
One-pass Synthesis for
Field-coupled Nanocomputing Technologies

Marcel Walter

University of Bremen

Group of Computer Architecture

Bremen, Germany

m_walter@uni-bremen.de

Winston Haaswijk

Cadence Design Systems, Inc.

San Jose, CA, USA

haaswijk@cadence.com

Robert Wille
∗†

Johannes Kepler University

Institute for Integrated Circuits

Linz, Austria

robert.wille@jku.at

Frank Sill Torres

German Aerospace Center (DLR)

Department for the Resilience of

Maritime Systems

Bremerhaven, Germany

frank.silltorres@dlr.de

Rolf Drechsler
‡

University of Bremen

Group of Computer Architecture

Bremen, Germany

drechsler@uni-bremen.de

ABSTRACT
Field-coupled Nanocomputing (FCN) is a class of post-CMOS emerg-

ing technologies, which promises to overcome certain physical

limitations of conventional solutions such as CMOS by allowing

for high computational throughput with low power dissipation.

Despite their promises, the design of corresponding FCN circuits is

still in its infancy. In fact, state-of-the-art solutions still heavily rely

on conventional synthesis approaches that do not take the tight

physical constraints of FCN circuits (particularly with respect to

routability and clocking) into account. Instead, physical design is

conducted in a second step in which a classical logic network is

mapped onto an FCN layout. Using this two-stage approach with a

classical and FCN-oblivious logic network as an intermediate result,

frequently leads to substantial quality loss or completely impracti-

cal results. In this work, we propose a one-pass synthesis scheme

for FCN circuits, which conducts both steps, synthesis and physical

design, in a single run. For the first time, this allows to generate

exact, i. e., minimal FCN circuits for a given functionality.

CCS CONCEPTS
• Hardware → Quantum dots and cellular automata; Combi-
national synthesis; Technology-mapping; Physical synthesis;
Placement;Wire routing.

1 INTRODUCTION
Worldwide energy consumption allotted to information and telecom-

munication systems is growing. Some scenarios predict that the

sector could reach as much as 51% of global electricity usage by

2030 and, by this, contribute up to 23% of the globally released

greenhouse gases [2]. Consequently, there is an increasing inter-

est in alternative technologies that enable fast computations with

considerably lower energy dissipation compared to state-of-the-art

CMOS transistors.

∗
Also with Software Competence Center Hagenberg GmbH (SCCH).

†
Also with DFKI GmbH, Cyber Physical Systems.

‡
Also with DFKI GmbH, Cyber Physical Systems.

Field-coupled Nanocomputing (FCN) [1] is a class of emerging

post-CMOS technologies that comprises implementations such as

Quantum-dot Cellular Automata (QCA), Nanomagnet Logic (NML),

and Silicon Dangling Bonds (SiDB) amongst others that all share

similar properties. In contrast to conventional technologies, FCN

conducts computations without any electric current flow—allowing

operations with a remarkable low energy dissipation that is several

magnitudes below current CMOS technologies [25, 27, 28]. This

promising outlook motivated explorations into its feasibility, which

led to several suitable contributions to the physical implementation

of FCN technologies—in particular in the last couple of years [7, 9,

15, 18].

Accordingly, there is an increasing interest in automatic meth-

ods for the design and synthesis of corresponding FCN circuits.

Unfortunately, realizing a given functionality in an FCN technology

and particularly the placement of gates and routing of wires in an

FCN circuit differs significantly from the same task in conventional

CMOS. In fact, because of the much tighter domain-specific physi-

cal constraints in FCN, clocking is a critical factor in sequential and

combinational circuits alike because it directs the data flow and, at

the same time, controls information synchronization. Among other

obstacles, corresponding clocking constraints are one limiting factor

of the NP-hard design automation for FCN circuitry [31].

Thus far, all available methods, such as [11, 24, 30, 34], address

this problem by an application of two consecutive stages, namely

(1) Logic Synthesis, i. e., realizing the desired functionality

in terms of a classical logic network using conventional

synthesis approaches, and

(2) Physical Design, i. e., mapping the resulting network onto

an FCN layout satisfying the respective physical constraints

(e. g., clocking, timing, etc.).

This state-of-the-art flow comes with severe drawbacks. Existing

conventional logic synthesis approaches are, by no means, suited

for subsequent FCN physical design. They optimize with respect to

abstract or conventional cost metrics such as number of gates, area,

depth, etc. which, however, do not apply for FCN circuits in the

same way. Moreover, adjustments to cost metrics of existing logic



Marcel Walter, Winston Haaswijk, Robert Wille, Frank Sill Torres, and Rolf Drechsler

synthesis solutions, which may be able to “factor in” FCN design

constraints, are not possible, since the final costs of an FCN circuit

almost exclusively rely on the resulting layout. Consequently, all

existing solutions for automatic FCN design, which work with a

classical and FCN-oblivious logic network as an intermediate result,

frequently lead to substantial quality loss or completely impractical

results (cf. Section 2.2).

In this paper, we address this problem by introducing a one-pass

synthesis scheme for FCN circuits, which conducts logic synthesis

and physical design in a single run. This makes the problem sub-

stantially harder because, suddenly, the search spaces of both, the

synthesis step and the physical design step, need to be considered.

To cope with the combined complexity of two NP-complete prob-

lems [31], we utilize the deductive power of satisfiability solvers. At

the same time, our approach also offers such a high degree of flexi-

bility that it can be parameterized with various design features such

as wire-crossings, gate libraries, and clocking schemes to restrict

or loosen certain constraints and, thereby, leverage the required

runtime overhead.

For the first time, this allows for the automatic realization of

FCN circuits that do not depend on classical logic networks (gen-

erated without any FCN-context), but are optimized towards FCN

constraints from the beginning. Experimental evaluations confirm

the resulting benefits: although the required effort for covering

the search space is significant, the first truly minimal FCN circuit

realizations in terms of area could be generated for given Boolean

functions. While the exponential nature of this problem makes the

proposed approach applicable to rather small circuits only, it can be

used to assemble a design library of recurring functions, e. g., by ex-

ploiting NPN classes, which can then be utilized as building-blocks

in hierarchical design processes.

To keep this paper self-contained, Section 2 provides background

on the FCN concept and introduces the considered design problem

in detail. Section 3 presents our novel SAT-based one-pass approach

for FCN. Section 4 provides a detailed experimental evaluation.

Finally, Section 5 concludes the paper.

2 PRELIMINARIES
In this section, we briefly review the FCN concept and discuss its

(physical) design problem.

2.1 Field-coupled Nanocomputing (FCN)
Some prominent representatives of the FCN class are Quantum-dot
Cellular Automata (QCA, [19, 20]), Nanomagnet Logic (NML, [14]),

and Silicon Dangling Bonds (SiDB, [7, 15, 37]). Even though their

physical properties differ and most of them are further divided into

sub-categories, their abstract models are nearly identical, which

makes most algorithmic considerations applicable to the entire FCN

class. For the sake of brevity, we therefore only review aspects of

QCA-like technologies in this section andwill use them as a running

example for all further illustrations in this paper. We refer the

inclined reader to the cited original works for further information

on the different technologies.

Generally, FCN circuits are implemented using elements that

interact via local fields that are usually called cells. In QCA, a cell is

composed of four (or six) quantum dots, which are able to confine

(a) Cells with binary 0 and 1 state

(b) Wire segment (c) Majority gate

Figure 1: Elementary QCA cell devices

an electric charge each and that are arranged at the corners (and the

center) of a square [21]. Adding two free and mobile electrons into

each cell (that are able to tunnel between adjacent dots) yields two

stable states due to Coulomb interaction, i. e., the two electrons tend

to locate themselves at opposite corner quantum dots. Tunneling

to the outside of the cell is prevented by a potential barrier.

Each of the two states is called a cell polarization, namely 𝑃 = −1

and 𝑃 = +1, which can be defined as binary 0 and binary 1. Figure 1a

depicts these two states of a conceptualized QCA cell. The square

denotes the potential barrier to the outside world electrons cannot

overcome; quantum dots are illustrated by the four circles; and

the two black bullets represent electrons occupying a quantum

dot. When composing a structure of several FCN cells adjacent to

each other, field interactions cause the polarization of one cell to

influence the polarization of the others.

Example 1. Figure 1b shows how to arrange multiple cells in a
row to build a wire segment. It transmits binary information from left
to right or vice versa as the same field interactions happen across the
cell boundaries and thereby affect the polarization of adjacent cells.
This formation is extended in Figure 1c to construct a Majority gate
where three input cells (e. g., top, left, and bottom) compete for the
polarization of the center cell that eventually transmits its value to
the output cell (e. g., the right one). By setting one input to a constant
value, AND and OR gates can easily be constructed from Majority
gates. Also, inverters and fan-outs can be build easily with only a
few cells and, therefore, are mostly also considered as elementary
operations.

While single gates and wire segments can be built this way,

signals in larger designs get increasingly meta-stable. Furthermore,

FCN structures as reviewed so far do not employ an information

flow direction. Both issues are circumvented by clocking, which is

a fundamental aspect of combinational and sequential FCN circuits

alike. In fact, all cells must be associated to an external clock that

controls the initialization, stalling, and resetting of their states.

In case of QCA, an external electrical field-generator acts as the

clock and controls the tunneling within the cells. Depending on

the technology, each cell changes during a complete clock cycle

between up to four different phases, i. e., a switch, a hold, a reset,
and a neutral phase. Usually, four external clocks numbered from 1



One-pass Synthesis for Field-coupled Nanocomputing Technologies

(a) 2DDWave [29] (b) USE [8] (c) RES [12]

Figure 2: Clocking schemes for FCN circuit layouts

(a) AND (b) INV (c) Wire (d) Fan-out

Figure 3: Tiles in QCA ONE implementation

to 4 are applied, whereby each clock controls a selected adjacent set

of cells and is shifted by 90° compared to its predecessor. Thereby,

information flows from cells controlled by clock 1 to cells controlled

by clock 2 etc. and, eventually, back to cells controlled by clock 1

again.

For the longest time, it was assumed by designers that these clock
zones could be of arbitrary size and contain varying amounts of cells.

Creating fully clocked circuit layouts in this so-called cell-based
paradigm was comparably easy as the clocking could be added after

laying out the gates and wires. However, the cell-based paradigm

was proven to yield unfabricable or incorrect circuits in the recent

past [6, 9]. Hence, nowadays state-of-the-art in FCN design follows

the so-called tile-based paradigm in which all clock zones have a

uniform (square) shape and are arranged in a repetitive clocking
scheme. Each tile in a clocking scheme can hold up to one elementary

device from an associated gate library.

Example 2. Figure 2 depicts cutouts of size 4 × 4 tiles of three
common clocking schemes that are mostly used for QCA-like tech-
nologies. They can be extrapolated seamlessly in all directions, but
provide different assets and drawbacks, e. g., whether they support
3-ary gates or feedback loops.

Several gate libraries have been proposed for various FCN tech-

nologies. In this paper, we utilize the QCA ONE library [22] for

visualizations that proposes tiles of size 5 × 5 QCA cells. Implemen-

tations of an AND gate, an inverter, a wire segment, and a fan-out

are shown in Figure 3.

2.2 FCN Design and Resulting Problems
With the components we reviewed, it is possible to design FCN

circuit layouts by positioning the elementary gates of a predefined

gate library on a clocking scheme and connecting them by wire

segments. The default approach to this physical design of FCN is

placement & routing of readily synthesized logic networks, e. g.,

And-inverter graphs (AIGs) or Majority-inverter graphs (MIGs). The

biggest drawback with this approach is that those networks have

been obtained from conventional synthesis algorithms and were

not optimized to be routable on FCN topologies.

More precisely, there are manifold difficulties: In contrast to

classical CMOS, each wire segment in FCN causes the same costs as

a gate and takes up the same amount of space on the layout. Since

FCN is a semi-planar technology class, wires may block the routing

of other wires, which can only be compensated with long detours or

expensive wire crossings. Finally, FCN clocking determines not only

the direction of information flow, but also data synchronization. In

each phase, each signal is propagated by exactly one tile. To prevent

signals from arriving desynchronized at multi-input gates, it must

be ensured during the physical design process that all paths in the

layout pass through the same number of tiles.

We illustrate these shortcomings with a simplified example.

Example 3. Consider the logic network given in Figure 4a. It con-
sists of four operations 𝑜1, . . . , 𝑜4 and four connections. This network
has been obtained by a conventional logic synthesis procedure, but
shall be placed and routed onto an FCN layout in the following.

In Figure 4b, a possible placement of the operations onto layout
tiles is given. It allows to realize the connections (𝑜1, 𝑜2), (𝑜2, 𝑜3),
and (𝑜2, 𝑜4) by direct adjacencies without the need for extra wire
segments. For the connection (𝑜3, 𝑜4), however, one wire segment is
needed (drawn in white). This is a problem, because there is no legal
clock number that could be assigned to the respective tile so that the
information could be passed from 𝑜3 to 𝑜4. Moreover, assuming that
such a clock number was available, the two paths leading to operation
𝑜4 would be of different length, which would desynchronize the circuit.
This can be viewed as either a clocking or a routing failure.

To resolve the conflict, the operation 𝑜4 has to be relocated and its
connections rerouted. The resulting conflict-free layout can be seen in
Figure 4c. Thereby, the area costs increased from 6 to 9 tiles. The con-
nections (𝑜3, 𝑜4) and (𝑜2, 𝑜4) caused extra 2 and 3 wires respectively,
which led to a final critical path of 6 tiles. Neither of these costs could
have been predicted from considering the logic network alone.

As we have shown, the established two-stage process for FCN

design has major shortcomings that can result in extremely large

layouts. In the worst case, certain logic networks cannot be imple-

mented as FCN circuitry at all. In the following, we present a novel

one-pass synthesis approach that bypasses the weaknesses of pre-

vious algorithms by synthesizing required operations directly onto

a layout, while taking all technological constraints into account.

3 ONE-PASS DESIGN OF FCN CIRCUITS
In this section, we propose a solution to the issues arising from the

two-step FCN physical design process reviewed above.

3.1 General Idea
Given an empty layout of fixed size, an arbitrary clocking scheme,

and a multi-output truth table as a functional specification, we

propose a one-pass synthesis algorithm that represents the entire
design problem (i. e., the logic synthesis and the physical design

combined) as a satisfiability problem (SAT) [5]. By this, all possi-

ble FCN circuits on the given clocking scheme are symbolically

described. A SAT solver then enumerates all such designs and de-

termines the one that satisfies the specification and all technology

constraints.



Marcel Walter, Winston Haaswijk, Robert Wille, Frank Sill Torres, and Rolf Drechsler

𝑜1

𝑜2

𝑜3 𝑜4

(a) Synthesized logic
network

𝑜1

𝑜2

𝑜3

𝑜4

(b) Placement has
led to a routing or
clocking failure

𝑜1

𝑜2

𝑜3

𝑜4

(c) Rerouting had to be ap-
plied to resolve the conflict

Figure 4: Shortcomings of FCN placement & routing

In the literature, many important research results have already

been achieved with such schemes (e. g., cf. [13, 16, 23, 26, 36, 38]).

However, none of them investigated the potential for FCN and the

corresponding physical placement & routing constraints.

In order to describe the resulting solution, in the following sec-

tion, we first introduce the sets of Boolean variables utilized to

symbolically describe all possible FCN circuits (including those

containing invalid solutions), and then introduce constraints for-

mulated in propositional logic to restrict the possible solutions to

the ones that are valid and which satisfy the logical specification

and all technological constraints.

3.2 Formulation as a SAT Problem
In the considered one-pass synthesis problem, we are given an

empty layout of size𝑊 × 𝐻 , an arbitrary clocking scheme, and

a multi-output Boolean function 𝑓 = (𝑓1, . . . , 𝑓𝑚) : B𝑛 → B𝑚

over 𝑛 variables 𝑥1, . . . , 𝑥𝑛 to be synthesized. We identify each tile

in the layout by its coordinates (𝑥,𝑦). The coordinate (0, 0) defines
the top-left corner of the layout, i. e., we have 0 ≤ 𝑥 < 𝑊 and

0 ≤ 𝑦 < 𝐻 . The gate types supported by tile (𝑥,𝑦) depend on

the local geometry. The same holds for its potential fan-in/fan-out

connections. Each tile can be expressed by the following entities

that can be considered as sets:

I(𝑥,𝑦) : fan-in directions for (𝑥,𝑦)
Ω (𝑥,𝑦) : fan-out directions for (𝑥,𝑦)
Δ(𝑥,𝑦) : primary I/O directions for (𝑥,𝑦)

Ĩ(𝑥,𝑦) : potential fan-ins for (𝑥,𝑦)
Ω̃ (𝑥,𝑦) : potential fan-outs for (𝑥,𝑦)
Θ(𝑥,𝑦) : possible gate types for (𝑥,𝑦)

Note that we have I(𝑥,𝑦) ∪ Ω (𝑥,𝑦) ⊆ {north, east, south,west}. In
the following, we utilize these entities to introduce the necessary

Boolean variables for our SAT formulation, which is inspired by

the SSV encoding described in [13]. SSV itself is based on earlier

formulations by Eén and Knuth [10, 17]. Since it is originally used

for the synthesis of homogeneous normal k-input logic networks,

our encoding has to differ substantially in various ways. However,

the correctness of our encoding follows directly from SSV. A more

formal justification can be found in [13].

(𝑥,𝑦)
𝑡 (𝑥,𝑦)\

𝑠 (𝑥,𝑦) (𝑥,𝑦−1)
𝑐 (𝑥,𝑦) (𝑥,𝑦−1)

𝑐 (𝑥,𝑦) (𝑥,𝑦+1)
𝑥 (𝑥,𝑦) (𝑥,𝑦+1)𝑡
𝑔ℎ (𝑥,𝑦)south

𝑐 (𝑥,𝑦) (𝑥+1,𝑦)
𝑥 (𝑥,𝑦) (𝑥+1,𝑦)𝑡
𝑔ℎ (𝑥,𝑦)east

𝑐 (𝑥,𝑦) (𝑥−1,𝑦)
𝑠 (𝑥,𝑦) (𝑥−1,𝑦)

Figure 5: Variables for a tile at position (𝑥,𝑦)

Every tile must be assigned some gate type, i. e., Θ(𝑥,𝑦) ≠ ∅. We

always enable the special type 𝜖 , which corresponds to the empty

tile. We write 𝜙]̃ (]̃) = 𝑘 to indicate that fan-in option ]̃ has 𝑘 fan-ins.

Similarly, we write 𝜙\ (\ ) = 𝑘 to indicate gate operator arity.

For each tile (𝑥,𝑦), we introduce the following variables resulting
from the entities above, for 1 ≤ ℎ ≤ 𝑚, 𝜔 ∈ Ω (𝑥,𝑦) , 𝛿 ∈ Δ(𝑥,𝑦) ,

]̃ ∈ Ĩ(𝑥,𝑦) , \ ∈ Θ(𝑥,𝑦) , �̃� ∈ Ω̃ (𝑥,𝑦) , and 0 ≤ 𝑡 < 2
𝑛
:

𝑥 (𝑥,𝑦)𝜔𝑡 : 𝑡 th bit of (𝑥,𝑦)’s truth table in direction 𝜔

𝑔ℎ (𝑥,𝑦)𝛿 : 𝑓ℎ (𝑥1, . . . , 𝑥𝑛) points to (𝑥,𝑦)’s output port 𝛿
𝑠 (𝑥,𝑦) ]̃ : (𝑥,𝑦) selects fan-in ]̃

𝑡 (𝑥,𝑦)\ : (𝑥,𝑦) has gate type \
𝑐 (𝑥,𝑦)�̃� : (𝑥,𝑦) is connected to �̃�

The 𝑔ℎ (𝑥,𝑦)𝛿 variables are needed only if Δ(𝑥,𝑦) ≠ ∅.

Example 4. Consider the tile given in Figure 5 that has been cut
out from a layout that utilizes the 2DDWave clocking scheme. Let
its clock number be 1 and its position be (𝑥,𝑦). The arrows indicate
possible incoming and outgoing data flow directions. Assigned to the
tile and each cardinal direction, the respectively introduced Boolean
variables are shown. Those are the variables defining the gate type of
the tile, connection variables for each direction, fan-in variables for
the incoming directions, and truth table variables as well as primary
output pin variables for the outgoing directions.

Passing these variables to a SAT solver, arbitrary assignments
representing different FCN circuits are obtained. For example, assign-
ing 𝑡 (𝑥,𝑦)\ = 1 would represent that tile (𝑥,𝑦) is occupied by a gate of
type \ , while assigning 𝑔ℎ (𝑥,𝑦)east = 1 would represent that tile (𝑥,𝑦)
computes the primary output 𝑓ℎ in eastern direction.

Having these variables, it is left to add constraints in proposi-

tional logic to ensure that (1) the synthesized FCN circuit layout

computes the given function specification, and (2) it additionally

satisfies all physical design constraints imposed by the technology

and the given clocking scheme.

For each (𝑥,𝑦), ]̃ ∈ Ĩ(𝑥,𝑦) , 𝜔 ∈ Ω (𝑥,𝑦) , and 𝑎, 𝑏, 𝑐 ∈ B, the
following constraints ensure that the FCN circuit layout simulates

the correct sub-function at each tile:
(𝑠 (𝑥,𝑦) ]̃ ∨ 𝑡 (𝑥,𝑦)\ ∨ (𝑥]̃ (1)𝑡 ⊕ 𝑎) ∨ (𝑥 (𝑥,𝑦)𝜔𝑡 ⊕ \𝜔 (𝑎))) if 𝜙\ (\ ) = 1

(𝑠 (𝑥,𝑦) ]̃ ∨ 𝑡 (𝑥,𝑦)\ ∨ (𝑥]̃ (1)𝑡 ⊕ 𝑎) ∨ (𝑥]̃ (2)𝑡 ⊕ 𝑏) ∨ (𝑥 (𝑥,𝑦)𝜔𝑡 ⊕ \𝜔 (𝑎, 𝑏))) if 𝜙\ (\ ) = 2

(𝑠 (𝑥,𝑦) ]̃ ∨ 𝑡 (𝑥,𝑦)\ ∨ 𝑓 (𝑥]̃ (1)𝑡 ⊕ 𝑎) ∨ (𝑥]̃ (2)𝑡 ⊕ 𝑏) ∨ (𝑥]̃ (3)𝑡 ⊕ 𝑐) ∨ (𝑥 (𝑥,𝑦)𝜔𝑡 ⊕ \𝜔 (𝑎, 𝑏, 𝑐))) if 𝜙\ (\ ) = 3

With some abuse of notation, we use ]̃ (𝑘) here to refer to the

𝑘th fan-in for fan-in option ]̃, and \𝜔 (𝑎) to refer to the result of



One-pass Synthesis for Field-coupled Nanocomputing Technologies

applying the Boolean function corresponding to gate type \ in

output direction 𝜔 with input 𝑎. For all clauses, 𝜙]̃ (]̃) = 𝜙\ (\ ).
We describe the intuition behind these clauses for the case

𝜙\ (\ ) = 2. The other cases are analogous. If (𝑥,𝑦) has inputs 𝑖1 = ]̃ (1)
and 𝑖2 = ]̃ (2) and (𝑥,𝑦) is of type \ and the 𝑡 th bit of 𝑖1 is 𝑎 and
the 𝑡 th bit of 𝑖2 is 𝑏, then it must be the case that 𝑥 (𝑥,𝑦)𝜔𝑡 = \𝜔 (𝑎, 𝑏).
This becomes apparent when rewriting the constraint as follows:

(𝑠 (𝑥,𝑦) ]̃∧𝑡 (𝑥,𝑦)\∧(𝑥]̃ (1)𝑡⊕𝑎)∧(𝑥]̃ (2)𝑡⊕ ¯𝑏)) =⇒ (𝑥 (𝑥,𝑦)𝜔𝑡⊕ \𝜔 (𝑎, 𝑏))

Note that 𝑎, 𝑏, and 𝑐 are constants, which are used to set the

proper variable polarities. Furthermore, note that we have to sup-

port non-symmetric functions such as wire crossings, so we may

have \𝜔 (𝑎, 𝑏) ≠ \𝜔 (𝑏, 𝑎). Hence, it is important that different vari-

able orderings are encoded as separate fan-in options ]̃.

Let (𝑏1, . . . , 𝑏𝑛)2 be the binary encoding of a truth table at in-

dex 𝑡 . In order to fix the proper output values, we add the clauses

(𝑔ℎ (𝑥,𝑦)𝛿∨𝑥 (𝑥,𝑦)𝛿𝑡 ) or (𝑔ℎ (𝑥,𝑦)𝛿∨𝑥 (𝑥,𝑦)𝛿𝑡 ) depending on the value
𝑓ℎ (𝑏1, . . . , 𝑏𝑛). Next, for each output, we add

∨𝑊
𝑥=0

∨𝐻
𝑦=0

𝑔ℎ (𝑥,𝑦)𝛿 .
This ensures that every primary output points to the output port

of some tile. Each tile must select some gate type, so we add∨
\ ∈Θ(𝑥,𝑦) 𝑡 (𝑥,𝑦)\ .
Clocking schemes can permit cycles in the information flow on

the layout (cf. Figure 2). Since we are considering combinational

functions only, we must add clauses to ensure that the final design

is acyclic. We achieve this by first detecting all possible cycles

permitted by the clocking scheme in the layout and then using the

connection variables 𝑐 (𝑥,𝑦)�̃� to prevent them from being part of valid

solutions. Let the path ((𝑥0, 𝑦0), (𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛), (𝑥0, 𝑦0)) be a
cycle.We add the clause

∨𝑛
𝑖=0

𝑐 (𝑥𝑖 ,𝑦𝑖 ) (𝑥 𝑗 ,𝑦 𝑗 ) , where 𝑗 = (𝑖+1 mod𝑛).
We must further ensure that a 𝑐 (𝑥,𝑦)�̃� is set to true whenever fan-

out �̃� selects (𝑥,𝑦) as fan-in. To that end, for all �̃� ∈ Ω̃ (𝑥,𝑦) and

]̃ ∈ Ω̃�̃� we add (𝑠�̃�]̃ ∨ 𝑐 (𝑥,𝑦)�̃� ) if (𝑥,𝑦) ∈ ]̃.

We have now described the main clauses.We use some additional

clauses to satisfy various cardinality constraints. These include

constraints to ensure that primary inputs have at most one fan-out,

tile output ports may be used only once, and making sure that every

tile selects at least some fan-in option (unless it is an empty tile).

4 EXPERIMENTAL EVALUATION
In this section, we summarize the experiments we conducted in

order to evaluate the proposed one-pass synthesis scheme. To this

end, we first discuss our implementation and go over the specifica-

tions of the system used in the following evaluations. In Section 4.2,

we then investigate the impact that the proposed one-pass approach

has on performance by comparing it against a state-of-the-art exact

placement & routing algorithm for QCA that works on convention-

ally synthesized logic networks [30]. In Section 4.3, we showcase the

benefits of the proposed approach by utilizing it to generate a com-

prehensive design library of optimal building blocks on different

clocking schemes by using NPN classes. Finally, in Section 4.4, we

discuss further benefits we see in the proposed one-pass synthesis

scheme.

Table 1: Comparison against exact placement & routing [30]

Exact P&R [30] Proposed approach

Function A CP t in s A CP t in s

2:1 MUX 9 5 < 1 9 5 1

XOR 9 5 < 1 9 5 19

XNOR 16 8 2 16 8 19

Half adder 25 10 13 16 7 42

c17 30 16 56 18 13 331

ParGen 42 14 791 — — TO

ParCheck 48 16 1140 — — TO

4:1 MUX 49 22 5131 — — TO

A Area in tiles given by the layout’s bounding box

CP Critical path in tiles

TO Timeout of 2 hours reached

4.1 Experimental Setup
We implemented the proposed one-pass synthesis algorithm as a

Python library calledMugen1 and integrated it into the open-source
FCN design framework fiction [33].2 All evaluations in the following
sections were run on a Fedora 28 machine with an Intel Xeon E3-

1270 v3 CPU with 3.50GHz (up to 3.90GHz boost) and 32GB of

main memory. The underlying SAT solver used was Glucose 3.0 [3].

The correctness of the results has been checked using [32].
3

4.2 Impact on Performance
The proposed one-pass synthesis scheme for FCN circuits con-

ducts logic synthesis and physical design together in a single run.

This makes the problem substantially harder because, suddenly,

the search spaces of both, the synthesis step and the physical de-

sign step, need to be considered. To evaluate the resulting impact

on the performance, we conducted an experimental comparison

against an existing placement & routing algorithm for QCA cir-

cuit layouts [30]. That approach is also exact, but only performs

the physical design step of a given conventionally pre-synthesized

logic network onto a given clocking scheme. Consequently, when

directly comparing a layout obtained by exact placement & routing

of a non-optimized logic network to a layout obtained by the pro-

posed one-pass synthesis scheme, the latter must never be worse

in terms of area.

Table 1 compares their obtained results against the ones we could

generate using the proposed one-pass synthesis on the same func-

tions that were taken from their work using the same configuration.

The column Function lists the function names that were used as

inputs to both approaches. The following columns A, CP, and t in s
repeat for both approaches and list the area of the resulting circuit

layout in tiles, its critical path in tiles, and the time in seconds it

took to obtain the results, respectively. In [30], the authors listed

the circuit area in terms of cells where each tile would be composed

of 5× 5 QCA cells. We converted the area values accordingly for Ta-

ble 1. Note that the critical path length was not an optimization

target in either algorithm, but is listed for the sake of completeness

1
The source code is publicly available at https://github.com/whaaswijk/mugen.

2
The source code is publicly available at https://github.com/marcelwa/fiction.

3
The obtained designs and physical simulation files for QCADesigner [35] are publicly

available at https://github.com/marcelwa/FCN-Design-Library.



Marcel Walter, Winston Haaswijk, Robert Wille, Frank Sill Torres, and Rolf Drechsler

and because the authors listed it in [30] as well. Note further that

both approaches have been evaluated on different hardware sys-

tems. Therefore, the runtimes are not directly comparable, but give

a good approximation.

As postulated, the one-pass synthesis indeed has a severe effect

on the run-time. It is substantially slower than placement & routing

and times out on three functions. However, this was expected as one-

pass synthesis eventually has to cope with the combined complexity

of two NP-complete problems. However, it was able to synthesize

substantially smaller circuit layouts for both the half adder and the

c17 function while yielding the same circuit area for the remaining

functions. This observation coincides with a common assumption

in the FCN community, namely, that overhead due to wire routing

could be reduced by tailoring the logic network to the clocking

scheme. Moreover, for the first time, truly optimal FCN designs

for a given function to be synthesized could be generated due to

the joint consideration of logical synthesis and physical design.

Thus far, previously proposed approaches (such as [30]) could only

guarantee optimality of a physical design with respect to a logic

network synthesized before (but not with respect to the actual

function).

4.3 Generating a Design Library
As revealed in the previous section, the runtime overhead of the

proposed one-pass approach is substantial. However, there are still

applications where this exact one-pass synthesis can be of great

benefit. Since it enables absolute minimality of circuit layouts, it

can be used to assemble a comprehensive design library of recur-

ring functions, which can be used as optimal building-blocks in

hierarchical design processes.

Exemplary, we generated such a design library covering the

entire Boolean function space in 3 variables by utilizing NPN classi-
fication, which determines if some single-output Boolean functions

are identical under negation and permutation of their inputs and

negation of their output. NPN classes are of great interest in logic

design because they tremendously reduce the number of represen-

tatives that are to be considered when exhaustively enumerating

function spaces without losing expressive power. Permuting and

negating primary pins shifts complexity away from the designer

and towards the integrator on whose side these tasks are considered

to be trivial in most cases.

We considered all 3-input NPN classes and synthesized their can-

onized representatives on the three exemplary clocking schemes

2DDWave, USE, and RES that are shown in Figure 2. This (1) pro-

vides us with a design library able to compute any Boolean function

in 3 variables on any of the three clocking schemes with optimal

area usage,
4
and (2) allows us to reason about appropriateness of

the clocking schemes that, to the best of our knowledge, no method

was able to do with an optimality guarantee thus far. While such

a design library is crucial for the development of hierarchical or

cut-based physical design approaches, the sense of appropriateness

can guide designers when setting their parameters. Furthermore,

our method can be used to rate future clocking schemes.

4
The obtained design files and circuit images are publicly available at https://github.

com/marcelwa/FCN-Design-Library.

Table 2: Area results for all 3-input NPN classes

2DDWave USE RES

NPN A #G #W A #G #W A #G #W

0x00 8 5 1 8 5 3 8 8 0

0x01 10 7 1 10 7 1 8 7 1

0x03 8 6 1 6 5 0 8 5 3

0x06 18 13 4 20 13 8 20 13 5

0x07 10 8 0 10 8 0 8 7 1

0x0f 4 3 0 4 3 0 4 3 0

0x16 27 20 6 32 18 14 32 20 10

0x17 20 15 2 24 15 10 9 6 1

0x18 24 16 7 28 15 14 30 18 8

0x19 18 15 1 20 15 6 20 14 7

0x1b 15 12 2 16 11 5 15 10 6

0x1e 18 12 3 24 16 9 24 12 10

0x3c 15 11 2 20 11 9 16 9 8

0x69 32 18 6 32 18 16 32 21 12

total 227 161 36 254 160 95 234 153 72

A Area in tiles given by the layout’s bounding box

#G Number of gates including I/O pins

#W Number of wire segments (counting crossings as 2)

(a) 2DDWave (b) USE (c) RES

Figure 6: Crossing-free layouts of the 2-input XOR function

The results of our experiments are summarized in Table 2. The

column NPN lists the truth tables of the canonized NPN repre-

sentatives in hexadecimal notation. These served as inputs to the

synthesis runs. The next columns A, #G, and #W repeat for each of

the three clocking schemes and list the necessary minimum area in

tiles, number of gates, and number of wire segments respectively

needed for an FCN circuit layout that implements the given truth

table. The final row total sums up the respective columns.

It can be seen that the 2DDWave clocking scheme needed the

least amount of area and wire overhead to implement all given

functions. However, the RES scheme needed the least amount of

actual logic, which is likely due to the fact that only RES supports

Majority gates. The USE clocking scheme had the highest area and

wire overhead.

4.4 Further Benefits of the One-Pass Scheme
Since the FCN concept is still in its infancy, several conjectures

about its properties in the physical design process could not be

proven yet. For instance, it was unknown whether a crossing-free



One-pass Synthesis for Field-coupled Nanocomputing Technologies

QCA ONE layout implementation of the 2-input XOR function

exists that has all primary input and output pins placed exactly

once and in a position at the borders where they are accessible. Since

XOR is not an elementary gate in the QCA ONE library, typically

the composition 𝑎 ⊕ 𝑏 = ¬(𝑎𝑏) · (𝑎 + 𝑏) is used whose Boolean

chain is non-planar when including the layout borders as fix-points.

The proposed approach enabled us to settle this question. Figure 6

depicts crossing-free XOR implementations in the QCA ONE gate

library for all three clocking schemes investigated in this paper.
5

Furthermore, as we already mentioned, placement & routing

generate an overhead in terms of circuit area, which is used for

wire routing. This overhead occurs because logic networks, that

serve as inputs, were not synthesized with FCN routability in mind.

This work, henceforth, provides weak evidence that even in exact
placement & routing techniques there exists an overhead that can

be eliminated using the proposed approach. These propositions,

thus, further confirm the benefits of the scheme demonstrated in

this paper.

5 CONCLUSIONS
In this paper, we presented a SAT-based approach for exact one-pass

synthesis of Field-coupled Nanocomputing (FCN) technologies, which
we made publicly available. By this, we combined synthesis and

physical design to a single run—allowing, for the first time, the au-

tomatic realization of FCN circuits that do not depend on classical

logic networks (generated by conventional synthesis approaches

without any FCN-context). Since this obviously has a substantial ef-

fect on the run-time performance (caused by the fact that one-pass

synthesis eventually has to cope with the combined complexity of

two NP-complete problems), the proposed scheme is only applica-

ble to small circuits thus far. However, we demonstrated that this

already allows to generate truly optimal results, the generation of

optimal design libraries, the exact evaluation of arbitrary clocking

schemes, and the consideration of problems and properties of FCN

designs that could not be addressed yet. Motivated by these results,

we believe this work provides the basis for a further consideration

of one-pass synthesis for FCN in the future.

ACKNOWLEDGMENTS
This work has partially been supported by the LIT Secure and

Correct Systems Lab funded by the State of Upper Austria as well

as by BMK, BMDW, and the State of Upper Austria in the frame of

the COMET Programme managed by FFG.

REFERENCES
[1] N. G. Anderson and S. Bhanja. 2014. Field-coupled Nanocomputing: Paradigms,

Progress, and Perspectives (1st ed.). Springer, New York.

[2] A. S. G. Andrae and T. Edler. 2015. On Global Electricity Usage of Communication

Technology: Trends to 2030. Challenges 6, 1 (2015), 117–157.
[3] G. Audemard and L. Simon. 2009. Glucose: a solver that predicts learnt clauses

quality. SAT Competition (2009), 7–8.

[4] M. R. Beigh, M. Mustafa, and F. Ahmad. 2013. Performance Evaluation of Efficient

XOR Structures in Quantum-dot Cellular Automata (QCA). Circuits and Systems
(2013), 147–156.

5
Several examples of XOR realizations that require less area can be found in the

literature, e. g., [4]. However, these were not synthesized from existing well-proven

gates, but are cell-based and hand-crafted. Such solutions do not guarantee physical

correctness and fabricatibility out-of-the-box and need to be further verified in lab

tests or quantum simulations [9].

[5] A. Biere, M. Heule, H. van Maaren, and T. Walsh. 2009. Handbook of Satisfability.
IOS Press.

[6] E. Blair and C. Lent. 2018. Clock Topologies for Molecular Quantum-Dot Cellular

Automata. Journal of Low Power Electronics and Applications 8, 3 (2018).
[7] S. Bohloul, Q. Shi, R. A. Wolkow, and H. Guo. 2017. Quantum Transport in Gated

Dangling-Bond Atomic Wires. Nano Letters 17, 1 (2017), 322–327.
[8] C. A. T. Campos et al. 2016. USE: A Universal, Scalable, and Efficient Clocking

Scheme for QCA. TCAD 35, 3 (2016), 513–517.

[9] H. N. Chiu, S. S. H. Ng, J. Retallick, and K. Walus. 2020. PoisSolver: a Tool for

Modelling Silicon Dangling Bond Clocking Networks. arXiv:2002.10541.

[10] N. Eén. 2007. Practical SAT: a tutorial on applied satisfiability solving. (2007).

http://minisat.se/Papers.html FMCAD.

[11] G. Fontes et al. 2018. Placement and Routing by Overlapping and Merging QCA

Gates. In ISCAS. 1–5.
[12] M. Goswami et al. 2019. An efficient clocking scheme for quantum-dot cellular

automata. Electron. Lett. (2019), 1–14.
[13] W. Haaswijk, M. Soeken, A. Mishchenko, and G. De Micheli. 2020. SAT-Based

Exact Synthesis: Encodings, Topology Families, and Parallelism. IEEE Trans. on
CAD of Integrated Circuits and Systems 39, 4 (2020), 871–884.

[14] X. K. Hu et al. 2015. Edge-Mode Resonance-Assisted Switching of Nanomagnet

Logic Elements. IEEE Trans. Magn. 51, 11 (2015), 1–4.
[15] T. R. Huff, H. Labidi, et al. 2017. Atomic White-Out: Enabling Atomic Circuitry

through Mechanically Induced Bonding of Single Hydrogen Atoms to a Silicon

Surface. ACS Nano 11, 9 (2017), 8636–8642.
[16] O. Keszöcze, R. Wille, and R. Drechsler. 2014. Exact Routing for Digital Microflu-

idic Biochips with Temporary Blockages. In ICCAD. 599–606.
[17] D. E. Knuth. 2015. The Art of Computer Programming, Volume 4, Fascicle 6:

Satisfiability. Addison-Wesley, Reading, Massachusetts.

[18] C. S. Lent et al. 2016. Molecular Cellular Networks: A non von Neumann Archi-

tecture for Molecular Electronics. In ICRC. 1–7.
[19] C. S. Lent, B. Isaksen, and M. Lieberman. 2003. Molecular Quantum-dot Cellular

Automata. Journal of the American Chemical Society 125, 4 (2003), 1056–1063.

[20] C. S. Lent and P. D. Tougaw. 1997. A Device Architecture for Computing with

Quantum Dots. Proc. IEEE 85, 4 (1997), 541–557.

[21] W. Liu, E. E. Swartzlander Jr, and M. O’Neill. 2013. Design of Semiconductor QCA
Systems. Artech House.

[22] D. A. Reis et al. 2016. A Methodology for Standard Cell Design for QCA. In

ISCAS. 2114–2117.
[23] H. Riener, W. Haaswijk, A. Mishchenko, G. De Micheli, and M. Soeken. 2019.

On-the-fly and DAG-aware: Rewriting Boolean Networks with Exact Synthesis.

In Design, Automation and Test in Europe. 1649–1654.
[24] F. Riente et al. 2017. ToPoliNano: A CAD Tool for Nano Magnetic Logic. TCAD

36, 7 (2017), 1061–1074.

[25] F. Sill Torres, R. Wille, P. Niemann, and R. Drechsler. 2018. An Energy-Aware

Model for the Logic Synthesis of Quantum-Dot Cellular Automata. TCAD 37, 12

(2018), 3031–3041.

[26] M. Soeken, W. Haaswijk, E. Testa, A. Mishchenko, L. Amarù, R. K. Brayton, and

G. De Micheli. 2018. Practical Exact Synthesis. In 2018 Design, Automation Test in
Europe Conference Exhibition (DATE). 309–314. https://doi.org/10.23919/DATE.

2018.8342027

[27] J. Timler and C. S. Lent. 2002. Power Gain and Dissipation in Quantum-dot

Cellular Automata. J. Appl. Phys. 91, 2 (2002), 823–831.
[28] F. Sill Torres, P. Niemann, R. Wille, and R. Drechsler. 2020. Near Zero-Energy

Computation Using Quantum-dot Cellular Automata. In JETC.
[29] V. Vankamamidi, M. Ottavi, and F. Lombardi. 2006. Clocking and Cell Placement

for QCA. In IEEE-NANO, Vol. 1. 343–346.
[30] M. Walter, R. Wille, D. Große, F. Sill Torres, and R. Drechsler. 2018. An Exact

Method for Design Exploration of Quantum-dot Cellular Automata. In DATE.
503–508.

[31] M. Walter, R. Wille, D. Große, F. Sill Torres, and R. Drechsler. 2019. Placement &

Routing for Tile-based Field-coupled Nanocomputing Circuits is NP-complete.

In JETC.
[32] M. Walter, R. Wille, F. Sill Torres, and R. Drechsler. 2020. Verification for Field-

coupled Nanocomputing Circuits. In DAC.
[33] M. Walter, R. Wille, F. Sill Torres, D. Große, and R. Drechsler. 2019. fiction:

An Open Source Framework for the Design of Field-coupled Nanocomputing

Circuits. arXiv:1905.02477

[34] M. Walter, R. Wille, F. Sill Torres, D. Große, and R. Drechsler. 2019. Scalable

Design for Field-coupled Nanocomputing Circuits. In ASP-DAC. 197–202.
[35] K. Walus, T. J. Dysart, G. A. Jullien, and R. A. Budiman. 2004. QCADesigner: A

Rapid Design and Simulation Tool for Quantum-dot Cellular Automata. TNANO
3, 1 (2004), 26–31.

[36] R. Wille and D. Große. 2007. Fast Exact Toffoli Network Synthesis of Reversible

Logic. In ICCAD. 60–64.
[37] R. A. Wolkow, L. Livadaru, et al. [n.d.]. Silicon Atomic Quantum Dots Enable

Beyond-CMOS Electronics. Springer-Verlag, 33–58.
[38] A. Zulehner and R. Wille. 2018. One-pass Design of Reversible Circuits: Combin-

ing Embedding and Synthesis for Reversible Logic. TCAD 37, 5 (2018), 996–1008.


