “gap” in the coupling map, i.e., bridge gates.

Example 5. Consider again the problem discussed in Section 2.1
and illustrated in Example 3. Again, the second CNOT gate violates
the coupling constraint. Satisfying the constraint using bridge gates
is achieved by replacing the offending CNOT gate with the pattern
shown in Figure 4. By this, the permutation of logical qubits remains
unchanged but the coupling constraint is satisfied.

The bridging strategy has the advantage that, given the initial

mapping, determining the mapped circuit is straightforward. More-

over, the cheapest initial (and static) mapping can be determined

by counting the interactions between certain qubits. In contrast,

using swapping hardly allows to determine the cheapest initial

mapping since the mapping changes dynamically throughout the

circuit and is influenced by many local choices. The number of

CNOT operations required to realize bridging grows exponentially

by 3 · 2𝑑 − 2 gates with respect to the distance 𝑑 of the target and

the control qubit. Several approaches utilizing bridging have been

developed [10, 16–18, 22], but typically approaches using swap-

ping result in cheaper mapped circuits since, the overhead with

swapping grows only linear with respect to this distance. Hence,

swapping approaches are considered more practical for larger quan-

tum architectures.

|𝜑⟩

|0⟩ or |1⟩

|0⟩ or |1⟩𝑞0 = |𝜑⟩

𝑞1 = |0⟩

𝑞2 = |0⟩

𝐻

𝐻

𝑋 𝑍

establish transportation channel
teleport state of 𝑞0

Figure 5: Circuit diagram for quantum teleportation

3 EXPLOITING QUANTUM TELEPORTATION
IN MAPPING

As outlined above, state-of-the-art mapping algorithms mainly use

swapping for quantum circuit mapping.
3
However, this employs

a rather classical way of solving the mapping problem and does

not exploit the quantum effects that are available on the target

devices anyway. In this work, we address this by introducing the

idea of exploiting quantum teleportation [1] as a complementary

method in mapping. Quantum teleportation is well suited to be used

in mapping since it allows transferring the state of a qubit over

arbitrary distances through a quantum transportation channel with a
constant overhead by means of quantum operations and a constant

classical overhead by means of regular bits to be transferred.

In this section, we show how to extend the swapping approach

with quantum teleportation. To this end, we first recapitulate the

general idea of quantum teleportation. This includes a discussion on

the feasibility of quantum teleportation on NISQ devices, i.e., how

all requirements of quantum teleportation are satisfied in the con-

sidered setting.

3.1 Quantum Teleportation
Quantum teleportation allows to transfer the state of a qubit from

one location to another over arbitrary long distances. Apart from

commonly supported quantum operations it only requires transfer-

ring two classical bits of information to fully recover the teleported

state. To this end, two ancillary qubits are required that serve as

quantum transportation channel.

Figure 5 illustrates a circuit realizing quantum teleportation.

Here, the ancillary qubits 𝑞1 and 𝑞2 are both initialized in basis

state |0⟩ and will be utilized as transportation channel. The channel

is established by setting 𝑞1 and 𝑞2 into a Bell state [31], i.e., entan-

gling both qubits. After establishing the channel, 𝑞1 and 𝑞2 can be

physically separated as indicated by the dashed line in the figure.

With the teleportation channel set up, teleporting the state of

𝑞0 = |𝜑⟩ through the channel is conducted by a Bell measurement.

The Bell measurement is realized by applying a CNOT gate with

control 𝑞0 and target 𝑞1, followed by a Hadamard gate acting on

𝑞0. Subsequently, the qubits 𝑞0 and 𝑞1 are measured in the compu-

tational basis (i.e., |0⟩ and |1⟩). Since 𝑞1 and 𝑞2 are entangled, the
measurement of 𝑞1 also affects the state of 𝑞2. The qubits 𝑞0 and 𝑞1
together now in one of four the different basis states |00⟩, |01⟩, |10⟩,
and |11⟩—encoding possible phase- and bit-flip errors in 𝑞2. The

state |𝜑⟩ can then be established in qubit 𝑞2 by applying—based

on the measurement outcome—an 𝑋 operation (to correct a bit

flip) and/or a 𝑍 operation (to correct a phase flip). In Figure 5, the

classical information (which is classically transferred between the

locations of 𝑞1 and 𝑞2) is denoted by two parallel lines between the

measurement and the 𝑋 (𝑍 ) gate.

3
In [28, 29], quantum teleportation is used to in a similar way to swapping.
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Overall, teleportation requires a constant number of quantum

operations and the transfer of only two bits of classical information.

Since the error rates for CNOT gates and measurement are similar,

the error rates for a single swap (three CNOT gates) is similar to

a quantum teleportation (one CNOT gate and two measurements).

However, since a teleportation measures qubits 𝑞0 and 𝑞1, they are

in a basis state afterwards—the previous transportation channel is

destroyed.

Quantum teleportation as introduced above allows to move

the state of a qubit over arbitrarily large distances (assuming a

transportation channel is established) using rather few quantum

operations—making it interesting for the mapping problem de-

scribed in Section 2.1. In the next section, we show that current

mapping approaches can be easily extended to additionally exploit

quantum teleportation (which natively fits into NISQ computers)

when mapping quantum circuits to physical devices—allowing for

cheaper mapped circuits and a broader search space when aiming

for an optimal solution.

3.2 Quantum Teleportation in Mapping
This section shows how quantum teleportation natively fits into

quantum circuit mapping using swapping. As stated above, exploit-

ing quantum teleportation requires

• pairs of ancillary qubits that serve as Bell pairs for the quan-

tum transportation channels,

• moving the ancillaries away from each other (in order to

teleport a state over a “large” distance),

• Bell measurement, and

• transferring the classical measurement outcome to correct

bit- and phase-flips in the teleported state.

In the following, we show that all these requirements for us-

ing quantum teleportation are inherently satisfied when mapping

quantum circuits to NISQ devices using swapping. Moreover, we

show that exploiting teleportations may allow for cheaper mapped

circuits. Thereby, mapping a quantum circuit to the IBM Q Tokyo

quantum computer (whose coupling map is depicted in Figure 2)

serves as example.

Since each quantum computer is composed of a fixed number

of 𝑚 physical qubits (e.g., 𝑚 = 20 for IBM Q Tokyo), 𝑚 − 𝑛 an-

cillary qubits are available when mapping an 𝑛-qubit quantum

circuit to the target device. This allows for ⌊𝑚−𝑛
2
⌋ ancillary pairs

serving as transportation channels. Forming pairs of qubits that

are “connected” in the coupling map, the transportation channel is

established by using one Hadamard and one CNOT gate only.

Example 6. Consider IBM Q Tokyo’s coupling map depicted in
Figure 2 and assume that a 18-qubit circuit shall be mapped to this
device—allowing for one pair of ancillary qubits 𝑡0 and 𝑡1 to build up
a transportation channel. Mapping 𝑡0 and 𝑡1 to the adjacent physical
qubits 𝑄17 and 𝑄12 allows to establish the transportation channel
by applying a Hadamard gate to 𝑄12 and a CNOT gate with control
qubit 𝑄12 and target qubit 𝑄17. The remaining physical qubits are
used to initially map the logical qubits of the quantum circuit.

After establishing the transportation channels, the swapping

approach is conducted as usual. Since this necessarily moves the

logical qubits on the physical qubits of the architecture to satisfy

the coupling constraint, the ancillary qubits are moved around as

well—potentially increasing the distance between them.

Example 6 (continued). Assume that the swapping approach
requires to apply swap gates that first swap the state of the physical

qubits 𝑄12 and 𝑄7 and, afterwards, to swap the state of 𝑄7 and 𝑄2.
This moves the ancillary qubits 𝑡0 and 𝑡1 away from each other and
they are now mapped to the physical qubits 𝑄17 and 𝑄2, respectively,
as illustrated by dashed nodes in Figure 6.

Having a transportation channel where the corresponding log-

ical qubits are mapped to the physical qubits 𝑄𝑖 and 𝑄 𝑗 allows

to teleport the state of any physical qubit (i.e., the logical qubit

mapped to this physical qubit) which is adjacent to 𝑄𝑖 to 𝑄 𝑗 (and

vice versa) by conducting a Bell measurement. Since the required

quantum operations (i.e., CNOT , 𝐻 , and measurement in the com-

putational basis) are available on current quantum computers, this

step also fits natively into existing mapping algorithms. Further-

more, depending on the binary results of the measurements, the

gates 𝑋 and/or 𝑍 are applied to correct for possible bit- and phase-

flip errors in the prepared entanglement. Notably, the last two gates

are single-qubit gates, since the classical computer controlling the

quantum computer can unambiguously decide whether to apply

the gates or not.

Thinking in terms of coupling maps, possible teleportations can

be represented by additional virtual edges from qubits adjacent of

𝑄𝑖 (𝑄 𝑗 ) to 𝑄 𝑗 (𝑄𝑖 ) that are temporarily added to the coupling map.

This further increases the search space when mapping quantum

circuits to physical devices—allowing for cheaper mapped circuits

in the best case. More precisely, the additional virtual edges in the

coupling map offer new potential for moving around the logical

qubits to satisfy the coupling constraints.

Example 6 (Continued). In Figure 6, the ancillary qubits 𝑡0 and
𝑡1 (which establish a transportation channel) are mapped to 𝑄2 and
𝑄17. Using this transportation channel, the state of each qubit adjacent
to𝑄2 can be teleported to the other𝑄17 (and vice versa). More precisely,
the state of either 𝑄11, 𝑄12, 𝑄16, or 𝑄18 can be teleported to 𝑄2; or
the state of either𝑄1,𝑄3,𝑄6, or𝑄7 can be teleported to𝑄17. This can
be thought of eight additional virtual edges in the coupling map.

Assume that a CNOT operation shall be applied between logical
qubits mapped 𝑄3 and 𝑄16 (bold nodes in Figure 6). The coupling
constraints may be satisfied by applying swapping twice as sketched
by the dashed lines between (𝑄16, 𝑄12) and (𝑄12, 𝑄8). However, the
coupling constraint can also be satisfied by teleporting the state of
𝑄16 to 𝑄2 (along the virtual edge as sketched by the dotted line in
Figure 5).

While satisfying the coupling constraints via swapping requires six
CNOT operations, using teleportation requires only two CNOT s, two
Hadamard gates, two measurements, and up to two further single-
qubit gates to correct errors in the teleported state depending on the
measurement outcome. Depending on the cost of the individual oper-
ations, teleportation has the potential to be cheaper than exclusively
swapping.

The transportation channel vanishes after teleporting the state of

a qubit due to the Bell measurement. However, since the measured

physical qubits are connected in the coupling map, they can be

easily entangled again—resulting in a new transportation channel

that might be used later in the mapping procedure. Before entan-

gling the qubits (which are in a basis state, see Figure 5), they have

to be reset to basis state zero (by applying an 𝑋 gate in case that

measurement outcome was basis state |1⟩).4

4
Gates establishing transportation channels that are never used in the mapping proce-

dure can be easily removed from the circuit by according post-mapping optimizations.



ExploitingQuantum Teleportation inQuantum Circuit Mapping ASPDAC ’21, January 18–21, 2021, Tokyo, Japan

𝑄0 𝑄1 𝑄2 𝑄3 𝑄4

𝑄5 𝑄6 𝑄7 𝑄8 𝑄9

𝑄10 𝑄11 𝑄12 𝑄13 𝑄14

𝑄15 𝑄16 𝑄17 𝑄18 𝑄19

1

s
t SW

AP

2

n
d SW

AP

t
e
l
e
p
o
r
t
a
t
i
o
n

Figure 6: Teleportation vs. swapping for CNOT (𝑄3, 𝑄16)

Example 6 (continued). After the teleportation,𝑄16 and𝑄17 are
in a basis state, i.e., either |0⟩ or |1⟩. In the latter case, applying an
𝑋 operation ensures the basis state |0⟩. Since the measured qubits are
adjacent and in state |0⟩, they can be easily re-entangled as shown in
Figure 5. As the mapping process continues, SWAP operations move
the state of these newly entangled qubits around, likely increasing
their distance and, hence, the probability that they might be in a
suitable position later for the next teleportation.

The proposed approach leads to a blueprint for exploiting quan-

tum teleportation during quantum circuit mapping. As described

above, this fits into swapping strategies and can be applied when

mapping circuits to current NISQ devices. In general, additionally

using teleportation cannot worsen mapping results since, in the

worst case, no teleportations are conducted at all. However, finding

a mapping approach that utilizes teleportation to reduce the cost of

the mapped circuit is nontrivial and requires to quantify the cost of

a teleportation compared to the cost of a SWAP operation. A first

case study showcasing the potential is presented in the following

section.

4 CASE STUDY
This section provides a case study to demonstrate the benefit of ad-

ditionally exploiting quantum teleportation in mapping approaches

based on swapping. To this end, the IBM Q Tokyo device (see Fig-

ure 2) serves as target architecture and the benchmarks consist of

functions from RevLib [32] as well as quantum functionality.

For the case study, we incorporated the idea of quantum tele-

portation into the A
∗
-based mapping algorithm described in [13]

(which has been downloaded from https://iic.jku.at/eda/research/

ibm_qx_mapping/). The general idea of [13] is to first partition the

circuit to be mapped into layers of quantum gates acting on disjoint

qubits. Starting from an initial mapping of the logical qubits to the

physical ones (which allows applying all gates from the first layer),

the cheapest permutation of the mapping (and the corresponding

sequence of SWAP operations) is determined before each layer such

that all gates of the layer can be applied.
5
Based on that, telepor-

tation effectively adds virtual edges, which are considered in the

search as well as the predefined edges of the coupling map. Hence,

the virtual edges further increase the search space traversed by

5
Look-ahead strategies are utilized to aim for a global minimum rather than local ones.

Details are provided in [13].

the A
∗
-algorithm, potentially allowing to determine a more cost

efficient mapping.

In the following, we denote the original A
∗
-based mapping algo-

rithm (solely utilizing swapping) as 𝑀SWAP, while we denote the
proposed algorithm that also utilizes teleportations as𝑀SWAP+TEL.
Conducting an evaluation of these two algorithms is nontrivial

since calling the A
∗
-algorithm before each layer results in many

local choices that may heavily influence the cost of the resulting

mapped circuit. To overcome this issue, we randomly chose 50 ini-

tial mappings (satisfying the coupling constraint of the gates in

the first layer) for each benchmark, and determined the obtained

minimum overhead. We utilized quantum circuits and RevLib cir-

cuits considered for evaluating previous mapping algorithms as

benchmarks [32].

Table 1 summarizes the obtained results. For each benchmark,

we list its name, number of qubits, as well as the number of gates.

The fourth column lists the number of SWAP gates added by𝑀SWAP
during the mapping. Note that we list only the best result (out of 50

runs) for each benchmark. The next two columns list the number

of SWAP operations and the number of teleportations added by

𝑀SWAP+TEL. The runtimes have been omitted since each mapping

has been determined in less than 10 seconds, often even in less

than a second. The mapping was performed on a system running

GNU/Linux with an Intel i7-7700K CPU (4.2GHz) and 32GiB main

memory.

In order to obtain the respectively required overhead, we ap-

plied a cost function that weighs SWAP operations compared to

teleportations. We considered the following
6
:

• A function assigning equal costs to SWAP and teleportation.

• A function based on gate error-rates used by IBM to evaluate

mapping algorithms in the IBM Qiskit Developer Challenge

2018, where a cost of 10 is assigned to each CNOT and a cost

of 1 is assigned to (almost) each single-qubit gate. We ex-

tended IBM’s cost function by assuming also costs of 10 for a

measurement since their error rate is similar to CNOT gates.

The last two columns of Table 1 list the relative cost difference of

𝑀SWAP+TEL compared to𝑀SWAP according to these cost functions.

The results show that, even if the considered architecture is

rather small, utilizing teleportation during mapping quantum cir-

cuits indeed significantly reduces the overhead in many cases—

independently of what cost function (equal or IBM) is applied. In

the best cases, i.e., for benchmarks mini_alu_305, cm152a_212, or

pm1_249, the overhead can be reduced by 20 % and up to almost

30 %—an impressive improvement considering that the distances in

IBM Q Tokyo architecture are still rather small. Motivated by these

numbers, we are certain that, with the emergence of larger quantum

architectures and, hence, larger distances to cover, teleportation is

going to become more effective with growing architectures.

5 CONCLUSIONS
The state of the art for mapping quantum circuits to actual architec-

tures is utilizing classical thinking by only swapping moving states

along the static coupling map. In this work, we showed that addi-

tionally exploiting quantum teleportation as possibility provided by

quantummechanics, enables further options for moving qubit states

in order to satisfy the coupling constraint. In fact, the proposed

scheme allows to connect qubits over arbitrary long distances with

a constant overhead. The constant costs will will lead to a greater

6
Both cost functions resulted in the same best solution for each benchmark.

https://iic.jku.at/eda/research/ibm_qx_mapping/
https://iic.jku.at/eda/research/ibm_qx_mapping/
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Table 1: Case Study on Swapping with Teleportation

benchmark 𝑀SWAP 𝑀SWAP+TEL rel. cost

name qubits gates #SWAP #SWAP #TEL. equal IBM

ex3_229 6 403 8 6 1 0.88 0.93

mini_alu_305 10 173 17 11 1 0.71 0.73

rd73_140 10 230 23 21 1 0.96 0.98

sym9_148 10 21 504 1 657 1 369 19 0.84 0.84

life_238 11 22 445 2 638 2 573 33 0.99 0.99

z4_268 11 3 073 329 311 7 0.97 0.98

cm152a_212 12 1 221 116 86 7 0.80 0.83

sym9_146 12 328 40 34 3 0.93 0.96

dist_223 13 38 046 4 684 4 496 57 0.97 0.98

radd_250 13 3 213 344 303 7 0.90 0.91

rd53_311 13 275 36 34 1 0.97 0.98

root_255 13 17 159 2 032 1 992 11 0.99 0.99

squar5_261 13 1 993 187 178 4 0.97 0.98

sym10_262 13 64 283 8 316 7 745 191 0.95 0.96

0410184_169 14 211 30 24 4 0.93 0.99

cm85a_209 14 11 414 1 180 1 157 11 0.99 0.99

pm1_249 14 1 776 148 111 3 0.77 0.78

sym6_316 14 270 34 29 1 0.88 0.90

co14_215 15 17 936 2 529 2 401 32 0.96 0.97

dc2_222 15 9 462 1 119 1 078 9 0.97 0.97

ham15_107 15 8 763 965 948 9 0.99 1.00

misex1_241 15 4 813 433 372 8 0.88 0.89

rd84_142 15 343 38 32 1 0.87 0.88

square_root_7 15 7 630 904 844 10 0.94 0.95

cnt3-5_179 16 175 30 25 1 0.87 0.88

ising_model_16 16 786 8 3 2 0.63 0.73

qft_16 16 512 88 81 5 0.98 1.00

equal: Assuming equal costs for SWAP and teleportation

IBM: Using the cost function motivated by IBM Q Developer Challenge 2018
Each run of the benchmark was completed in less than 10 s.

impact when larger quantum architectures become accessible (such

as the ones announced by IBM [33] and Google [34]). Together

with further reduced error rates for gates and measurements as the

hardware matures, the full potential of quantum teleportation in

quantum circuit mapping will be available. But even for architec-

tures such as available today, such as the 20 qubit IBM Q Tokyo

architecture, significant improvements can be achieved now in

many cases. Because of that, we are certain that utilizing quan-

tum teleportation is going to become more effective with growing

architectures.
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