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Abstract—With the emergence of more and more applications
for quantum computing, also the development of corresponding
methods for design automation is receiving increasing interest.
In this respect, decision diagrams provide a promising basis for
many design tasks such as simulation, synthesis, verification, and
more. However, users of the corresponding tools often do not have
a proper background or an intuition about how these methods
based on decision diagrams work and what their strengths and
limits are. In an effort to make decision diagrams for quantum
computing more accessible, we present a visualization tool which
visualizes quantum decision diagrams and allows to explore their
behavior when used in the design tasks mentioned above. The
installation-free web-tool allows users to interactively learn how
decision diagrams can be used in quantum computing, e.g., to
(1) compactly represent quantum states and the functionality of
quantum circuits, (2) to efficiently simulate quantum circuits, and
(3) to verify the equivalence of two circuits. The tool is available
at https://iic.jku.at/eda/research/quantum_dd/tool.

I. INTRODUCTION

Quantum computers are steadily improving in terms of their
computational power to the extent that first computations are
being performed that are no longer feasible on conventional
machines [1], [2]. Achieving these milestones is only possible
through interdisciplinary efforts by physicists, mathematicians,
computer scientists, and many others. Just as in the design of
conventional circuits and systems, the development of design
automation tools for quantum computing will be one of the key
factors for the success of the technology.

In the 80’s, decision diagrams were proposed as a data
structure for efficiently representing and manipulating Boolean
functions [3]. Following this development, several types of
decision diagrams such as BDDs, FBDDs, KFDDs, MTBDDs,
ZDDs, etc. emerged (see, e.g., [4]–[9]) which established them
as a core asset in the design of today’s circuits and systems. Due
to their success in the past, the use of decision diagrams has also
been proposed in the domain of quantum computing [10]–[14].
In particular for design tasks such as simulation [10], [15], [16],
synthesis [17]–[19], and verification [12], [20], [21], they found
great interest recently.

However, to date, there is still a huge gap to bridge between
the quantum computing and the design automation community.
In fact, these promising techniques have hardly reached the
core of the quantum computing community until now and are
not yet established—despite showing promising results. Due
to the interdisciplinarity of the field, quite often, users of the
corresponding tools are hardly familiar with the underlying
theory and lack an intuition about how these tools work.

This special session summary paper (and the tool it proposes)
shall serve as an entry point for both, the design automation
community in order to better understand the problems and tasks
in quantum computing, but even more so the quantum commu-
nity to get familiar with the concept of decision diagrams. In
an effort to make decision diagrams for quantum computing

more accessible, we present a tool which visualizes quantum
decision diagrams and allows to explore their behavior when
used in the design tasks mentioned above. We believe that this
will allow researchers and engineers who are unfamiliar with
decision diagrams to more easily grasp the concept of them and
foster an understanding of how they can be applied in practice.

To properly introduce the tool, we first review the basics of
quantum computing and settle the terminology used throughout
this work in Sec. II. Based on that, we then describe the
construction of decision diagrams for quantum computing and
illustrate their application to the design problems of simulation
and verification with several examples in Sec. III. Afterwards,
Sec. IV shows how the developed tool can be used to visualize
(1) the compact representation of quantum states and the
functionality of quantum circuits, (2) the simulation scheme
based on decision diagrams, and (3) the equivalence checking
scheme based on decision diagrams. Finally, Sec. V concludes
the paper. To keep the effort of using the visualization as small
as possible, it has been implemented as a web tool which can
be started by simply accessing https://iic.jku.at/eda/research/
quantum_dd/tool.

II. QUANTUM COMPUTING

In this section, we give an overview of the main concepts in
quantum computing. While the following descriptions are kept
brief, we refer to [22] for a thorough introduction.

In quantum computing the main computational unit is the
qubit. In contrast to classical bits, a qubit cannot only be in
one of the computational basis states |0〉 or |1〉, but also in an
arbitrary superposition of these states. Specifically, the state |ϕ〉
of a qubit is described by two amplitudes α0, α1 ∈ C such that

|ϕ〉 = α0 |0〉+ α1 |1〉 ≡ α0

[
1
0

]
+ α1

[
0
1

]
= [α0

α1]

and |α0|2 + |α1|2 = 1. The resulting column vector is also
referred to as state vector. In an n-qubit system1 there exist 2n
computational basis states |i〉 with i ∈ {0, 1}n. Analogously,
the state of an n-qubit system is described by 2n complex
amplitudes αi ∈ C such that |ϕ〉 =

∑
i∈{0,1}n αi |i〉 and∑

i∈{0,1}n |αi|2 = 1—which can again be interpreted as a state
vector, i.e., |ϕ〉 ≡ [α0...0, . . . , α1...1]

>.

Example 1. Consider a two-qubit system whose state is de-
scribed by the state vector

1/
√
2 [1, 0, 0, 1]> ≡ 1/

√
2 |00〉+ 1/

√
2 |11〉 .

This is a valid quantum state, since |1/√2|2 + |1/√2|2 = 1.
Furthermore, it demonstrates a key phenomenon unique to
quantum computing called entanglement. While the complete

1Throughout this work, big-endian convention is used for ordering the qubits,
i.e., we interpret a certain basis state as |qn−1 . . . q0〉, where qn−1 denotes
the “most-significant” qubit.
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system’s state can be accurately described (by the above state
vector), its individual parts, i.e., the state of the individual
qubits, cannot. More precisely, the state |ϕ〉 cannot be split
into |q1〉 ⊗ |q0〉, where |qi〉 describes the state of the ith qubit
and ⊗ denotes the tensor product of both vectors.

In a real quantum system, the individual amplitudes αi
are not directly observable. Instead, a measurement operation
collapses the system’s state to one of the computational basis
states |i〉—each with probability |αi|2—which can then be
read-out classically.

Example 2. The state 1/
√
2 |00〉 + 1/

√
2 |11〉 from Ex. 1 rep-

resents an equal superposition of two basis states. Measuring
one qubit of this state would yield |0〉 in 50% of the cases
and |1〉 otherwise. The resulting value for the second qubit is
completely determined by the output of the first measurement
due to the entanglement of the two qubits.

The state of a quantum system is manipulated by quantum
operations (often also referred to as quantum gates). Typically,
these operations only operate on a small subset of a system’s
qubits. An operation acting on k ≤ n qubits (most frequently
k = 1 or k = 2) is described by a 2k × 2k unitary matrix2 U .
Applying such an operation to an n-qubit system in the state |ϕ〉
corresponds to extending the (local) 2k×2k matrix to a 2n×2n
(system) matrix using tensor products and, then, calculating the
matrix-vector product U |ϕ〉—resulting in a new state |ϕ′〉.

Example 3. Consider the all-zero state
|ϕ〉 = |00〉 ≡ [1, 0, 0, 0]> and the single-qubit Hadamard
operation, whose action is described by the unitary 2 × 2
matrix H shown in Fig. 1(a). Assume this operation is to be
applied to the “most-significant” qubit of the two-qubit system
above. Then, the full 22 × 22 matrix corresponding to this
operation is given by H⊗I2, where I2 denotes the 2×2 identity
matrix. Its application to the state vector |ϕ〉 then yields the
new state |ϕ′〉 = 1/

√
2 [1, 0, 1, 0]> = 1/

√
2 |00〉+ 1/

√
2 |10〉.

Quantum computations are just sequences of quantum oper-
ations applied to the state of a system. This is predominantly
described by quantum circuits. There, horizontal wires indicate
the system’s individual qubits, while gates that are placed on
these wires indicate the sequence of operations to apply.

Example 4. Fig. 1(c) shows one of the simplest quantum
circuits comprised of two qubits q0, q1 and two gates g0, g1.
The first gate represents a Hadamard operation (as already
discussed in Ex. 3), while the second operation represents
a controlled-NOT operation whose corresponding matrix is
shown in Fig. 1(b). A negation of the qubit state is applied
to a target qubit (indicated by ⊕) if and only if certain control
qubits (indicated by •) are in state |1〉.

Executing the quantum circuit G = g0 . . . gm−1 for a given
initial state |ϕ〉 (also called simulation when conducted on
a classical computer) leads to an evolution of the state |ϕ〉
according to Um−1 · · ·U0 |ϕ〉 = U |ϕ〉 = |ϕ′〉.

Example 5. Consider again the circuit G shown in Fig. 1(c)
and assume that the computation starts out in the all-zero
state |00〉. Consecutively multiplying the corresponding gate

2A complex matrix U is unitary if U†U = UU† = I, where U† denotes
the conjugate-transpose of U and I the identity matrix.

H = 1√
2

[
1 1
1 −1

]
(a) Hadamard gate

=

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


(b) Controlled-NOT gate

g0 g1

q1 : H

q0 :

=

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 · 1√
2

[
1 1
1 −1

]
⊗
[
1 0
0 1

]

(c) Quantum circuit G

Fig. 1. Quantum operations and their unitary matrices

matrices depicted in Fig. 1(c) to the state vector leads to the
following evolution of states:

|00〉 H⊗I2−−−→ 1/
√
2 |00〉+ 1/

√
2 |10〉 CNOT−−−−→ 1/

√
2 |00〉+ 1/

√
2 |11〉 ,

which precisely yields the quantum state illustrated in Ex. 1.

Since each gate gi represents a corresponding unitary ma-
trix Ui and this property is preserved through matrix multipli-
cation, the functionality of a given circuit G = g0 . . . gm−1 can
be obtained as a unitary system matrix U itself by determining
U = Um−1 · · ·U0. This is essential concerning the verification
of quantum circuits, i.e., the question whether two given circuits
G and G′ indeed realize the same functionality. Deciding the
equivalence of two quantum computations can be reduced to
comparing their system matrices U and U ′.

III. DECISION DIAGRAMS AND THEIR APPLICATIONS

State vectors and operation matrices of a quantum system
are exponential in size with respect to the number of qubits—
quickly rendering the representation of a system state or the
construction of a system matrix U an extremely difficult task.
decision diagrams have been proposed as an efficient way for
representing and manipulating quantum functionality [10]–[21].
While they are still exponential in the worst-case, decision
diagrams have been shown to lead to very compact representa-
tions in many cases. In the following, we review how decision
diagrams for quantum computing work and how they can be
applied to the problems of simulation and verification.

A. Decision Diagrams
As discussed in Section II, the state of an n-qubit system

is represented by a state vector of size 2n—an exponential
representation. However, the inherent tensor product structure
of many quantum states and redundancies in their description
provide ground for a more compact representation. To this end,
a given state vector with its complex entries is decomposed into
sub-vectors according to

[α00...0, . . . , α1...1]
>

[α0x]
> [α1x]

>

[α00y]
> [α01y]

> [α10y]
> [α11y]

>

...

with x ∈ {0, 1}n−1 and y ∈ {0, 1}n−2, until only com-
plex numbers remain. This gives rise to a decision diagram
structure with n levels of nodes (labeled qn−1 to q0) and
the individual amplitudes as its leaves. Each node has exactly
two successors—indicating whether the corresponding path
leads to an amplitude where qubit qi is in the state |0〉
or |1〉, respectively. During these decompositions, equivalent
sub-vectors can be represented by the same node—allowing
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(a) |ϕ〉 = 1/
√
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(c) Controlled-NOT gate

Fig. 2. Decision diagram representations for quantum states and operations

for sharing and, hence, a reduction of the complexity of the
representation. Further compaction is achieved by introducing
edge weights and employing normalization schemes3, in order
to unify sub-vectors only differing by a common factor and
further exploit possible redundancies. The amplitude of a given
basis state can then be reconstructed from the multiplication of
the edge weights along the path from the root node to the
terminal node. An example illustrates the idea.

Example 6. Consider again the state |ϕ〉 ≡ 1/
√
2 [1, 0, 0, 1]>.

Recursively splitting this vector into sub-vectors results in a
decision diagram as shown in Fig. 2(a). It consists of 3 nodes
(the terminal node is usually not counted towards a decision
diagram’s size). The two paths leading from the root edge to the
terminal node encode the states |00〉 and |11〉 respectively—
each with an amplitude of 1/

√
2 · 1 = 1/

√
2. Sub-vectors

composed solely of 0 entries are typically denoted by 0-stubs,
while edge weights equal to 1 are frequently omitted.

A similar construction is employed for representing quantum
operations. Instead of two successors, each node in a decision
diagram representing the matrix U of an operation has four
successors—corresponding to four equally sized sub-matrices
Uij . At each level l, this splitting corresponds to the action of U
depending on the value the qubit ql, i.e., Uij describes how
the rest of the system is transformed given that ql is mapped
from |j〉 to |i〉 for i, j ∈ {0, 1}.
Example 7. Consider again the single-qubit Hadamard op-
eration and the two-qubit controlled-NOT operation shown
in Fig. 1(a) and Fig. 1(b), respectively. Their corresponding
representations as decision diagrams are shown in Fig 2(b)
and Fig. 2(c), respectively. To this end, the first (second) edge
points to the node corresponding to the upper-left (upper-right)
sub-matrix U00 (U01), while the third (fourth) edge points to
the lower-left (lower-right) sub-matrix U10 (U11).

As discussed in Section II, individual gate matrices have to
be extended to the full system size using tensor products before
being applied to the current state of a system. This extension is
a natural operation on decision diagrams. Given two decision
diagrams representing matrices U and V , their tensor product
U ⊗ V is obtained by just replacing the terminal node in the
decision diagram of U with the root node of V ’s decision
diagram (and potentially relabelling the nodes).

Example 8. In Ex. 3 the 2 × 2 matrix of the Hadamard gate
was extended to a 4×4 representation by computing the tensor
product with the 2×2 identity matrix I2. Fig. 3 now illustrates
this process using decision diagrams.

3Normalization can be performed by, e.g., dividing the weight of the
outgoing edges of a node by the norm of the vector containing both edge
weights and multiplying this factor to the incoming edges—allowing for
efficient sampling from the resulting decision diagram [16].
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Fig. 3. Creation of H ⊗ I2 using decision diagrams

Decision diagrams do not only allow one to efficiently repre-
sent quantum states and matrices, but also to manipulate it. In
the following, we illustrate their application for two particularly
important design task in quantum computing: simulation and
verification.

B. Simulation
Recall that the simulation of a quantum computation entails

the consecutive calculation of the matrix-vector product be-
tween the state vector |ϕ〉 and the current operation matrix Ui
until all operations have been applied. The following example
sketches how matrix-vector multiplication is realized on deci-
sion diagrams.

Example 9. The multiplication of a (unitary) matrix U and a
(state) vector |ϕ〉 can be broken down into sub-computations
according to:[

U00 U01

U10 U11

]
·
[
α0x

α1x

]
=

[
(U00α0x + U01α1x)
(U10α0x + U11α1x)

]
.

Now, the Uij-submatrices precisely correspond to the four
successors of the matrix’s root node, while the αix correspond
to the two successors of the state vector’s root node. This is
illustrated in Fig. 4. Thus, by recursively decomposing these
sub-computations further until only operations on complex
numbers remain, an efficient scheme for matrix multiplication
using decision diagrams is devised 4.

Measuring the resulting state, i.e., sampling from the corre-
sponding decision diagram, can be efficiently conducted by a
randomized single-path traversal of the decision diagram [16].
At each node, the squared magnitude of the left (right) suc-
cessor gives the probability of the qubit associated to the node
being |0〉 (|1〉), while the probability of an individual basis
state is the product of all probabilities along the path. In
contrast to quantum computations on real quantum comput-
ers, measurements of classically simulated quantum states are
non-destructive, i.e., they can be repeated on the same state
without having to repeat the whole calculation.

C. Verification
In order to realize a conceptual quantum algorithm on an ac-

tual device, the algorithm’s description is transformed through
various levels of abstraction—including steps usually called
compilation, synthesis, transpilation, mapping, and/or similar.
To this end, several methods have been proposed [23]–[27].
During this process, it is of utmost importance to guarantee
that the resulting circuit is still functionally equivalent to the

4Decision diagram packages employ unique tables and compute tables for
the decision diagram nodes as well as the complex edge weights in order to
further exploit possible redundancies and to reduce the number of computations
necessary, see, e.g., [14].



qi qi qi qi qi
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+
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U11 · α1x

Fig. 4. Recursive structure of multiplication and addition using decision diagrams
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(b) Compiled circuit
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(c) Functionality

Fig. 5. The Quantum Fourier Transformation and its functionality

Fig. 6. Decision diagram for the functionality of the three-qubit QFT

original algorithm. Recall that the functionality of a quantum
circuit is described by the unitary system matrix U arising
from the matrix-matrix multiplications of the individual gate
descriptions. Thus, the equivalence of two circuits can be
reduced to the comparison of their system matrices. In the
following, we illustrate this verification scenario using the
Quantum Fourier Transform (QFT, a popular building block
in many quantum algorithms) [22] as an example.

Example 10. The circuit of the three-qubit QFT is shown
in Fig. 5(a). It consists of Hadamard gates, controlled phase
gates, i.e., rotations with an angle that is a certain fraction
of π (e.g., S = p(π/2), T = p(π/4)) controlled on the value
of another qubit, and a SWAP gate (which swaps the value
of the two qubits indicated by ×). The latter two types of
gates are not native to any current quantum computer and,
thus, need to be compiled into sequences of gates that are
supported. Fig. 5(b) shows one possible compiled version of
the abstract QFT circuit. Both circuits realize the functionality
described by the 8 × 8 matrix shown in Fig. 5(c), where
ω = eiπ/4 =

√
i = 1+i/

√
2.

While conceptually simple, the exponential size of the in-
volved matrices quickly renders techniques purely based on
matrices infeasible. Decision diagrams are a prominent candi-
date for checking the equivalence of two circuits since they (1)
can represent quantum functionality in a very compact fashion
in many cases, and, (2) still offer a canonic representation (with
respect to a given variable order and normalization scheme).
Thus, the equivalence of two decision diagrams can be con-
cluded by comparing their root pointers (and the corresponding
edge weight).

Example 11. Constructing the decision diagrams for the two
circuits shown in Fig. 5(a) and Fig. 5(b), respectively, results in
a decision diagram as shown in Fig. 6 in both cases5. Hence,
both circuits are considered equivalent.

As seen in the previous example, decision diagrams can still
grow exponentially large in the worst case—again presenting
a severe obstacle for verifying the correctness of circuits.
However, as recently shown in [20], this complexity can be
drastically reduced in many cases by exploiting the inherent
reversibility of quantum operations. The general idea is as
follows: If two quantum circuits G and G′ are equivalent,
then concatenating the first circuit G with the inverse G′−1

of the second circuit would realize the identity function I. The
potential now lies in the order in which the operations from
either circuit are applied. Whenever a strategy can be employed
so that the respective gates from G and G′ are applied in a
fashion frequently yielding the identity, the entire procedure
can be conducted rather efficiently (e.g., in case of verifying
the results of compilation flows [28]).

Example 12. Consider again the two circuits realizing the
QFT shown earlier in Fig. 5. Then, their equivalence can be
concluded by (1) starting with a decision diagram resembling
the identity, (2) applying one gate from the circuit shown in
Fig. 5(a), and, (3) applying all gates from the circuit shown
in Fig. 5(b) up to the next barrier (indicated by dashed lines
in Fig. 5(b)). The resulting decision diagram resembles the
identity, and hence the equivalence of both circuits can be
concluded. Conducting the verification in this fashion only
requires a maximum of 9 nodes (as opposed to 21 nodes for
building the entire system matrix).

IV. VISUALIZATION

In the previous sections, we have shown that decision dia-
grams provide a promising basis for many design tasks such
as simulation and verification. However, users of the corre-
sponding tools often do not have a corresponding background
or an intuition about how these methods based on decision
diagrams work and what their strengths and limits are. In

5Note that, for sake of clarity, edge weights are not explicitly annotated to
this decision diagram anymore. Instead, a color code is used (also explained
in detail later in Section IV and Fig. 7(b)).



(a) “Classic” mode
(b) HLS color wheel used for
complex phase encoding (c) Colored edge weights

Fig. 7. Visualization options for vector decision diagrams

an effort to make decision diagrams for quantum computing
more accessible, we developed a tool which visualizes quantum
decision diagrams and allows to explore their behavior when
used in the design tasks covered above. To keep the effort of
using the visualization as small as possible, the tool has been
implemented as a web tool which can be started by simply
accessing https://iic.jku.at/eda/research/quantum_dd/tool. In the
following, we illustrate how our tool (1) visualizes decision di-
agrams for vectors and matrices, (2) can be used for simulating
quantum circuits, and (3) can be used for verifying quantum
circuits.

A. Decision Diagrams
In order to provide the most accessible user interface possi-

ble, the tool offers several options for customizing how decision
diagrams are visualized. Fig. 7 illustrates the available styles
for decision diagrams representing vectors, i.e., states of a
quantum system. The “classic” mode (see Fig. 7(a)) offers a
look and feel that is most similar to what is found in research
papers (as, e.g., shown throughout Section III). Edges with a
corresponding weight not equal to 1 are drawn using dashed
lines and 0-stubs are retracted into the nodes themselves. Since
the explicit annotation of edge weights quickly requires lots of
space and leads to unreadable decision diagrams, there is also
an option for removing these edge labels. Instead the magnitude
of an edge weight can be reflected by the thickness of the line,
while its complex phase can be color-coded using the HLS
color wheel shown in Fig 7(b). Examples using this color code
are shown in Fig. 6 and Fig. 7(c). In addition to the above, the
tool provides a more “modern” look for the decision diagram
nodes, where the connection to the underlying state vector is
expressed in a more straight-forward fashion (shown later in
Fig. 8). Such a “modern” look is also available for matrices
(shown later in Fig. 9). These should allow less accommodated
users to more easily grasp the concept of decision diagrams.
In the following, we provide a deeper look into the individual
features of the tool and how simulation and verification can be
conducted using the tool.

B. Simulation
The simulation feature of the tool provides a settings panel,

an algorithm box for entering or loading a quantum algo-
rithm/circuit, and an interactive decision diagram box which
displays the current system state in terms of a decision diagram.
Loading quantum algorithms/circuits into the tool is as easy as
drag- and dropping an algorithm/circuit file (in either .qasm or
.real format) into the corresponding algorithm box, or starting
to enter your own description using one of the templates
provided in the “Example Algorithms” list. Once a valid
algorithm/circuit has been entered/loaded in the algorithm box,

the simulation can be controlled using the navigation buttons
below it, i.e.:
• → / ← : Go one step forward or backward. Can be used to

step through the simulation.
• � / � : Go straight to the end (or the next special operation;

see below) or back to the beginning.
• ./|| : Start/Pause a slide show where the simulation ad-

vances step-by-step in an automated fashion.
Some operations are considered special operations since they
do not directly correspond to the application of a unitary matrix:
• Barrier statements (e.g., “barrier q;”) can be used as

breakpoints when stepping forward with �.
• Measurement operations (e.g., “measure q[0] -> c[0];”)

collapse the state of a qubit to one of its basis states.
Whenever a qubit is about to get measured and it has
a non-zero probability of being in either |0〉 or |1〉 (i.e.,
it is in superposition), a pop-up dialog appears which
displays the probabilities for obtaining |0〉 and |1〉, re-
spectively. Upon choosing one of the options, the deci-
sion diagram is irreversibly collapsed. Measurements also
act as breakpoints due to their non-unitary (and, thus,
non-reversible) nature. The tool supports OpenQASM’s
classically-controlled operations, where a certain gate is
only applied if some classical bits obtained from mea-
surements are set.

• Reset operations (e.g., “reset q[0];”) discard a qubit and
initialize it to |0〉 as if it were a new qubit. Mathematically,
this corresponds to taking the partial trace of the whole
state and, then, setting the qubit to |0〉. However, the
partial trace maps pure states to mixed states and can
thus in general not be represented by the same kind of
decision diagram used for representing state vectors. The
tool supports resets in a probabilistic fashion (similar to
measurements). Whenever a reset operation is encountered
where the considered qubit has a non-zero probability
of being in either |0〉 or |1〉, a pop-up dialog appears
which displays the probabilities for obtaining |0〉 and |1〉,
respectively. Upon choosing one of the options, the other
decision diagram branch is discarded and the remaining
branch is set as the |0〉 branch. Resets also act as break-
points due to their non-unitary (and, thus, non-reversible)
nature.

Example 13. Fig. 8 illustrates the process of simulating the
quantum circuit shown in Fig. 1(c) using the tool. The first
screenshot (Fig. 8(a)) shows the initial quantum circuit and
its state |00〉. Then, the two gates are applied—yielding the
resulting state 1/

√
2 |00〉 + 1/

√
2 |11〉 (Fig. 8(b)). If, now, the

first qubit is to be measured, there is a 50% chance of it being
either |0〉 or |1〉 (Fig. 8(c)). Assume, that the measurement
outcome is |1〉. Then, the value of the second qubit is completely
determined due to the entanglement of both qubits—resulting
in the final state |11〉 (Fig. 8(d)).

C. Verification
The verification feature of the tool provides a similar settings

panel and decision diagram box as the simulation tab, but now
features two algorithm boxes. In case only one algorithm/circuit
is loaded in the left (right) algorithm box, the tool can be used
to build the (inverse) functionality of the corresponding circuit.

Example 14. Creating the QFT circuit shown in Fig. 5(a) in
the left algorithm box and applying all the operations precisely
yields the decision diagram shown in Fig. 6.

https://iic.jku.at/eda/research/quantum_dd/tool


(a) Initial state |00〉 (b) Resulting state 1/
√
2 |00〉+1/

√
2 |11〉 (c) Measuring qubit q0 (d) Post-measurement state |11〉

Fig. 8. Visualizing the simulation of the circuit shown in Fig. 1(c)

Fig. 9. Visualizing the verification of the QFT circuits shown in Fig. 5

Once a valid algorithm/circuit has been entered in each
of the algorithm boxes, their equivalence can be checked
by successively applying operations from both circuits (using
the corresponding → / � controls) and checking whether the
final result resembles the identity. As for the simulation,
Barrier statements can be used as breakpoints when stepping
through both algorithms/circuits. In contrast to simulation,
Measurement, Reset, and Classicaly-Controlled Operations are
currently not supported due to their non-unitary nature. When
verifying two algorithms/circuits, the tool expects both algo-
rithms/circuits to have the same number of qubits and the
same variable order. If you want to verify algorithms/circuits
using different numbers of ancillary and/or garbage qubits
and/or different variable orderings, you can check out our fully-
fledged equivalence checking tool JKQ QCEC (available at
https://github.com/iic-jku/qcec).

Example 15. Consider again the two circuits realizing the
three-qubit QFT shown in Fig. 5(a) and Fig. 5(b). Fig. 9 shows
how the tool is used to verify the equivalence of both circuits.
The first three gates have already been applied from the left
circuit, while six operations have been applied from the right
circuit. The corresponding decision diagram in the middle only
slightly differs from the identity (by the right node labeled q0).
Continuing the computation as discussed in Ex. 12 eventually
allows to verify the equivalence of both circuits while remain
close to the identity throughout the whole process.

V. CONCLUSIONS

In an effort to bridge the gap between the design automation
and the quantum community and to make decision diagrams for
quantum computing more accessible, we provided a compre-
hensive summary on how decision diagram techniques can be
used for the design of quantum circuits. Additionally, we have
presented an easily-accessible tool which visualizes quantum
decision diagrams and their applications. The corresponding
tool is hosted at https://iic.jku.at/eda/research/quantum_dd/tool.
We sincerely hope that our efforts help interested researchers
to learn and adopt these techniques.
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